HyperCard
Script Language Guide

The HyperTalk Language

Apple Computer, Inc.

© 1996 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.

The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo (Option-
Shift-K) for commercial purposes
without the prior written consent of
Apple may constitute trademark
infringement and unfair competition
in violation of federal and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleCD SC, AppleLink,
AppleTalk, ImageWriter,
HyperCard, HyperTalk, LaserWriter,
Macintosh, MPW, MultiFinder,
PowerBook, SANE, and Stackware
are trademarks of Apple Computer,
Inc., registered in the United States
and other countries.

AppleScript, Chicago, Finder,
Geneva, Macintosh Quadra,
Monaco, New York, QuickDraw,
QuickTime, ResEdit, System 7, and
WorldScript are trademarks of
Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.

FileMaker, MacPaint, and MacWrite
are trademarks of Claris
Corporation.

FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Microsoft is a registered trademark
of Microsoft Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTA-
BILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY, MERCHANTA-
BILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Preface

Contents

Figures and Tables Xiii

About This Guide xix

Chapter 1

What'’s in This Book? xix

Notation Conventions xXi

Changes Since the First Edition of This Guide xxii
Apple Developer Programs xxiii

What's New Since 2.0? 1

Chapter 2

HyperCard System Requirements 1
HyperCard Enhancements 2

WorldScript Compatibility 3
HyperCard and Other Scripting Systems 3
Open Scripting Architecture 4
AppleScript 5
Script Attachability 6
Script Editor Enhancements 7
Button Dialog Modifications 7
New Button Features 8
Field Dialog Modifications 12
New Field Features 13
Integrated Stand-Alone Application Builder 14
Enhanced HyperTalk 15

HyperTalk Basics 23

What Is HyperTalk? 23
Objects 24

Buttons and Fields 24
Cards, Backgrounds, and Stacks 25

iii

Chapter 3

Messages 25

Scripts 26
Message Handlers 26
Function Handlers 27

Windows 28

Card Windows 28

HyperCard’s Built-in External Windows 30
Menus 30
Chapter Summary 32

The Scripting Environment 33

Chapter 4

Getting to the Script 33
The Script Editor 35
Manipulating Text 37
Searching for Text 38
Replacing Text 39
Entering Comments 39
Formatting Scripts 40
Line Length and Script Size 41
Script Editor Command Summary 41
The Debugger Environment 43
Setting Checkpoints 45
HyperTalk Debugger Windows 45
Message Watcher 46
Variable Watcher 47
Custom Message Watcher and Variable Watcher XCMDs
Debugger Command Summary 49
Chapter Summary 50

Handling Messages 51

48

iv

The HyperCard Environment 51
Sending Messages 52
System Messages 52
Statements as Messages 53

Message Box Messages 53
Messages Resulting From Commands 54
Receiving Messages 55
Message-Passing Hierarchy 56
Where Messages Go 56
Messages to Buttons and Fields 58
The Current Hierarchy 59
The Target 61
The User-Defined Hierarchy 62
The Dynamic Path 67
The Go Command and the Dynamic Path 67
The Send Keyword and the Dynamic Path 69
Handlers Calling Handlers 71
Subroutine Calls 71
Recursion 72
Using the Hierarchy 73
Sharing Handlers 73
Intercepting Messages 76
Parameter Passing 77
Chapter Summary 79

Chapter 5 Referring to Objects, Menus, and Windows

81

Names, Numbers, and IDs 81
Object Names 83
Object Numbers 84
Part Numbers 85
Button Families 87
Special Ordinals 87
Object Numbers and Tab Order 87
Object ID Numbers 88
Special Object Descriptors 89
Identifying a Stack 89
Naming a Stack 91
Combining Object Descriptors 92
Referring to Menus and Menu Items 93

Chapter 6

Menu and Menu Item Names 93
Menu and Menu Item Numbers 93
Referring to Windows 96
Chapter Summary 97

Values 99

Chapter 7

Constants 99
Literals 100
Functions 100
Properties 101
Numbers 101
Standard Apple Numerics Environment
Precision 102
Number Handling 103
Containers 103
Fields 104
Buttons 104
Variables 105
Scope of Variables 106
Parameter Variables 106
The Variable It 106
Menus 107
The Selection 107
The Message Box 108
Chapter Summary 109

Expressions 111

102

vi

Complex Expressions 111
Factors 111
HyperTalk Operators 113
Operator Precedence 117

Operators and Expression Type 118

Chunk Expressions 118
Syntax of Chunk Expressions 119

Chapter 8

Characters 120

Words 120
Items 120
Lines 121
Ranges 121

Chunks and Containers 122
Chunks as Destinations as Well as Sources
Nonexistent Chunks 124

Chapter Summary 124

System Messages 125

123

Chapter 9

Messages and Commands 125
Messages Sent to a Button 126
Messages Sent to a Field 128
Messages Sent to the Current Card 131
Message Order 138

Control Structures and Keywords

141

Chapter 10

Keywords in Message Handlers 141

Message Handler Example 144

Keywords in Function Handlers 145

Function Handler Example 149

Repeat Structure 149

Repeat Statements 150

If Structure 155

Single-Statement If Structure 155
Multiple-Statement If Structure 156
Nested If Structures 157

Commands 165

Redefining Commands 165
Syntax Description Notation 166

vii

Chapter 11

System 7 Commands 167
Command Descriptions 167

Functions 289

Chapter 12

Function Calls 289
Syntax Description Notation 290
Function Descriptions 291

Properties 357

Appendix A

Retrieving and Setting Properties 357
Object Properties 358
Stack Properties 359
Background Properties 360
Card Properties 361
Field Properties 362
Button Properties 365
Rectangle Properties 367
Environmental Properties 368
Global Properties 369
Painting Properties 372
Window Properties 374
Menu, Menu Bar, and Menu Item Properties 375
Message Watcher and Variable Watcher Properties 376
HyperCard Property Descriptions 377

External Commands and Functions 503

viii

Definitions, Uses, and Examples 503
XCMD and XFCN Resources 503
Uses for XCMDs and XFCNs 504

Using an XCMD or XFCN 504
Invoking XCMDs and XFCNs 505
Message-Passing Hierarchy 505

Guidelines for Writing XCMDs and XFCNs
Attaching an XCMD or XFCN 508
Parameter Block Data Structure 509
Passing Parameters to XCMDs and XFCNs
ParamCount 510
Params 510
Passing Back Results to HyperCard 510
ReturnValue 510
PassFlag 511
Callbacks 511
EntryPoint 511
Request 511
Result 511
InArgs 512
OutArgs 512
Callback Procedures and Functions 512
HyperTalk Utilities 513
Memory Utilities 514
String Utilities 514
String Conversions 515
Field Utilities =~ 518
Miscellaneous Utilities 519

Creating and Disposing of External Windows

Window Utilities 525

Text Editing Utilities 529

Script Editor Utilities 530

Variable Watcher Support 532

Debugger Support 533

External Windows 534

Events in External Windows 536
Handling Events 537

Closing an External Window 540

Special XCmdBlock Values 540
Message Watcher 541
Variable Watcher 541
Script Editor 541
Debugger 542

507

510

522

ix

XTalkObject ~ 542
Window Layer Management 543
Flash: An Example XCMD 545
Flash Listing in MPW Pascal 546
Flash Listing in MPW C 548
Flash Listing in 68000 Assembly Language 550

Appendix B Constants 553

Appendix C Enhancing the Execution Speed of HyperCard 555

Change Stacks as Seldom as Possible 556
Use Variables, Not Fields, for Operations 556
Refer to a Remote Card Rather Than Going There 557
Migrate to XCMDs and XFCNs for Repetitive Tasks 558
Set LockScreen to True to Avoid Needless Redrawing 558
Set LockMessages to True During

Card-to-Card Data Collection 558
Combine Multiple Messages 558
Take Unnecessary Code Out of Loops 559
Use In-Line Statements Rather Than Handler Calls 559
Do Complex Calculations Once 560
Watch Overuse of Variable References 560

Appendix D

Extended ASCII Table 561

Appendix E Operator Precedence Table 565
Appendix F HyperCard Synonyms 567
Appendix G HyperCard Limits 569

Appendix H HyperCard Syntax Summary 573

Appendix |

Syntax Description Notation 573

HyperTalk Vocabulary 589

Glossary 623

Index 633

xi

Chapter 1

Chapter 2

Chapter 3

Figures and Tables

What's New Since 2.0? 1

Figure 1-1

Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5

Figure 1-6
Figure 1-7
Figure 1-8

Table 1-1
Table 1-2
Table 1-3
Table 1-4

Two applications exchanging information using the AppleScript
capabilities of HyperCard 2.2 4

Button Info dialog box 8
The Button Contents dialog box 9
New button styles 10

Oval style button (shown in Button tool with Show Name
checked) 11

Field Info dialog box 13
List fields 13
Building a stand-alone application from your stack 14

Enhanced HyperTalk commands 15
Enhanced HyperTalk functions 16
Enhanced HyperTalk properties 17
Enhanced HyperTalk messages 20

HyperTalk Basics 23

Figure 2-1
Figure 2-2

HyperCard objects 24

Relationship between the location of a card and a card
window 29

The Scripting Environment 33

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9

The Objects menu 33

Button Info dialog box 34

Script editor window 36

Script menu 37

Find dialog box 38

Replace dialog box 39

Nested control structures 40

The Debugger menu 44

The Message Watcher window 46

xiii

Figure 3-10 The Variable Watcher window 47

Figure 3-11 A selected variable in the Variable Watcher window 48
Table 3-1 Script editor command summary 41
Table 3-2 Debugger command summary 49

Chapter 4 Handling Messages 51

Figure 4-1 Handler that responds to message openSt ack 55
Figure 4-2 Message-passing hierarchy 57

Figure 4-3 Layered buttons and fields 58

Figure 4-4 Message traversing current hierarchy 59

Figure 4-5 Command sent as a message 60

Figure 4-6 The target 61

Figure 4-7 One stack added to the message-passing hierarchy 63
Figure 4-8 Two stacks added to the message-passing hierarchy 64
Figure 4-9 Removing a stack from the message-passing hierarchy 66
Figure 4-10 Static path before the go command executes 68

Figure 4-11 Dynamic path after the go command executes 69
Figure 4-12 Using the send keyword 70

Figure 4-13 Handler in a card script 74

Figure 4-14 Handler in a stack script 75

Figure 4-15 Intercepting a message 77

Figure 4-16 Parameter passing 79

Table 4-1 HyperTalk’'s keywords 54

Chapter 5 Referring to Objects, Menus, and Windows 81

Figure 5-1 Card Info dialog box and descriptors for the same card 82
Figure 5-2 A pathname 90

Figure 5-3 New Stack dialog box 91

Figure 5-4 New Stack dialog card-size pop-up menu 92

Figure 5-5 A custom menu 95

Chapter 6 Values 99

Figure 6-1 Manipulating the selection 107

xiv

Chapter 7

Chapter 8

Chapter 10

Chapter 12

Figure 6-2

Expressions

The Message box 109

111

Figure 7-1
Figure 7-2
Figure 7-3

Table 7-1
Table 7-2

Lines in a field 121
Chunk expressions 122
Combining chunks and objects 123

HyperTalk operators 113
Operator precedence 117

System Messages 125

Table 8-1 Messages sent to a button 127

Table 8-2 Messages sent to a field 129

Table 8-3 Messages sent to the current card 132

Table 8-4 HyperCard message sending order 139

Commands 165

Figure 10-1 Answer command dialog boxes 170

Figure 10-2 Answer command display of the standard file dialog box 171

Figure 10-3 The PPC Browser produced using the answer pr ogram
command 172

Figure 10-4 Ask command dialog box 176

Figure 10-5 Tools palette 179

Table 10-1 Effects of the ar r owKey command 173

Table 10-2 Cont r ol Key message parameter values 189

Properties 357

Figure 12-1 An object’s Info dialog box 358

Figure 12-2 Brush Shape dialog box and property values 387

Figure 12-3 Patterns palette and pattern numbers 445

Figure 12-4 The scroll property 466

Table 12-1 Stack properties 359

XV

Appendix A

Appendix B

Appendix D

Appendix E

Appendix F

Appendix G

Xvi

Table 12-2
Table 12-3
Table 12-4
Table 12-5
Table 12-6
Table 12-7
Table 12-8
Table 12-9
Table 12-10
Table 12-11

Background properties 360

Card properties 361

Field properties 363

Button properties 365

Rectangle properties 367

Global properties 369

Painting properties 373

Window properties 374

Menu, menu bar, and menu item properties 376
Message Watcher and Variable Watcher properties 377

External Commands and Functions 503

Figure A-1 Message-passing hierarchy, including XCMDs and XFCNs 506
Figure A-2 HyperCard window layers 544

Constants 553

Table B-1 HyperTalk constants 553

Extended ASCII Table 561

Table D-1
Table D-2

Control character assignments 561
Character assignments in Macintosh Courier font 562

Operator Precedence Table 565

Table E-1

Operator precedence 565

HyperCard Synonyms 567

Table F-1

HyperTalk synonyms 567

HyperCard Limits 569

Table G-1

HyperCard limits 569

Appendix H

Appendix |

HyperCard Syntax Summary 573

Table H-1 HyperTalk command syntax 574
Table H-2 HyperTalk function syntax 581

HyperTalk Vocabulary =~ 589

Table I-1 HyperTalk vocabulary 589

xvii

PRETFACE

About This Guide

This book provides detailed information about HyperTalk, the scripting
language of HyperCard. Even a little knowledge of HyperTalk enables you to
customize buttons and other parts of HyperCard stacks for your own purposes,
and you can use HyperTalk to make the stacks you create act the way you want.

While you're using HyperCard, you can find information about HyperTalk in
the HyperCard Help stack and the HyperTalk Reference stack. These stacks
make use of some of HyperCard’s best features, such as multiple windows,
computer-supported cross-referencing, and fast text searching.

Some of the concepts in this book, such as message handling and objects,

may be new to you. Use this guide as it suits your own style of learning: you
might be the kind of person who understands best by thoroughly studying the
explanations, or you might be the kind who learns by skimming the material
and then playing with HyperTalk—writing scripts or copying the examples
and trying them out.

Reference material for beginning scriptors can be found in the HyperCard
Reference and the HyperTalk Beginner’s Guide, which are available in the
HyperCard software package.

What’s in This Book?

Here’s a brief description of the contents of this book:

Chapter 1, “What’s New Since 2.0?” discusses the differences between earlier
versions of HyperCard and HyperCard 2.2. If you are already familiar with
HyperTalk as described in the original edition of this book, you can use

this chapter as a guide to new information in this edition. If you're new to
HyperTalk, however, and haven’t used the original edition, you'll probably
want to skip Chapter 1 initially and come back to it later.

Chapter 2, “HyperTalk Basics,” introduces the basic concepts of HyperTalk,
showing how it is used in the HyperCard environment.

Xix

XX

PRETFACE

Chapter 3, “The Scripting Environment,” explains how to create and modify
scripts in HyperCard objects.

Chapter 4, “Handling Messages,” describes how HyperTalk works, how it
carries out actions, and how it responds to events in the HyperCard
environment.

Chapter 5, “Referring to Objects, Menus, and Windows,” explains how to refer
to objects—the parts of HyperCard that contain HyperTalk scripts and that
respond to and initiate actions. It describes how you can use names, numbers,
and ID numbers to identify and work with objects, menus, and windows.

Chapter 6, “Values,” explains the elements within HyperTalk that contain
values.

Chapter 7, “Expressions,” describes HyperTalk’s operators and explains how
HyperTalk evaluates expressions—the descriptions of how to get a value.

Chapter 8, “System Messages,” describes the messages that HyperCard
generates in response to events (such as mouse clicks) that happen in its
environment.

Chapter 9, “Control Structures and Keywords,” describes the handlers within
which you write all HyperTalk scripts to enable objects to respond to messages
and function calls. It also describes the control structures of HyperTalk that let
you specify how and when sections of scripts execute, and it describes the
keywords that you use in control structures.

Chapter 10, “Commands,” describes each of HyperTalk’s built-in commands—
the action statements that make HyperCard do things.

Chapter 11, “Functions,” describes HyperTalk’s built-in functions—named
values that reflect conditions in the HyperCard environment.

Chapter 12, “Properties,” describes the properties of HyperCard objects—
characteristics that determine how objects look and act.

Appendix A, “External Commands and Functions,” contains general
information about XCMDs and XFCNs, extensions to HyperTalk that can
be written by expert programmers to increase the power of HyperCard.

Appendix B, “Constants,” describes HyperTalk’s built-in constants—named
values that don’t change.

PRETFACE

Appendix C, “Enhancing the Execution Speed of HyperCard,” provides some
helpful hints for scriptors who want to increase the efficiency of HyperCard.

Appendix D, “Extended ASCII Table,” lists the decimal values of the standard
Macintosh character set used by HyperCard.

Appendix E, “Operator Precedence Table,” summarizes the order in which
HyperTalk performs operations when it evaluates expressions.

Appendix F, “HyperCard Synonyms,” lists the abbreviations and alternate
spellings for HyperTalk terms.

Appendix G, “HyperCard Limits,” lists various minimum and maximum sizes
and numbers of elements defined in HyperCard.

Appendix H, “HyperTalk Syntax Summary,” shows the syntax of HyperTalk’s
command and function parameters in abbreviated form.

Appendix I, “HyperTalk Vocabulary,” lists alphabetically each of the primary
HyperTalk terms that HyperCard understands, names the category it’s in, and
provides a brief description of its meaning.

This book also contains a glossary of terms commonly associated with the
HyperCard environment and an index to help you quickly find specific
information contained in this guide.

Notation Conventions

Before you read this guide, you should know about a few typographic conven-
tions. Words or phrases in a monospaced font | i ke t hi s are HyperTalk
language elements or are to be typed exactly as shown. New terms are shown
in boldface type when they are first introduced and defined. The glossary
contains definitions of these terms and other related technical terms.

In descriptions of HyperTalk syntax for commands and other language
elements, words in italic type describe general elements, not specific names—
you must substitute the actual instances. (These elements are called metasymbols
in this book.) Brackets ([]) enclose optional elements, which may be included
if you need them. (Don’t type the brackets.) In some cases, optional elements
change what the message does; in other cases they are helper words that have

XX1

PRETFACE

no effect except to make the message more readable. The vertical bar symbol
(1) indicates a choice of elements: the syntax accepts either the element to the
left or the element to the right of the vertical bar. Syntax descriptions for some
language elements have a particular format, which is explained at the begin-
ning of the chapter about that language element.

It doesn’t matter whether you use uppercase or lowercase letters in commands
or variable names; message names that are formed from two words are shown
in small letters with a capital in the middle (I i keThi s) merely to make them
more readable.

Changes Since the First Edition of This Guide

xxii

This edition of the HyperCard Script Language Guide is different from the first
edition in several ways. Of course, it has new information in it that reflects
the new features of HyperCard. In addition, the page format and design are
different, and to make finding information easier, a few chapters have been
divided into smaller chapters and others have been reorganized.

Chapter 1, “HyperTalk Basics,” is now two chapters: Chapter 2, “HyperTalk
Basics,” which describes HyperTalk, and Chapter 3, “The Scripting Environ-
ment,” dedicated to the script editor. Chapter 4, “Values,” is now Chapter 6,
“Values,” and Chapter 7, “Expressions.” Chapter 5, “Keywords,” is now
Chapter 9, “Control Structures and Keywords.”

Chapter 12, “Properties,” now has one main alphabetical list of properties,
rather than having the properties grouped by the object or environment to
which they can apply. For each property, the objects or environments to which
it can apply are listed on the first line after the heading. Also, at the beginning
of the chapter, there are tables that list properties by object or environment
(button properties, field properties, painting properties, and so forth).

PRETFACE

Apple Developer Programs

Apple’s goal is to provide developers with the resources they need to create
new Apple-compatible products. Apple offers two programs: the Partners
Program, for developers who intend to resell Apple-compatible products, and
the Associates Program, for developers who don’t intend to resell products and
for other people involved in the development of Apple-compatible products.

As an Apple Partner or Associate, you will receive monthly mailings including
a newsletter, Apple Il and Macintosh Technical Notes, pertinent Developer
Program information, and all the latest news relating to Apple products. You
will also receive Apple’s Technical Guide Book and automatic membership in
APDA. You'll have access to developer AppleLink and to Apple’s Developer
Hotline for general developer information.

As an Apple Partner, you'll be eligible for discounts on equipment, and you'll
receive technical assistance from the staff of Apple’s Developer Technical
Support department.

For more information about Apple’s developer support programs, contact
Apple Developer Programs at the following address:

Apple Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-2C
Cupertino, CA 95014

xxiii

CHAPTER 1

What’s New Since 2.0?

This chapter is most useful for those who are already familiar with HyperCard
because it describes the enhancements made to HyperCard since HyperCard
2.0. If you haven’t done any scripting with HyperCard before, you should start
with Chapter 2, “HyperTalk Basics,” and work your way through the rest of
the book. If you are already familiar with HyperCard, you can use this chapter
as a guide to locations in the book that cover the new features of HyperTalk in
more detail.

HyperCard 2.2 provides more power and flexibility across the entire range of
Macintosh computers, starting with the Macintosh Plus. It incorporates features
that improve the use of any HyperCard application on the smaller screen of the
Macintosh PowerBook, Macintosh Plus, and Macintosh SE and on larger screens
commonly used on the Macintosh II and other modular Macintosh computers.

Most of the new features of this HyperCard release are transparent and cannot
be seen in the user interface. However, there have been several changes to the
dialog boxes and their associated functioning. (For a more detailed description
of the user interface, see the HyperCard Reference.) In addition, HyperCard 2.2
stacks are now globally localizable and can be scripted with scripting languages
like AppleScript so that stacks can easily exchange information with other
programs.

HyperCard System Requirements

HyperCard version 2.0 and later requires system software version 6.0.5 or later.
Stacks created with earlier versions of HyperCard are opened as read-only in
HyperCard version 2.0 or later. The earlier version stacks are write-protected
until converted to the 2.0 format by choosing the Convert Stack command from
the File menu.

HyperCard System Requirements 1

CHAPTER 1

What's New Since 2.0?

Stacks that wish to take advantage of WorldScript features, open scripting, and
the stand-alone application building capabilities of HyperCard 2.2 require
system software version 7.1.

HyperCard Enhancements

HyperCard 2.2 provides several feature enhancements that make scripting
easier and that enable your HyperCard stacks to be more flexible, robust, and
powerful. You have always been able to use HyperTalk scripts to automate
and customize your HyperCard application, but now, with Apple’s Open
Scripting Architecture (OSA) extensions to HyperCard 2.2, you can use scripts
to integrate HyperCard with other applications so that you can use features of
other applications in your stacks by exchanging data with those applications.

Most of the features of this release are controllable from the HyperTalk script
language and can be easily used from any existing HyperCard script. Almost
all of the improvements of this release are transparent, but are nonetheless
important in making your stacks increase the execution speed of HyperCard.
The following list summarizes the new features of HyperCard 2.2.

= WorldScript compatibility, which makes it easy to produce localizable stacks
= support for Apple’s Open Scripting Architecture and communication
between applications, including
o support for the AppleScript script language and other OSA-compliant
scripting languages
o script attachability so that you can choose the scripting language you
wish to use in the HyperCard environment
o HyperTalk equivalents to some AppleScript commands
o HyperTalk support for embedded AppleScript instructions

= support for new button styles and features, including

o standard buttons (rounded rectangle style without a shadow); similar to
those found in most dialog boxes for the Cancel button

o default buttons (with the additional 3-pixel-wide outline); similar to the
OK button found in most standard dialog boxes

o oval buttons (transparent, to overlay circular and oval shapes); HyperCard
respects the actual shape of the button when tracking mouse actions

2 HyperCard Enhancements

CHAPTER 1

What's New Since 2.0?

o pop-up menu buttons, which include a resizable title field and a
menu area

o behavior conforming to the standards of Macintosh Human Interface
Guidelines built into checkbox and radio button styles

o thefam |y, partNunber, and enabl ed properties
= fields that behave as lists, including highlighting of list items when clicked
= an integrated stand-alone application builder

= miscellaneous improvements to HyperTalk made in response to developer
requests; some examples are
o mouseDoubl eCl i ck system message
o script-controlled enabling and disabling of buttons
o text sorting by sort keys

WorldScript Compatibility

Software and Stackware are more commonly distributed worldwide now

than when HyperCard was created, and the Macintosh system is now easily
localized. Modifications have been made throughout HyperCard 2.2 to make

it sensitive to the current key script or the current font script, as appropriate,

in determining whether to invoke its special-case code for handling non-Roman
text characteristics.

Also, the convert command now works with dates and times written in any
format supported by any script installed in your system. See the convert
command in Chapter 10, “Commands.”

HyperCard and Other Scripting Systems

Using any scripting system that’s compliant with Apple’s Open Scripting
Architecture (defined in the next section), like AppleScript, you can write
scripts that extend the functionality of your stacks by integrating them with
other scriptable applications, such as Claris FileMaker Pro 2.0 and Microsoft
Excel 4.0. For example, you might want to store records detailing a large
library of films and film clips in a database program like Claris’s FileMaker
Pro, which is built to handle large amounts of data efficiently.

HyperCard Enhancements 3

CHAPTER 1

What's New Since 2.0?

The stack in Figure 1-1 uses AppleScript statements to request the FileMaker
Pro Films database to look up a film (Vertigo) and send all the information it
contains about the film to the HyperCard stack. The HyperCard stack then
adds the information to its Hitchcock films stack, which is a smaller subset of
all the films in the larger database.

The HyperCard stack also contains a script that examines the information sent
back from the database to determine if a QuickTime clip of that movie exists.
The HyperCard films stack then takes the information sent back from the Trailer
cell in the films stack to look up the film clip and play it.

By working with another application, this HyperCard stack has extended what
both applications can accomplish.

Open Scripting Architecture

Apple System software’s Open Scripting Architecture (OSA) provides a
standard mechanism that allows users to control multiple applications with
scripts written in a variety of scripting languages.

Figure 1-1 Two applications exchanging information using the AppleScript

capabilities of HyperCard 2.2

Films Y Hitthtock E—— M

[

The Films of Alfred Hitchcock

Films ‘R Us

Year

Title

Format

Sides

Duration

Price
Distributor
Catalog Number

Principal Actors

Capsule

1958
Yertigo
CLYIMIC
2

2:08
39.93
MCA
40082

James Stevart,Kim Movak,Barabara Bel
Geddes,Henry Jones, Tom Helmore, Raymond
Bailey Ellzn Corby Konstantin Shaynes,Les
Palrick

A former detective with a case of acrophobia

Vertigo

100 Jul[B[Browss

[l E

HyperCard Enhancements

The Birds

Blackmail
Charnpagne

Dial M For Murder
Dovnhill

Easy Virtue

Family Flat

The Farmer's Wife
Fareign Correspondent
Frenzy

1 Confess

Jamaica Inn

Juna and the Payeack

shadows & rysterious werman. The Lady Vanishes
Lifeboat
The Lodger
The Man Wha Knew Too Much
Trailer /01vo:w'WDC 93:Demograph:Hitchoock The Man Wha Knew Toa Much
Demo:Hiteheock OT Clips:Yertigo The Manxman
Marnie

CHAPTER 1

What's New Since 2.0?

Each scripting language that utilizes OSA has a corresponding scripting compo-
nent within its own application. When an application’s scripting component
executes a script, it performs the actions described in the script, much like
HyperCard executes HyperTalk scripts.

HyperCard 2.2 users can now use its AppleScript extensions to communicate
with applications and objects that are outside of HyperCard. This process is
enabled by sending and receiving OSA-defined messages called Apple events.

Applications typically use Apple events to request services and information
from other applications or to provide services and information in response to
such requests.

AppleScript

The AppleScript component of the OSA, which implements the AppleScript
scripting language, is the implementation provided by Apple that allows
applications to exchange information and data.

AppleScript has a number of features that set it apart from other
scripting systems:

= The AppleScript language makes it easy to refer to data within applications.
Scripts refer to objects that closely correspond to familiar objects in applica-
tions. For example, a script can refer to paragraph, word, and character
objects in a word-processing document and to row, column, and cell objects
in a spreadsheet.

= You can script many different applications. Although there are applications
that include built-in scripting or macro languages, most of these languages
work for only one application. In contrast, you can use AppleScript to
control any of the applications that support it. You don’t have to learn a new
language for each application.

= You can write scripts that control applications on more than one computer. A
single script can control any number of applications, and the applications
can be on any computer within a given network.

= AppleScript supports multiple dialects. These additional dialects can use
words from another human language, such as Japanese, and have a syntax
that resembles a specific human language or programming language. You
can convert a script from one dialect to another without changing what
happens when you run the script.

HyperCard Enhancements 5

CHAPTER 1

What's New Since 2.0?

Comparing AppleScript and HyperTalk

AppleScript and HyperTalk are fairly similar. They both work by sending
messages to objects within their systems. The major difference is that the system
encompassing HyperTalk is the HyperCard application, whereas the system

for the AppleScript language is the Macintosh system software. Essentially,

this means that whereas HyperTalk instructions can be understood only by
HyperCard, any application could potentially understand and act on a set of
AppleScript instructions.

AppleScript works by sending messages, called Apple events, from scripts in
one application to an object. An example could be an application within the
environment of your Macintosh. HyperTalk works by sending messages, called
system messages, commands, and functions, to HyperCard objects, like stacks,
cards, backgrounds, buttons, and fields.

HyperCard 2.2 supports AppleScript by implementing a set of related Apple
events called Apple event suites, as defined in the Apple Event Registry,
including the Required suite, the Core suite, and the Text suite. It adds to these
suites the HyperCard suite, an extension to the Apple events understood by
AppleScript that exposes the functionality of HyperTalk to external scripting
systems. The HyperCard suite includes AppleScript equivalents for most of
the commands, functions, and properties defined in this book.

You can learn more about the AppleScript language and its tools from the
AppleScript Language Guide.

Script Attachability

In HyperCard 2.2, scripts of HyperCard objects can be written either in
HyperTalk or in a language defined by any external scripting system, such as
AppleScript, that implements the optional attachability interface defined by
the Open Scripting Architecture.

When HyperCard 2.2 passes a message to an object, it checks to see whether
the script attached to that object is a HyperTalk script or a script belonging to
an external scripting system, such as AppleScript.

If the script is a HyperTalk script, HyperCard uses its built-in mechanism for
invoking HyperTalk message handlers. However, if the script is from an
external scripting system like AppleScript, then HyperCard translates the
message into an Apple event and uses a system software extension to invoke
the relevant message handler.

HyperCard Enhancements

CHAPTER 1

What's New Since 2.0?

A script attached to a HyperCard object receives HyperCard system messages
according to its position in the inheritance hierarchy, regardless of its language.
For example, a card script can handle the standard openCar d message whether
it’s written in HyperTalk, AppleScript, or UserTalk.

Scripts can also pass messages to other scripts without regard to their language.
When HyperCard receives an OSA-defined event, it translates the event to a
message and sends it along the current message path.

Script Editor Enhancements

The script editor in HyperCard 2.2 is capable of editing text-based scripts
belonging to any OSA-compliant scripting system, such as AppleScript. The
script editor now has a pop-up menu that lists the available scripting systems,
including HyperTalk, and lets you select the scripting system you want to

use for the currently displayed script. You can also use the global property
scri pti ngLanguage to set the scripting language you want to use for a stack
ina st art Up script. See the scri pt i ngLanguage property in Chapter 12,
“Properties.”

Button Dialog Modifications

The Button Info dialog box contains these new items:

= a Preview area displaying a picture of the button with its currently selected
attributes

= static text displaying the button’s part number

= a checkbox for setting the button’s enabl ed property

= a pop-up menu for selecting a number for the button’s f ami | y property
= a Contents button for editing the contents of the button

= a Text Style button for setting the text font, size, and style of the button’s
name (and contents for pop-up buttons)

= a pop-up menu for selecting the button’s st y| e property (this replaces
the set of radio buttons for button styles used by previous versions of
HyperCard)

= atext-entry area, displayed only for pop-up buttons, for setting the button’s
titl eWdth property

HyperCard Enhancements 7

CHAPTER 1

What's New Since 2.0?

In addition, the Button Info dialog box is now a movable modal dialog box and
can be dragged to new positions by the user. HyperCard 2.2 remembers the
positions of movable modal dialog boxes while running; it does not remember
their positions after you quit the program. Figure 1-6 shows the new Button
Info dialog box.

Figure 1-2 Button Info dialog box

Button Info

Button Name: SodaPopup |

Card button number: 1 Style:| Popup v |

Ccard part number: 1 Family:[_None |

Card button ID: 1

[J5how Name

+|] Auto Hilite
I [Enabled

[TEHt Stgle...][LinkTo...][Poan..,]

[Script...][Effect...][Euntents...] [Eancel]

New Button Features

In HyperCard 2.2, buttons are now valid HyperTalk containers; thus, they

can contain data. The contents of buttons can be edited in a dialog box that’s
accessible from the Button Info dialog box (see the Contents button in

Figure 1-6). A button on the Clipboard can be pasted along with its contents

by holding down the Shift key (the same as pasting a field and its contents).

In HyperTalk, button expressions are now valid; they evaluate to the contents
of the specified button (the same as field expressions evaluating to the specified
field’s contents).

HyperCard Enhancements

CHAPTER 1

What's New Since 2.0?

The contents of a pop-up button have a special purpose. You use them to create
the menu that pops up when the user clicks the pop-up button. Each line
within the contents of the button becomes a menu item in the menu. Figure 1-3
shows the Button Contents dialog box containing the list of menu items for the
SodaPopup button in Figure 1-6.

Figure 1-3 The Button Contents dialog box

Button Contents

Contents of card button 1

Cherry

Cola

Grape
Lemon-Lime
Orange

Root beer

Scripts can determine the number and text of the pop-up menu item that is
currently selected by using the sel ect edLi ne and sel ect edText functions,
described in Chapter 11, “Functions.” You can use the contents of other types
of buttons for any purpose.

Support for new styles of buttons in HyperCard 2.2 makes it easier to create
stacks that comply with the Macintosh Human Interface Guidelines. For instance,
you can now easily create the standard default buttons that appear in many
Macintosh dialog boxes. HyperCard 2.2 also makes it easier to create radio

HyperCard Enhancements 9

CHAPTER 1

What's New Since 2.0?

buttons and checkboxes that behave according to Macintosh Human Interface
Guidelines standards without requiring a lot of scripting to get the standard
behavior. Some of these buttons are shown in Figure 1-4.

Figure 1-4 New button styles

10

[Cancel] 0K Test Pupup

In Figure 1-4, the Cancel button, shown in the standard button style; the OK
button, shown in the default button style; and the Test Popup button, shown in
the pop-up button style, illustrate three of the new styles.

As shown in Figure 1-4, pop-up buttons have both a title area and a menu area.
The title of the button is drawn to either the right or the left of the menu area,
depending on the script system of the button’s font. If the script system is a
left-to-right script system, the title is drawn on the left; otherwise, it is drawn
on the right.

When the user resizes the pop-up button by dragging it from one of its corners,
the width of the title area remains fixed. The user can drag the dividing line
between these areas to widen one and narrow the other. You also can change
the title area’s width either by changing the Title Width value in the Button Info
dialog box, or by setting theti t | eW dt h property of the button from a script.

The default button style does not automatically provide the behavior a user
expects from clicking a default button. You can provide that behavior by
including a r et ur nKey handler and an ent er Key handler in the card, back-
ground, or stack script. Here is an example:

on returnKey
if the selection is enpty then pressDefaul tBtn
el se pass returnKey

end r et urnKey

on ent er Key
if the selection is enpty then pressDefaul tBtn
el se pass enterKey

end enter Key

HyperCard Enhancements

CHAPTER 1

What's New Since 2.0?

on pressDefaul tBtn
-- click the default button
put the nunber of buttons into btnCount
repeat with i = 1 to btnCount
if the style of button i is default then
click at the loc of button i
exit pressDefaultBtn
end if
end repeat
end pressDefaul tBtn

Also new is the oval style button, which is transparent. In the Button tool, both
the rectangular and oval frames are visible, as shown in Figure 1-5.

Figure 1-5 Oval style button (shown in Button tool with Show Name checked)

My Oval Button

The transparency of oval buttons makes them useful for overlaying oval or
circular shapes. HyperCard respects this oval shape when tracking the mouse
above it for highlighting or for sending messages. For example, nouseW't hi n
messages aren’t sent until the pointer enters the oval, and mouse clicks must
be within the oval to count as clicks within the button. The shape of an oval
button is defined by its r ect property. Oval buttons whose r ect property is a
square are, not surprisingly, circular.

There are other less visible changes that have been made to buttons. For
instance, there are five new button properties:

= Thef am | y property, which you can use to group buttons, makes it easy to
get the behavior Macintosh users expect from a group of radio buttons.

= The par t Nunber property, which was invented specifically to give you
read /write access to a property that represents the ordering of buttons and
fields within their backgrounds and cards. The par t Nunber property of a

HyperCard Enhancements 11

CHAPTER 1

What's New Since 2.0?

button or field represents the ordinal position of the button or field among the
objects of both kinds—buttons and fields—of the same card or background.

= The enabl ed property determines whether the button appears and behaves
in an enabled or a disabled state. When a button is enabled, it appears and
behaves normally. When it is disabled, the button is dimmed and it ignores
mouse clicks—it neither highlights nor receives mouse messages.

= Thescri pti ngLanguage property determines the scripting system of
the button’s script. For example, you can use the scri pti ngLanguage
property to set a button to accept scripts written in AppleScript.

= Thetitl eW dt h property determines the width of the title area of a pop-
up button. You can change the title area’s width by changing the Title Width
value in the Button Info dialog box, or by setting the t i t | eW dt h property
of the button from a script.

You can read more about these properties in Chapter 12, “Properties.”

Field Dialog Modifications

The Field Info dialog box contains these new items:

= aPreview area displaying a picture of the field with its currently selected
attributes

= static text displaying the field’s part number

= checkboxes for setting the field’saut oHi | i t e and mul t i pl eLi nes
properties (described in the section “New Field Features”)

= a pop-up menu for selecting the field’s st y| e property (this replaces the set
of radio buttons for field styles used by previous versions of HyperCard)

In addition, the Field Info dialog box is now a movable modal dialog box and
can be dragged to new positions by the user. HyperCard 2.2 remembers the
positions of movable modal dialog boxes while running; it does not remember
their positions after you quit the program. Figure 1-6 shows the new Field Info
dialog box.

HyperCard Enhancements

CHAPTER 1

What's New Since 2.0?

Figure 1-6 Field Info dialog box

=————Field Info
Field Name: |DYTIRGIL |
Card field number: 5 5‘H|E:| scrolling 'l
Card part number: 11
Card field 1D: 262 [Lock Text
[< Don't Wrap
[Green [Auto Select
vellow & Multiple Lines
Orange [Wwide Margins
| Red [] Fixed Line Height
eurnle : [Show Lines
[J Don't Search
Text Style...
ok) (concer)

New Field Features

HyperCard 2.2 lets you create fields that behave as lists. When the | ockText
and aut oHi | i t e properties of a field are set to t r ue, the field responds to
mouse clicks by highlighting the line that was clicked. If the nul ti pl eLi nes
property is t r ue, the user can hold down the Shift key and click again to
extend the range of highlighted lines. Scripts can determine the range of lines
that are currently selected ina | i st field by using the sel ect edLi ne
function, and they can get the text of the selected lines by using the

sel ect edText function, described in Chapter 11, “Functions.” Figure 1-7
shows two list field examples.

Figure 1-7 List fields

Green Yallow
Tl Orange
Crange

Red

HyperCard Enhancements 13

CHAPTER 1

What's New Since 2.0?

The scrolling list field allows the user to click an item in the list to select it or to
scroll through the list to peruse its contents without selecting anything. You can
read more about the standard behavior of scrolling lists in the Macintosh Human
Interface Guidelines.

Like buttons, fields also have a par t Nunber property and a scri pti ngLanguage
property. See the discussion in the previous section for more information. You
can read more about these properties in Chapter 12, “Properties.”

Integrated Stand-Alone Application Builder

HyperCard 2.2 enables you to build a stand-alone application without the
use of specialized external tools. This capability requires system software
version 7.0 or later.

The standard file dialog box, shown in Figure 1-8, appears when you choose
Save a Copy from the File menu. This dialog box contains a pop-up menu from
which you can choose a file format. The choices in the pop-up menu are, at a
minimum, Stack and Application, representing the standard stack and
application formats, respectively. Third-party developers can add more file
format choices by creating additional file translation modules for use with
HyperCard 2.2, such as a stack-to-ScriptX translator or a stack-to-text translator.

Figure 1-8 Building a stand-alone application from your stack

14

B Desktop ¥

—Macintosh HD
—maryHartman
& Mr. Wizard
—oh dear

& Dnline Documentation
G Bpnis Boolbewer pilg

Save a copy of stack as: |m
|Pruud to standalond | Cancel

« Stack
Application

HyperCard Enhancements

CHAPTER 1

What's New Since 2.0?

Enhanced HyperTalk

The HyperTalk vocabulary has been enlarged to accommodate the new
features within HyperCard. Table 1-1 describes the enhanced HyperTalk
commands. Table 1-1 also includes the enhanced keword do. Table 1-2
describes the enhanced HyperTalk functions. Table 1-3 describes the enhanced
HyperTalk properties. Note that the information in the “Definition” column of
Tables 1-2 and 1-3 describes only new functionality. Table 1-4 describes the
enhanced HyperTalk messages. See the appropriate chapters for syntax,
definitions, and examples of items in these tables.

Table 1-1 Enhanced HyperTalk commands

Command
answer program promptText [of type processType]
cl ose [docPathname W th|in] appPathname

convert [chunk of] container| literal [[from format] [and format]] -
to format [and format]

del et e part

di sabl e menu

di sabl e menultem of menu

di sabl e button

do expression as scriptingLanguage

doMenu itemName [,menuName] [W t hout di al og] -
[Wi t h modifierKey [,modifierKey]]

enabl e button

find [international] text [in field] [of marked cards]

find chars [international] text [in fieldl[of marked cards]
find string [international] text [in fieldl [of marked cards]
find whole [international] text [in fieldl [of marked cards]
find word [international] text [in field [of marked cards]

| ock error dial ogs| nessages|recent
open [fileName W th] application
pi ct ur e [fileName,fileType,windowStyle visible depth floatingLayer]

continued

HyperCard Enhancements 15

16

CHAPTER 1

What's New Since 2.0?

Table 1-1 Enhanced HyperTalk commands (continued)

Command
put text into button

read fromfile fileName [at [-]start] -
f or numberOfChars lunt i | char | constant

repl y expression[Wi t h keywor d expression]
reply error expression

request expression f r omprogram
request appl eEvent cl asslidlsender Idata

sel ect |ine number [to number] of field
sel ect |ine number of button

sort [lineslitens of] container [sortDirection] -
[sortStyle] [by sortKey]

unl ock error dial ogs| mnessages|recent
visual [effect] push left|right|up|down [speed] [t o image]

wite text to file fileName [at [-]start| end| eof]

Table 1-2 Enhanced HyperTalk functions

Function Definition

destination Returns the full pathname of the destination stack when
HyperCard is in the process of going to another stack.

di skSpace Returns the amount of free space on any mounted
volume.

nunber Returns the number of menu items in a specified menu

or the number of parts of a card or background.
(These are new features of the nunber function. For
a complete description of the nurmber function, see
Chapter 11, “Functions.”)

progr ans Returns a return-delimited list of all the System 7—
friendly processes currently running on your machine.

continued

HyperCard Enhancements

CHAPTER 1

What's New Since 2.0?

Table 1-2 Enhanced HyperTalk functions

Function

sel ect edBut t on

sel ect edLi ne

sel ect edText

sum

syst enVer si on

Definition
Returns the name of the button that is highlighted in a
family of buttons.

Returns the line number of the selected line (or lines) in
a list field or pop-up style button.

Returns the text of the selected line (or lines) in a list
field or pop-up style button.

Returns the sum of a list of comma-delimited numbers.

Returns a decimal string that represents the running
version of system software.

Table 1-3 Enhanced HyperTalk properties

Property
addr ess

autoHi lite

bottom
bot t onRi ght
di al i ngTi ne

di al i ngVol une

HyperCard Enhancements

Definition

Global; determines where HyperCard is running—
that is, the full path, including network zone and
machine name. This property works only in
System 7.

Fields; defines a list field if the | ockText property
isalsosettotrue.

Menu bar; determines the value of item four of the
r ect angl e property (left, top, right, bottom) when
applied to the menu bar.

Menu bar; determines the value of items three and
four of the r ect angl e property (left, top, right,
bottom) when applied to the menu bar.

Global; determines how long HyperCard waits
before closing the serial connection to a modem
after dialing.

Global; sets the volume of the touch tones
generated through the Macintosh speaker by
the di al command.

continued

17

CHAPTER 1

What's New Since 2.0?

Table 1-3 Enhanced HyperTalk properties (continued)

Property
enabl ed

envi r onment

famly

hei ght

hilite

itenDelimter

| eft

18 HyperCard Enhancements

Definition
Buttons; determines or changes whether the

specified button appears and behaves in an enabled
or a disabled state.

Global; determines the environment of the
currently running HyperCard application;
returns devel opnent if it is the fully enabled
development version and returns pl ayer if the
HyperCard player is running.

Buttons; groups two or more buttons together into
a family specified by the numbers 1 to 15, inclusive.
If the button is part of a button family, clicking one
of the buttons highlights it and unhighlights the
rest of the buttons in that family.

Menu bar; determines the vertical distance, in
pixels, occupied by the rectangle of the menu bar.

Buttons; determines whether the specified button is
highlighted (displayed in inverse video). If the

hi | i t e property of a button in a family is set to
true, the hi | i t e property of the other buttons is
automatically set to f al se.

Windows, menus, and applications; determines
the permanent ID number of a window or menu
and determines the application signature of an
application.

Global; determines what delimiter is used to
separate a list of items. HyperCard resets the
delimiter to its default, the comma, when the
computer is idle.

Buttons, fields, and windows; determines the value
of item one of the r ect angl e property (left, top,
right, bottom) when applied to the specified object
or window.

continued

CHAPTER 1

What's New Since 2.0?

Table 1-3

Enhanced HyperTalk properties (continued)

Property
| ockError Di al ogs

| ockText

name

[english] nane

nunber

owner of card

owner of window

part Nunber

rect[angl e]

right

scri ptingLanguage

HyperCard Enhancements

Definition
Global; determines or changes whether HyperCard

displays an error dialog box in response to an error
while executing a script.

Fields; defines a list field if theaut oHi [i t e
property is also set to t r ue.

Windows and HyperCard itself; determines the
name of the specified object.

Menus and menu items; the adjective engl i sh
lets your code test for the names of menus and
menu items.

Windows; determines the number within the
window layer of any window on your screen.

Cards; returns the name or ID of the background
shared by this card.

Windows; returns the name of the entity that
created the window; this could be HyperCard or
the name of an XCMD like Picture, for example.

Buttons and fields; determines or changes the
number that represents the ordering of the

buttons and fields within their enclosing card or
background. Setting this property can have the
effect of either bringing the object closer or moving
it farther (behind) other buttons and fields.

Menu bar; reports the size of the menubar
rectangle. This is a read-only property.

Menu bar; determines the value of item three of the
r ect angl e property (left, top, right, bottom) when
applied to the menu bar.

Objects that can have a script and HyperCard itself;
the scripting system used for the scripts of objects.

continued

19

CHAPTER 1

What's New Since 2.0?

Table 1-3 Enhanced HyperTalk properties (continued)

Property

styl e of button

titleWwdth

top

topLeft

vi si bl e

wi dt h

Definition
Buttons; new button styles are st andar d,
def aul t, oval , and popup.

Pop-up buttons; determines or changes the width
of the title field for a pop-up button.

Menu bar; determines the value of item two of the
rect angl e property (left, top, right, bottom) when
applied to the menu bar.

Menu bar; determines the value of items one and
two of the r ect angl e property (left, top, right,
bottom) when applied to the menu bar.

Menu bar; determines or changes whether the
menu bar is shown or hidden on the screen.

Menu bar; determines the horizontal distance, in
pixels, occupied by the rectangle of the menu bar.

Table 1-4 Enhanced HyperTalk messages

Message
appl eEvent class, id, sender

cl osePal et t e paletteWindowName,
paletteWindowID

cl osePi ct ur e pictureWindowName,
pictureWindowlID

errorDi al og

20 HyperCard Enhancements

Definition

Sent to the current card when an Apple event
is received.

Sent to the current card when a palette that was
opened with the pal et t e command is closed.

Sent to the current card when a window that was
created with the pi ct ur e command is closed.

Sent to the current card when a script execution
error occurs and | ockEr r or Di al ogs is set
totrue.

continued

CHAPTER 1

What's New Since 2.0?

Table 1-4 Enhanced HyperTalk messages (continued)

Message
nmouseDoubl eCl i ck

openPal ette
paletteWindowName,
paletteWindowID

openPi cture
pictureWindowName,
pictureWindowID

HyperCard Enhancements

Definition
Sent to a button, field, or card after a second mouse

click is released, when all of the following
conditions are true:

= The second click is within the double-click time
interval set in the Mouse control panel.

s The second click is at a location within 4 pixels
of the first click.

= The second click is within the same object as the
first click.

Sent to the current card when a palette is opened
with the pal et t e command.

Sent to the current card when a window is created
with the pi ct ur e command.

21

CHAPTER 2

HyperTalk Basics

This chapter explains HyperTalk’s place in the HyperCard system and
describes some of HyperTalk’s characteristics.

Most concepts are discussed only briefly in this chapter, with more detailed
discussion left for later chapters.

What Is HyperTalk?

HyperTalk is the scripting language of the HyperCard environment. It allows
you to perform actions on HyperCard objects: buttons, fields, cards, back-
grounds, and stacks as well as other elements of HyperCard, such as menus
and windows.

You use HyperTalk to send messages to and from HyperCard objects. You
generate a message by (among other means) clicking the mouse, opening a
card, typing a statement into the Message box, or choosing a menu item.
Or you can generate a message by sending an Apple event message from a
program—or process—outside HyperCard.

How a given object responds to a particular message depends on the object’s
script, or in the case of menu items, the menu message for that menu item.
Most HyperCard scripts are written in HyperTalk, though version 2.2 of
HyperCard makes AppleScript another scripting option.

What Is HyperTalk?

23

CHAPTER 2

HyperTalk Basics

Objects

There are five kinds of objects in HyperCard: buttons, fields, cards, back-
grounds, and stacks. (See Figure 2-1.)

Buttons and Fields

Buttons are action objects or “hot spots” on the screen. For example, clicking
a button with the Browse tool can take you to the next card in a stack.
Clicking a pop-up button lets you choose an action from a menu.

Figure 2-1 HyperCard objects

Background —

Field

Button Push :)
Card

Stack

24 Objects

Messages

CHAPTER 2

HyperTalk Basics

Fields contain editable text. The Browse tool pointing hand changes to an
I-beam when it’s over an unlocked field. (The card or background might
also contain Paint text characters. Such characters are not editable once they
are placed; they become part of the picture on the card or background.)

Cards, Backgrounds, and Stacks

The basic unit of information is the card: when you look at the screen of a
Macintosh computer running HyperCard, what you see foremost is a card.
Cards are viewed through card windows. Cards can be larger than the card
window and can be scrolled in the card window with the Scroll command in
the Go menu. The background is where you place elements that you want a
group of cards to have in common. Each card has one background. The card
overlays the background; both are the same size. What you see in the card
window belongs to the card or to the background. Both the card and back-
ground can contain buttons, fields, and pictures. Cards are grouped in stacks;
each stack is a Macintosh file. Each stack can have multiple backgrounds.

The card that is currently displayed, the background associated with it, and
the stack they are in are termed the current card, background, and stack.

The concept of being current doesn’t apply to buttons or fields. Chapter 5,
“Referring to Objects, Menus, and Windows,” contains details about referring
to objects.

HyperCard objects interact with each other, with the user, with HyperCard,
and with the Macintosh environment by sending messages. Some messages are
descriptions of things that happen in the environment, such as that the mouse
has been clicked or a card opened: these are system messages. They are like
news flashes announced to the community of objects. For example, if you press
the mouse button down, HyperCard sends the message nbuseDown; when you
let the mouse button up, HyperCard sends the message nouseUp. Chapter 8,
“System Messages,” contains more information about system messages.

Messages are sent to various objects in a particular order. For example, system
messages generated by the mouse go first to the topmost button or field (if any)
under the pointer on the screen. Next those messages go to the card, then to

Messages 25

Scripts

CHAPTER 2

HyperTalk Basics

the background, then the stack, then the Home stack, and finally to HyperCard
itself. (You'll find a detailed discussion of this hierarchical sequence in
Chapter 4, “Handling Messages.”)

HyperTalk commands are also messages—orders to do some particular thing,
like add two numbers or go to another card. A command, whether executed in
a script or typed into the Message box, is sent as a message.

26

Every HyperCard object has a script (although the script can be completely
empty). A script is a collection of any number of handlers. A handler is a
collection of HyperTalk statements; each statement ends with a return
character. Any part of a statement following HyperTalk’s double-hyphen
comment character (- -) is ignored by HyperCard.

Ahandler is invoked when a particular message is received by the object
whose script contains the handler. A simple handler looks like this:

on nmouseUp
go to next card
end nouseUp

The first line of a handler always begins with one of two words—either on or
functi on. The last statement of a handler always begins with the keyword
end. All HyperTalk statements always appear within handlers in a script.

You must place handlers in the scripts of objects that will receive the messages
you want the handlers to respond to. The message-passing hierarchy, which
determines where messages are sent, is described in Chapter 4, “Handling
Messages.”

Message Handlers

A handler that begins with on is called a message handler. The example in the
previous section is a message handler. This particular message handler is in
the script of a button; it handles the message mouseUp, and then goes to the
next card.

Scripts

CHAPTER 2

HyperTalk Basics

The message to which a handler responds begins with the word following the
word on. In this case, the message is mouseUp. When you release the mouse
button while the Browse tool is inside a button’s rectangle on the screen,
HyperCard sends the message mouseUp to the button. HyperCard looks in
the button’s script for a handler matching the message mouseUp. If it finds a
match, it executes the HyperTalk statements between on nmouseUp and end
nouseUp—in this case,go to next card

Function Handlers

In addition to message handlers, scripts can contain user-defined function
handlers. Function handlers begin with the word f unct i on instead of the
word on; the name of the function they handle is the second word. A function
handler looks like this:

function day
return first itemof the long date
end day

This function handler responds to a HyperTalk statement containing the func-
tion’s name followed by parentheses—a function call. Here’s an example:

put day() into nmessage box

The function call is day () —the rest of the line and the function call together
form a statement. When the function call is made, HyperCard looks for the
matching function handler. If it finds one, it executes the lines between
function day and end day. The value derived from the expression
first itemof the |ong dat e isreturned to the put statement in
place of day () . In the example, the value returned by the function (Fr i day,
for example) is put into the Message box.

Function calls use the same message-passing hierarchy as messages; it’s
described in Chapter 4, “Handling Messages.” Message and function
handler structures are described in detail in Chapter 9, “Control Structures
and Keywords.”

Scripts

CHAPTER 2

HyperTalk Basics

Windows

28

Windows are another HyperCard element that you can control with the
HyperTalk language. Windows share many properties with objects but
are not HyperCard objects because they do not have scripts or respond to
messages. (Scripts and messages are described earlier in this chapter; see
the section “Properties” in Chapter 6, “Values,” for an introduction to
HyperCard properties.)

HyperCard windows include card windows, the FatBits window, the Tools
palette, the Patterns palette, the Scroll window, the Message box window,
and external windows.

HyperCard’s built-in external windows include the script editor, the Message
Watcher, the Variable Watcher, and the Navigator palette. User-defined external
windows include windows created with the pi ct ur e command and windows
created with external commands. (The pi ct ur e command is described in
Chapter 10, “Commands,” and external commands, which control external
windows, are described in Appendix A, “External Commands and Functions.”)

Card Windows

You view the cards in a HyperCard stack through a card window. Card
windows have a title bar, a zoom box, and if there is more than one stack open
at the same time, a close box. A stack’s card window can be the same size as
or smaller than the current card size. You can reposition card windows by
dragging them or setting HyperTalk properties.

HyperTalk allows you to control the following features of a stack’s card
window:

= the current size of the card window

= the current location of the card window

= the type of title shown in the title bar of the card window

= the current position or scroll of the card within the card window

Card windows are resized automatically when the card is resized from either
the Stack Info dialog box or with HyperTalk. You can resize card windows

Windows

CHAPTER 2

HyperTalk Basics

independently of the card. Card windows are located within the global
coordinates of the screen. Cards are located within the card window’s local
coordinates. The representation of the relationship between the location of
the card window and a larger card is shown in Figure 2-2. You can scroll
the contents of a card that is larger than the current card window with the

Figure 2-2 Relationship between the location of a card and a card window
@ File Edit G Tools Chjects Font Style Hone
Card window 5 Default value for origin
coordinates 60,65 of card window is 0,0
Card coordinates —— 0.0
Card window
|
i
[
Card |
0,0

Card coordinates T

@& File Edit Go Tools Objects For;(Style Honme
T Set scroll of card window
< to 0,200

0,200

Card window

Card

Windows

CHAPTER 2

HyperTalk Basics

scrol | property. See the | ocati on,rect angl e, and scrol | properties in
Chapter 12, “Properties,” for more information about moving and sizing
card windows and cards.

To find out how to refer to HyperCard card windows with the HyperTalk
language, see Chapter 5, “Referring to Objects, Menus, and Windows.”

HyperCard's Built-in External Windows

HyperCard has several built-in external windows. They are the script editor
windows, the Message Watcher window, and the Variable Watcher window.
You can control the following properties of these windows with HyperTalk:

= the current font and style of text to use in the script editor window
= the current location of the Message Watcher window

= the current location of the Variable Watcher window

= the current size of the Variable Watcher window

= the positions of the horizontal and vertical bars of the Variable Watcher
window

For more information about the script editor window, the Message Watcher
window, and the Variable Watcher window, see Chapter 3, “The Scripting
Environment.”

Menus

You can also control the behavior of HyperCard menus with HyperTalk
commands. Menus are not, however, HyperCard objects either, because
like windows, they do not have a script and can’t respond to messages.
(Messages and scripts are described earlier in this chapter.)

30 Menus

CHAPTER 2

HyperTalk Basics

Menus are containers. They contain menu items. Menu items can send
messages to HyperCard objects with menu messages. If a menu item has a
menu message, the menu message is sent to the current card or specified
object when the menu item is chosen.

HyperTalk allows you to perform the following actions on menus:

create new menus in the HyperCard menu bar with the creat e menu
command

add menu items to menus with the put command

change the behavior of menu items by modifying a menu item’s menu
message with the menuMsg property

change the style of menu item text with the t ext St yl e property

assign Command-key equivalents to menu items with the commandChar
property

assign checkmarks for menu items (to show they are chosen) with the
checkMar k and mar kChar properties

determine the name of menus or menu items with the name property
disable menus and menu items with the di sabl e command

enable menus and menu items with the enabl e command and enabl ed
property

delete menu items with the del et e command (except in the Font, Tools,
and Patterns menus)

delete entire menus with the del et e command (once deleted, they’re gone,

unless you recreate them)

reset the HyperCard menu bar with the r eset nenubar command
(once reset, all custom menus created with the cr eat e menu command
are deleted)

To find out how to refer to HyperCard menus and menu items with the
HyperTalk language, see Chapter 5, “Referring to Objects, Menus, and
Windows.”

Menus

31

CHAPTER 2

HyperTalk Basics

Chapter Summary

32

Here is a summary of the material covered in this chapter:

HyperTalk controls the properties of HyperCard objects: buttons, fields,
cards, backgrounds, and stacks.

HyperTalk also controls the properties of HyperCard windows and
HyperCard menus, although these elements do not have scripts as
objects do.

HyperCard objects interact by sending and receiving messages.

How an object responds to a message is specified by its script, which is
written in HyperTalk or another HyperCard-compatible language like
AppleScript.

Scripts are collections of message handlers and function handlers.

Chapter Summary

CHAPTER 3

The Scripting Environment

This chapter describes the environment for creating and editing the scripts of
HyperCard objects. It also describes the built-in script debugger that is part of
the scripting environment.

Getting to the Script

You can get to an object’s script through the Objects menu, shown in Figure 3-1.
The Objects menu has five object Info items, one for each of the five types

of objects: the buttons and fields belonging to the current card and back-
ground, the current card, its background, and the stack to which the current
card belongs.

Figure 3-1 The Objects menu

I]h_jec:ls

Huttan infa,..
Fiselsd Bnnfer |
Card Info...
Bkgnd Info...
Stack Info...

Hring Qiasey
Seagd Farther

New Button
New Field
New Background

Getting to the Script 33

CHAPTER 3

The Scripting Environment

You must be at level 5

The user level must be set to 5 for you to be able to look at
scripts. To change the user level, choose Preferences from
the Home menu and select Scripting on the Preferences
card, or set the user level to 5 from the Message box with
this statement:

set userlLevel to 5O

To edit the script of the current card, background, or stack, choose the appro-
priate Info menu item for the object whose script you want. This action brings
up information about the object in an Info dialog box (see Figure 3-2). To open
the object’s script, click the Script button in that object’s Info dialog box.

To get to the script of a button or field, first select the button or field (with the
Button tool or Field tool), then choose the appropriate Info item from the
Objects menu. It is not necessary to be working in the background to open the
script of an existing background button or field. You must be working in the

34

Figure 3-2 Button Info dialog box
Button Info
Button Name: Neul Button |
Card button number: 1 Style:| Round Rect hd |

Card part number: 1 Familg'

Card button ID: 1

(] Show Name

New Button (] Auto Hilite

[€ Enabled

(Tent style...] [LinkTo..][lcon.. |

[Script...][Effect...][Euntenls...] [Cancel]

Getting to the Script

CHAPTER 3

The Scripting Environment

background, however, to create new background buttons and fields. (Working
in the background may also help you to select background buttons and fields,
because when you’re in the background, HyperCard doesn’t display card
buttons and fields.)

Shortcuts

To get to the Info dialog box of a button or field quickly,
double-click the button or field with the Button or Field
tool chosen.

To open a button script directly, hold down Command-
Option while you click anywhere inside the object’s
surrounding rectangle. To open a field script directly, hold
down Command-Option-Shift while you click anywhere
inside the object’s surrounding rectangle. To open the
script of the current card, press Command- Option-C.

To open the script of the current background, press
Command-Option-B. To open the script of the current
stack, press Command-Option-S. O

You can close a script by choosing the Close Script command in the File menu,
by pressing Command-W, or by clicking the close box in the upper-left corner.
You can save a script by choosing the Save Script command in the File menu or
pressing Command-S. To close the script without saving changes, press
Command-period.

Shortcut
To save and close a script quickly, press the Enter key. O

The Script Editor

The HyperCard script editor lets you create and modify handlers in an object’s
script. You can have more than one script open at a time. The scripts may be
from within the same stack or from different stacks (see Figure 3-3). The
number of possible open scripts depends on the available memory in the
Macintosh computer. When you work on a script, you are working in a script
window. You can resize script windows and drag them to any position on

the screen.

The Script Editor 35

CHAPTER 3

The Scripting Environment

Figure 3-3 Script editor window

36

I:l Script of background id 2717 = "Home Cards”
Scripting language :

Script from background: Home Cards

THE MESSAGE HAMODLERS IM THIS SCRIPT:

openStack, ol oseStack, openBackground, o | oseBackground, suspendStack,,
resumeStack , newCard, deleteCard, renameCard, se tCardHame
renumbet-Cards, reorder-Cards, ad jus tHavHi | i tes, newl i nk , makeMewHCButton
dragHCBut ton, updateHCPaths

THE FUMCTIOM HAMDLERS IM THIS SCRIPT:
chopStr, selectHCFi le, getHCPathMome , memError-Script, wri teHCSer ipt
stringlslnContainer

————— Open/Resume Scripts

on openStock
global WhichHomeCard
show menubar — needed for the "Home" menu
if WhichHomeCard is not empty then go od WhichHomeCard
—— remove any =similar menus
if there is a menu "Home" then delete menu "Home" —— &
pass openStack -- so others con use it

end openStack

on closeStack
—— Requires handler: checkForHomeMeanu
checkForHomeMehu
pass closeStock -— so others can use it
end closeStack

on openBackground

—— Requires handler: menuStatus

menuStatus true, trues

poss openBackground -— so others con use it
end openBockground

Note

The script editor is implemented as an external window;
you can replace it with a custom script editor that you
define as an external command. See Appendix A, “External
Commands and Functions,” for information on external
commands and external windows; see the scri pt Edi t or
property in Chapter 12, “Properties,” for how to change to
a custom script editor. O

The Script Editor

CHAPTER 3

The Scripting Environment

While a script window is active, the script editor menu bar, which includes a
menu called Script, is accessible (see Figure 3-4). The commands in the Script
menu are described later in this chapter.

Figure 3-4 Script menu

| scrit I

Find... #F
Find Again ®0
Fingd Sado Man 58H
Scroll to Selection

Replace... #R
Replace Again T

Comment -
Uncomment =

Chedl Buntay BE

Set Checkpoint 3D

When you have a script window open, you can still use the regular HyperCard
menu bar by making a card window, rather than a script window, active. If any
part of a card window is visible, you can make it active by clicking it. You can
also use the Next Window command from the Go menu or press Command-L
to bring a card window to the front.

Manipulating Text

Many standard text editing features are available in the script window. You can
use the arrow keys to move the text insertion point around in the script. If your
script extends beyond the right border of the script window, you can scroll
horizontally by using the scroll bar at the bottom of the script window. You can
save the current script with Command-S and close it with Command-W. You
can also print the current script with Command-P.

The Script Editor 37

CHAPTER 3

The Scripting Environment

The mouse manipulates an I-beam pointer with which you can place an
insertion point or select text. You can double-click to select a word or
triple-click to select a whole line. You can perform cut, copy, and paste
operations using Command-X, Command-C, and Command-V, respectively.
The selection that you’ve cut or copied remains in the Clipboard until you cut
or copy again, in case you want to paste the material more than once. You can
also paste it into a field as regular text or on a card or background as Paint text.
You can undo a cut, copy, clear, or paste or any typing operation with
Command-Z or by choosing Undo from the Edit menu.

You can change the font or size in which script text is displayed with
the properties scri pt Text Font and scri pt Text Si ze. See Chapter 12,
“Properties,” for more information about these properties.

Searching for Text

The Find command in the Script menu is different from the HyperCard

Find command in the regular HyperCard Go menu. If you choose Find

from the Script menu (or press Command-F), you get the dialog box shown

in Figure 3-5. The script editor locates and selects the first occurrence, following
the current insertion point, of a string you type into the Find field. You can
search for a whole word or a partial word. If you don’t check Case Sensitive,
Find ignores whether the letters in the word are uppercase or lowercase. If you
check Case Sensitive, the case of each letter in the search string and the target
string must match exactly. If you check Wraparound Search, Find searches for
a string starting from the current insertion point to the end of the script, and
then wraps around to the beginning of the script to continue the search. If
Wraparound Search isn’t checked, Find locates a string only if it is after the
current insertion point.

Figure 3-5 Find dialog box

38

Find:

3 Whole Word [JCase Sensitive
@ Partial Word [J Wraparound Search

The Script Editor

CHAPTER 3

The Scripting Environment

Replacing Text

Choosing Replace in the Script menu or pressing Command-R brings up

the dialog box shown in Figure 3-6. Replace locates and replaces the first
occurrence, following the current insertion point, of a string you type into the
Find field with the string you type into the “Replace with” field. For locating
the string to be replaced, you have the same options as for the Find command:
whole or partial word, case sensitive or not, and wraparound search or not.
You can also specify that HyperCard replace the string, replace every occur-
rence of the string, or just find and highlight the string.

Figure 3-6 Replace dialog box

Find:

Replace with:

3 Whole Word [Jcase Sensitive
@ Partial Word [Wraparound Search

[Heplace HII][Find][Cancel]

Entering Comments

You can put comments in your script by preceding the comment text with two
hyphens (- -). HyperCard ignores any text on a line after the double hyphen. If
a comment wraps to the next line in a script, it must have a double hyphen at
the beginning of that line, too. You can insert a double hyphen at the insertion
point by choosing Comment from the Script menu, by pressing Command-
hyphen, or by typing two hyphens.

You can remove the double hyphen from a line with Command-equal sign or by
choosing Uncomment from the Script menu. For the Uncomment command to
work properly, you must place the insertion point next to one of the hyphens,
or select any part of the line, as long as the selection includes the hyphens.

The Script Editor 39

CHAPTER 3

The Scripting Environment

The double hyphen is also useful when debugging or trying to improve the
syntax in your scripts. You can precede statements in a handler with the double
hyphen to prevent them from executing. To have HyperCard ignore an entire
handler, you need to add the double hyphen to just the first line. This allows
you to comment out a part of your script to see if that part is causing a problem.

Formatting Scripts

The HyperCard script editor indents control structures for you. It automatically
indents all of the lines inside a handler structure when you finish typing a
statement and press the Tab key, press the Return key at the end of the last line,
or close its script window. (See Figure 3-7.) When i f and r epeat structures
are nested inside each other or within handlers, the lines are indented further.
(You can’t nest handler structures inside each other or any other structure.)

Error checking

Automatic formatting provides some degree of error
checking while you write a script: if you press the Tab key
and the ending line in your handler isn’t flush with the left
margin of the script editor window, you probably left
something out or made a syntax error in a HyperTalk
command. O

Figure 3-7 Nested control structures

40

I Script of stack Prajna:HyperTalk (Prajna):Latest HyperCi EMIE
Scripting language :

repeat with curBkgnd = 1 to the number of bkgnds
set cursor to busy
go to card 1 of bkgnd curBlkgnd
if the script of this bkgnd contains pattern
then edit script of bkgnd curBkgnd
repeat with curBgBin = 1 to the number of bkgnd buttons
sat cursor to busy
if the script of bkgnd button curBgBtn contains pattern
then edit script of bkgnd button curBgEtn
end repeat
repeat with curBgField = 1 to the number of bhgnd fields
sat cursor to busy
if the script of bkgnd field curBgField contains pattern
then edit script of bkgnd field curBgField
end repeat
end repeat

The Script Editor

CHAPTER 3

The Scripting Environment

Line Length and Script Size

The script editor doesn’t wrap lines that are too long to fit in a script window.
Lines too long to fit in the script window simply extend out of sight. Line
length is, however, limited to 255 characters. A single script cannot exceed
30,000 characters, including spaces, return characters, and other invisible
characters. If you reach this limit, think about moving some of your handlers
to another object, such as a hidden field or button, and send messages to it as
required. If you don’t want statements to extend beyond the right boundary
of the script window, you can break a single statement into multiple lines by
pressing Option-Return where you want a line to break. This “soft” return
appears in HyperCard scripts as a logical NOT symbol (-). HyperCard treats
lines broken in this way as single HyperTalk statements continuing to the next
actual return character.

You can’t break a literal

You can’t put a “soft” return inside a quoted literal
expression. (Chapter 6, “Values,” describes literals.) O

Script Editor Command Summary

Table 3-1 is a summary of the script editor commands you can invoke from

the keyboard.

Table 3-1 Script editor command summary

Key press Action

Command-A Select all

Command-C Copy selection to Clipboard

Command-D Set or clear temporary checkpoint at selected line (for
debugger)

Command-equal Uncomment selected line

sign

Command-F Display Find dialog box

continued

Script Editor Command Summary 41

42

CHAPTER 3

The Scripting Environment

Table 3-1 Script editor command summary (continued)

Key press
Command-G

Command-H

Command-hyphen

Command-K

Command-L
Command-Option-B
Command-Option-C
Command-Option-S
Command-P
Command-period
Command-R
Command-S
Command-T
Command-V
Command-W
Command-X
Command-Z

Enter

Option-click
Option—click

close box
Option-Return

Tab

Action
Find again

Find the string currently selected elsewhere in the
script

Comment selected line

Check syntax (enabled only when
scri pti ngLanguage is Appl eScri pt)

Next window to front

Open the script of the current background
Open the script of the current card

Open the script of the current stack

Print script or selection

Close script without saving changes
Display the Replace dialog box

Save script

Replace again

Paste Clipboard contents at insertion point
Close script

Cut selection to Clipboard

Undo last operation

Save changes and close script

Set or clear temporary checkpoint at selected line
(for debugger)

Close all open scripts

Carry statement onto new line (“soft” return —)

Format script

Script Editor Command Summary

CHAPTER 3

The Scripting Environment

The Debugger Environment

This section describes the HyperTalk script debugger. The script debugger is
integrated with the script editor to provide a set of easy-to-use debugging
tools. You may find it easier to understand the features of the script debugger
after learning more about HyperTalk, so you may want to skip this section and
return to it later.

The HyperTalk script debugger has the following features:
= integration with the script editor for setting checkpoints within scripts
= debugging tools in the Debugger menu

= two windows for watching the progress of a script while it executes or while
you step through the statements in a handler

In HyperTalk, a checkpoint serves the same purpose as a breakpoint in tradi-
tional development environments. You set a checkpoint at the location

in a script at which you want to enter the debugger. You can also enter the
debugger with the Command-Option-period key combination anytime
while a script is executing. For example, you can get to the debugger by
pressing Command-Option-period right after clicking a button that goes to
another stack.

When HyperTalk enters the debugger, it pauses execution of the script, displays
the script in a window, puts a box around the next line of the script to be
executed, and displays a Debugger menu at the right end of the HyperCard
menu. The Debugger menu, shown in Figure 3-8, has several menu items you
can use to debug your scripts.

You can step through the remaining statements in the script with Command-S
or by choosing Step from the Debugger menu. Each step executes the statement
with a box around it, then moves the highlight to the next statement in

that handler.

The Debugger Environment 43

CHAPTER 3

The Scripting Environment

Figure 3-8 The Debugger menu

44

Step S
Step Into #1
Trace

Trace Into T
Go #0

Trace Delay...
S5et Checkpoint 3D
Abort A

lariable Watcher
Message Watcher

You can step into the trail of subhandlers with Command-I or by choosing Step
Into from the Debugger menu. Step Into allows you to follow execution among
multiple handlers when one handler calls another. When you choose Step Into
and a message is sent from the currently executing handler, you go to the
location in the current object’s script or any object’s script in the message-
passing hierarchy that has a handler for that message. That message handler
becomes a subhandler to the originally executing handler. You can then
continue to step through the subhandler until its completion. After completion
of the subhandler and any of its subhandlers, you go back to the line in your
original handler following the statement that sent the message to the first
subhandler. Subhandlers could be in any object script within the current
message-passing hierarchy. (See Chapter 4, “Handling Messages,” for
information about handlers calling handlers and the message-passing
hierarchy.)

You can trace the current handler to completion by choosing Trace from the
Debugger menu. When you choose Trace, HyperCard executes each line in the
current handler. Use Command-T or choose Trace Into in the Debugger menu
to execute each line of the current handler including all of the subhandlers until
the script’s completion without having to manually step through the handlers.
You can set the amount of time HyperCard waits between execution of the lines
in a handler during a trace by choosing Trace Delay in the Debugger menu. The

The Debugger Environment

CHAPTER 3

The Scripting Environment

trace delay value can also be set with the global property t r aceDel ay. See
Chapter 12, “Properties,” for information about the t r aceDel ay property.

You can exit the debugger with Command-G or by choosing Go from the
Debugger menu.

Setting Checkpoints

You can set temporary and permanent checkpoints in a script. To set a
temporary checkpoint in a HyperTalk script, set the insertion point anywhere
in a line of a handler at which you want to enter the debugger and choose Set
Checkpoint from the Script menu or press Command-D. You can also click
anywhere in the line while pressing the Option key. A temporary checkmark
appears in the margin to the left of the chosen location. To remove a temporary
checkpoint, perform any one of the previously mentioned operations on the
line with the checkmark. You can clear all the checkpoints in a script by clicking
any checkpoint in the script while pressing Shift-Option.

You can have up to 16 temporary checkpoints per script in a maximum of 32
scripts. Temporary checkpoints are not saved with the script when you quit
HyperCard.

You set permanent checkpoints in a script by inserting the HyperTalk statement
debug checkpoi nt anywhere within a handler. There is no practical limit to
the number of permanent checkpoints in a script. Permanent checkpoints are
permanent in that they are saved with the script—they can be removed by
deleting the debug checkpoi nt statement.

Checkpoints are ignored by HyperCard when user Level is set lower than
Scripting (user level 5).

HyperTalk Debugger Windows

The debugger windows are named the Message Watcher and the Variable
Watcher. You can display one or both of these windows in two ways. They can
be called by HyperTalk commands in a script or the Message box, or they can
be displayed by choosing Variable Watcher or Message Watcher from the
Debugger menu while you're in the debugger environment.

The Debugger Environment 45

CHAPTER 3

The Scripting Environment

Message Watcher

The Message Watcher, shown in Figure 3-9, is an external window. It appears
as a floating movable window that displays both HyperTalk messages and
XCMD-generated messages as they are sent. You can display the Message
Watcher window with either of these HyperTalk statements:

show Message Wt cher
set the visible of window "Message Watcher" to true

When you're in the debugger, you can also display the Message Watcher
window by choosing Message Watcher from the Debugger menu.

Figure 3-9 The Message Watcher window

46

Message Watche
E Hide unused messages E Hide idle

cornrmandkey Lovern
daotenu
openStack
show
go
openBackground
setuptenu
show
create
put
out

The Message Watcher window is always in front of the active window, which
may be a card window or script window. (If you call the Message box, it
appears in front of the Message Watcher.) You can close the Message Watcher
window by clicking the close box or with either of these statements:

hi de Message Wt cher
set the visible of window "Message Watcher" to fal se

When you're in the debugger, you can close the window by choosing Message
Watcher from the Debugger menu.

When “Hide unused messages” is checked, the Message Watcher displays only
those messages that are handled by scripts. If “Hide unused messages” is not
checked, you see all messages that are sent whether or not they are intercepted

The Debugger Environment

CHAPTER 3

The Scripting Environment

by a handler. Each message that isn’t handled in the message-passing hierarchy
is displayed in parentheses. For example, (mbuseW t hi n) displayed in the
list indicates that there was no handler for the rouseW t hi n message in the
message-passing hierarchy.

When “Hide idle” is checked, the Message Watcher doesn’t display idle
messages. If “Hide idle” isn’t checked, idle messages are displayed.

The Message Watcher stores the last 150 lines of messages. Older messages are
removed as the new messages fill the buffer.

Variable Watcher

The Variable Watcher, shown in Figure 3-10, is an external window. It appears
as a floating window that displays the HyperTalk global variables and local
variables set by the current script. (Variables are explained in Chapter 6,
“Values.”) Variables are displayed in a two-column format with the variable
name in the left column and the current values in the right column. You can
display the Variable Watcher window with either of these HyperTalk
statements:

show Vari abl e Wat cher
set the visible of window "Variable Watcher" to true

When you're in the debugger, you can also display it by choosing Variable
Watcher from the Debugger menu.

Figure 3-10 The Variable Watcher window

Mariable Watche

Global Mariables
UserName Julie Callahan (4%
Documents

Applications
Stacks HyperCard:...
whichHomeCard
seriptlebugqging
seriptWindowRec| 25 42 555 47

==

The Debugger Environment 47

CHAPTER 3

The Scripting Environment

The Variable Watcher window is always in front of the active window, which
may be a card window or a script window. You can close the Variable Watcher
window by clicking the close box or with either of these statements:

hi de Vari abl e Wat cher
set the visible of window "Variable Watcher" to fal se

When you're in the debugger, you can close the window by choosing Message
Watcher from the Debugger menu.

You can temporarily modify the values of global and local variables to see how
they affect your stack application or scripting environment with the Variable
Watcher. Drag the Variable Watcher size box to expand the window so that you
can see the area below the thick horizontal line in the window. Click the
variable name that you want to modify. The variable value is highlighted and
placed in the field below the horizontal bar, as shown in Figure 3-11. You can
edit the variable value by typing into the field. When you have finished
changing the value, press the Enter key. The value for that variable is changed.

Figure 3-11 A selected variable in the Variable Watcher window

48

lMariable Watcher

Global Mariables
UserName Julie Callahan (4%
Documents

Applications
Stacks HyperCard:...
whichHomeCard
seriptlebugqging
seriptWindowRecf 85 42 555 4

==

Custom Message Watcher and Variable Watcher XCMDs

The Message Watcher and Variable Watcher are implemented as external
windows, so they can be replaced with custom external commands written in
a programming language such as Pascal.

The Debugger Environment

CHAPTER 3

The Scripting Environment

To replace either the Message Watcher or Variable Watcher window with
your own custom tools, set the global property messageWat cher or

vari abl eWat cher to the name of your tool with a HyperTalk statement like
set vari abl evatcher to "M/Tool W ndow'

For more information about creating external windows, see Appendix A,
“External Commands and Functions.”

Debugger Command Summary

Table 3-2 is a summary of the debugger commands you can invoke from

the keyboard.

Table 3-2 Debugger command summary

Key press Action

Command-A Stop the handler

Command-D Clear the current checkpoint

Command-G Go back to application

Command-I Step into and follow the path through any subhandlers

Command-Option- Open the debugger while a script is running

period

Command-period Stop the handler

Command-S Step to the next line in current handler; step through
any subhandler

Command-T Trace the handler and its subhandlers to completion;

same as Step Into, but user interaction isn’t required

Debugger Command Summary 49

CHAPTER 3

The Scripting Environment

Chapter Summary

Here is a summary of the material covered in this chapter:
= You can create and edit scripts with the HyperCard script editor.
= You can debug scripts with the built-in debugger.

50 Chapter Summary

CHAPTER 4

Handling Messages

This chapter explains how HyperCard objects send and receive messages and
how HyperCard executes scripts.

The HyperCard Environment

HyperCard provides the environment in which HyperTalk scripts execute. The
HyperCard environment consists of objects connected by a message-passing
hierarchy and the HyperTalk language through which they communicate.

Although you could write a stand-alone program in a single HyperTalk script,
you would not be making use of the power and flexibility of the HyperCard
environment. Instead, you use HyperTalk to define the ways in which objects
interact with each other and with the user.

HyperCard is user oriented. When using HyperCard, the user opens and closes
cards, reads and changes text in fields, draws pictures on cards, and so on.
HyperCard constantly sends messages to objects in response to these actions
(and to the user’s inactivity when doing nothing), and the objects in turn
respond with other messages and other actions. The basic purpose of
HyperTalk scripts is to enable objects to handle those messages and to specify
succeeding actions by sending further messages.

Most of the time, scripts carry out specific actions for the user: setting properties
of objects, going to other cards, and so on. HyperTalk can do automatically
almost everything the user can do manually with the mouse and keyboard.

The HyperCard Environment 51

CHAPTER 4

Handling Messages

Sending Messages

52

All HyperCard actions are initiated by messages sent to objects. Messages are
sent to objects in four ways:

= An event (such as a mouse click or a key pressed on the keyboard) can cause
HyperCard to send a system message.

= Handler statements (other than keywords) are sent as messages when a
handler executes.

= HyperCard sends the contents of the Message box as a message when the
user presses Return or Enter.

= HyperCard sometimes sends a message when it executes a command.

System Messages

HyperCard sends system messages constantly in response to events in the
Macintosh environment. For example, if you move the pointer so that it’s over
a button on the screen, as soon as the pointer enters the button’s rectangle,
HyperCard sends the message mouseEnt er to the button. As long as the
pointer remains inside the button rectangle, HyperCard continuously sends the
message mouseW t hi n to the button. As soon as you move the pointer outside
the button area, HyperCard sends the message nobuselLeave to the button.

HyperCard sends other system messages when you press certain keys on the
keyboard, close a field, choose a menu item, or quit HyperCard. When you
open a card, HyperCard sends the message openCar d to the card itself; when
you leave the card, it sends cl oseCar d. Similar messages are sent to cards
when their backgrounds and stacks are opened and closed. If nothing at

all is happening, HyperCard continuously sends the message i dl e to the
current card.

One of the most commonly used messages is mouseUp. Buttons often contain
handlers that respond to the mouseUp message; the nbuseUp message

is sent to a particular button when you click it. (HyperCard actually sends
two messages to a button when it is clicked: mouseDown and nouseUp. The

Sending Messages

CHAPTER 4

Handling Messages

nmouseUp message is sent only if you release the mouse button with the pointer
over the same screen button it was over when you pressed it down.)

HyperCard also sends mouse messages to a locked field when you click it. If
the field isn’t locked, nouseDown and nmouseUp aren’t sent—the click opens
the field for text editing and HyperCard sends the message openFi el d to the
field. (You can send mouse messages to an unlocked field, however, by holding
down the Command key while you click the field.)

Clicking outside all buttons and fields sends nbuseDown and nmouseUp directly
to the current card.

Chapter 8, “System Messages,” describes all of HyperCard’s system messages.

Statements as Messages

When a handler executes, its statements are sent as messages, first to the object
that contains that handler, then to succeeding objects in the message-passing
hierarchy (described later in this chapter). When an object gets a message it
can handle—that is, for which it has a handler in its script—the statements
contained in the handler are in turn sent as messages. When all statements in
the handler (and in any other handlers invoked along the way) have executed,
the action stops.

Message Box Messages

When you type something into the Message box and press Return or Enter,
HyperCard does one of these things: evaluates a valid expression and puts the
result into the Message box, sends what you typed as a message to the current
card, or sends a message to another destination if you use the send command.
(See Chapter 7, “Expressions,” for an explanation of evaluating expressions.)

You use send to direct a message to a specific object rather than sending it to
the current card. Send is one of the HyperTalk keywords. You can use the
keywords do,i f...then...el se and send in the Message box. If you try
to use a keyword other than these in the Message box, HyperCard displays an
error dialog box. Table 4-1 contains all of HyperTalk’s keywords.

Chapter 9, “Control Structures and Keywords,” contains explanations of
HyperTalk’s keywords.

Sending Messages 53

54

CHAPTER 4

Handling Messages

Table 4-1 HyperTalk’s keywords

do next

el se on

end pass
exit r epeat
function return
gl obal send
if t hen

Messages Resulting From Commands

HyperCard sometimes sends a system message to the current card while
executing a command. For example, when you create a card with the New
Card menu command, HyperCard sends the message newCar d to the card as
soon as it’s created; when you delete a card, it sends del et eCar d. Similar
messages are sent when other objects are created and deleted. These messages
are among the results of commands executing, rather than commands
themselves—they are like announcements of what is happening.

External commands can send messages

Experienced programmers can write definitions for new
commands in development languages such as Pascal, C,
and 68000 assembly language. Such external commands
act much like built-in HyperTalk commands. External
commands can send messages to the current card when
they execute. See Appendix A, “External Commands and
Functions,” for information about external commands. O

Sending Messages

CHAPTER 4

Handling Messages

Receiving Messages

As senders and receivers of messages, objects all work exactly the same way.
Every object has a script, and the type of object makes no difference to the
execution of its handlers.

How objects differ

As elements of the HyperCard user interface, objects

differ according to their function: buttons share a set

of properties or characteristics that determine how they
look and act; fields also share a set of properties, but it is
different from the set of button properties. (See Chapter 12,
“Properties,” for a description of object properties.) O

When a message is sent to an object, HyperCard checks the object’s script for

a handler whose name—the second word on the first line of the handler—
matches the message name—the first word of the message. If it finds a match, it
executes each statement in the handler. (See Figure 4-1.) After the handler has
run, the message is sent no further, unless it is explicitly passed with the pass
keyword (discussed in Chapter 9).

Figure 4-1 Handler that responds to message openSt ack

If handler name

- on openSt ack

matches message gl obal user Nane
name, if userNane is enpty then
then lines in ask "Please enter your name"
if it is not enpty then put it into userNane
that handler end if
execute.

pass openStack
end openSt ack

Receiving Messages 55

CHAPTER 4

Handling Messages

If the object has no handler for the message, the message passes to the next
object in the hierarchy, and the process repeats. The message-passing hierarchy
is explained in the next section.

If no object in the hierarchy has a handler matching a message name, HyperCard
looks for a command by that name. Commands are like built-in handlers that
cause some action to take place; mouseUp and most other system messages have
no built-in handlers and cause no action. If a message gets all the way through
the hierarchy and is not a system message or a command, HyperCard displays
an error dialog box with the words Can' t under st and followed by the name
of the message.

External commands can be in stacks

External commands can exist in stack files, as well as
in the HyperCard application itself. See Appendix A,
“External Commands and Functions,” for information
about external commands. O

Message-Passing Hierarchy

Messages are passed to objects according to a message-passing hierarchy. The
message-passing hierarchy determines the path by which messages are passed
from one object to another: buttons and fields are at the same level, followed
(in order) by card, background, stack, the Home stack (the one stack that
HyperCard requires), and HyperCard.

HyperCard allows you to add stacks to the message-passing hierarchy so you
can use their scripts as shared-code libraries. More about the user-definable
message-passing hierarchy is explained later in this chapter.

Where Messages Go

The position of an object in the message-passing hierarchy determines whether
or not the object receives a given message and where subsequent messages that
the object sends go. Most system messages are initially sent by HyperCard to
the current card, as shown in Figure 4-2.

56 Message-Passing Hierarchy

CHAPTER 4

Handling Messages

Figure 4-2 Message-passing hierarchy

Keyboard

==y
T

& _:?.-.a-'-'-‘
'vm-‘

Menu

Button Info...
Field Info...
card Info...
Bkgnd Info...
Stack Info...

HyperCard

Home stack

Stack

A

Background

Send Farther %-

New Button
New Field
New Background

Message box

Bring Closer %+ |

| =
opencCar d and —
other events
Mouse
—

other events

Message-Passing Hierarchy

Buttons
and
fields

AN

newBut t on and :f—/

CHAPTER 4

Handling Messages

Messages to Buttons and Fields

Any mouse message (for example, mouseEnt er) is sent initially to the topmost
button or field, if there are any, under the pointer. Any buttons or fields that are
layered farther under the one initially receiving the message are ignored.
Figure 4-3 shows layered buttons and fields. If the topmost button or field
doesn’t have a handler for the mouse message, the message is passed to the
current card.

Figure 4-3 Layered buttons and fields

Card button
Card field

Background field ———

|
— I:IuseQ

Background button Farther

Background buttons and fields come before cards
HyperCard first sends mouse messages to the topmost
button or field under the pointer, whether the button

or field belongs to the card or the background, before
passing the message on to the card. Background buttons
and fields, however, are always farther away than card
buttons and fields. O

Other than mouse messages, the only system messages that are sent first to
buttons are del et eBut t on and newBut t on; system messages sent first to
fields are cl oseFi el d, commandKeyDown, del et eFi el d,enterl| nFi el d,
exi t Fi el d, keyDown, newri el d, openFi el d, ret urnl nFi el d, and

t abKey. The entry point in the hierarchy for all other system messages is

the current card.

For a complete list of all system messages, see Chapter 8, “System Messages.”

Message-Passing Hierarchy

CHAPTER 4

Handling Messages

The Current Hierarchy

The current hierarchy consists of the buttons and fields belonging to the
current card and its background, the card and background themselves, their
stack, the Home stack, and HyperCard. System messages and those typed
directly into the Message box always traverse the current hierarchy. Messages
sent from executing handlers traverse the hierarchy in which their containing
object belongs—in most cases, the current one. Figure 4-4 shows how a
message traverses the current hierarchy.

Figure 4-4 Message traversing current hierarchy

nmouseUp message sent
by mouse to button

Butons [~ "71 "7 777 r
and 1 o o | 1 |
fields e | [
Lo ___ [a _+_ _
1
1
= "7
Cards i | Current
L o card
R ﬁl
Backgrounds
Stacks
Home stack
HyperCard

When a handler executes, HyperCard sends each statement as a message,
unless it begins with a keyword. It sends the message first to the object
containing that handler, as shown in Figure 4-5. If that object doesn’t have a

Message-Passing Hierarchy

CHAPTER 4

Handling Messages

handler for the message, the message is passed down the object hierarchy; if
none of the succeeding objects has a handler for it, the message ends up at
HyperCard itself.

Function calls use the message-passing hierarchy

Function calls work like messages in the way they traverse
the object hierarchy. When you make a function call with
the syntax that uses parentheses, HyperCard looks in the
script of each object in the hierarchy for a matching
function handler. If none is found, the function call is
passed to HyperCard itself. See Chapter 11, “Functions,”
for information about functions. O

Figure 4-5 Command sent as a message

| on nmouseUp

S go to next card
.| end nouselp

Buttons !_"'_! !_____! !—"'—! — JI—,.——'—'—!
and 1 o o | it ,
fields e T e B C____l
L______ [g __
1
iy
Cards X :
[
ﬁl
Backgrounds
Stacks
Home stack
HyperCard

Message-Passing Hierarchy

CHAPTER 4

Handling Messages

The Target

The object to which the message is first sent is the target. If HyperCard finds a
handler in the target that matches the message name, the handler’s statements
start executing. If, however, the target has no matching handler, the message
is passed down the hierarchy. HyperCard may find a matching handler in
another object, which then begins executing, as shown in Figure 4-6.

The function t he t ar get returns the name of the original target, so that
handlers in succeeding objects can determine where a message was originally
sent. In Figure 4-6, although the executing handler is in the background script,
t ar get, used in the background handler, results in identifying the new button
that originally received the system message newBut t on.

Figure 4-6 The target

Butons ["1 [T
and 1 [1
fields Lo d Loy
\ L - - -
\ Y .
L | on newButton
Cards ' Vo X - set autoHilite of the target to true
Lo L_o__ end newButton
Lo -
! Y
o0 = DR
Backgrounds | | o
||
|_____|_____l
1
r-toa
Stacks X !
Lol
|
|
Home stack X !
L_T__,
1
___________________ 1
HyperCard | !
L ____ _

Message-Passing Hierarchy 61

62

CHAPTER 4

Handling Messages

The User-Defined Hierarchy

HyperCard allows you to add stacks to the message-passing hierarchy, thereby
extending the current hierarchy. Stacks added to the message-passing hierarchy
act as shared code libraries. The code that they share is their script.

HyperTalk’s message-passing hierarchy always includes the Home stack and
HyperCard itself. Scripts in any stack can call handlers in the script of the
Home stack, and external commands in the resource fork of either the Home
stack or HyperCard because they are always in the hierarchy.

When a stack is added to the hierarchy, it is inserted between the current stack
and the Home stack, as shown in Figure 4-7. That stack’s script and all of the
stack’s resources can now be shared with objects higher in that hierarchy.

To add a stack to the message-passing hierarchy, use the HyperTalk command
start usi ngin ahandler like this:

on openSt ack
start using stack "HD: Trees"
end openSt ack

After the st art usi ng command in the example handler is executed, the
handlers in the script of the stack Tr ees and any of its external commands
and resources are available for use by Fl or a.

Message-Passing Hierarchy

CHAPTER 4

Handling Messages

Figure 4-7

One stack added to the message-passing hierarchy

Buttons
and
fields

Cards

Backgrounds

Current stack

Added stack

Home stack

Flora

Trees

The statement

start using stack "HD: Trees"
inserts the stack Trees in the
message-passing hierarchy

HyperCard

Message-Passing Hierarchy

63

CHAPTER 4

Handling Messages

Each additional stack that is added to the hierarchy is inserted after the current
stack, as shown in Figure 4-8. The maximum number of stacks you can have in
a user-defined hierarchy is 16. If a stack that is already being used is used again
with the st art usi ng command, it is moved in the hierarchy to the location
just before the last stack that was inserted with the st art usi ng command.

Figure 4-8 Two stacks added to the message-passing hierarchy
Buttons

and

fields

Cards

Backgrounds

Current stack Flora
Last added stack Fauna
Added stack Trees
Home stack

HyperCard

64 Message-Passing Hierarchy

CHAPTER 4

Handling Messages

The current hierarchy described earlier in this chapter isn’t changed when you
create a user-defined hierarchy—it is extended with the new stacks added to
the hierarchy. Messages still traverse the hierarchy in the same way: they

go down from the buttons and fields belonging to the current card and its
background, to the card and background, to their stack, to any added stacks, to
the Home stack, and finally to HyperCard.

Note

If you have a handler with the same name in more than
one stack in a user-defined hierarchy, the handler highest
in the hierarchy is executed when a message that calls that
handler is sent. So if there’s a handler for that message in
the current stack, that’s the one that gets executed. If there
are handlers with the same name in two stacks that have
been added to the hierarchy, the one in the most recently
added stack is executed because it’s higher in the
hierarchy. O

The names of the stacks in the current hierarchy are stored in the global
property st acksl nUse in the form of a return-separated list of the stacks in
the order in which they receive messages. If you create a card field, and then
use the statement put t he stackslnUse into card field "Mfield"
in the Message box, it will return the list of stack names in the card field you
created. Each stack that is placed in the hierarchy with the st art usi ng
command is on a separate line in the field. If no stacks are added to the
hierarchy, st acks| nUse returns empty.

You can remove a stack from the user-defined hierarchy with the command
st op usi ng in the following statement:

stop using stack "Trees"

Message-Passing Hierarchy 65

CHAPTER 4

Handling Messages

The stack is removed from the hierarchy, as shown in Figure 4-9.

Figure 4-9 Removing a stack from the message-passing hierarchy

Buttons
and
fields

Cards

Backgrounds

Current stack

Added stack

Added stack

Home stack

Flora Flora
v 1
Fauna Fauna

v

“1 The statement
Trees , stop using stack "Trees"
- 4- - removes the stack Trees from the
* message-passing hierarchy

HyperCard

66

Message-Passing Hierarchy

CHAPTER 4

Handling Messages

The Dynamic Path

When a message is traversing the hierarchy of a card different from the current
one, HyperCard inserts a dynamic path into the static path the message
normally follows. The static path is the route defined by an object’s own
hierarchy. For example, a card passes messages to its own background, the
background passes them to its own stack, and so on. When that hierarchy is not
the one stemming from the current card (the one currently active), HyperCard
passes messages through the current card’s hierarchy as well—that’s the
dynamic path.

Examples of situations in which a message traverses a hierarchy different from
the current one, invoking the dynamic path, are

= when an executing handler contains a command that takes you to another
card (such as go or a command to create or delete the current card)

= when you use the send keyword to send a message to an object not in the
current hierarchy

When any message that has not been received by a handler reaches the stack,
HyperCard checks to see if the current card is in a different hierarchy. If

so, HyperCard passes the message to the current card, and it traverses the
current card, background, and stack before it passes to the Home stack.

If any handler receives the message and passes it explicitly with the pass
keyword, HyperCard does not invoke the dynamic path unless the current
hierarchy is in a different stack from the static path. If either of the hierarchies
is in the Home stack, the message is not passed again to the Home stack.

The Go Command and the Dynamic Path

Figure 4-10 and Figure 4-11 show how a handler containing a go command
invokes the dynamic path.

Message-Passing Hierarchy 67

CHAPTER 4

Handling Messages

Figure 4-10 Static path before the go command executes

| on nouseUp
beep 2
go to card 3 of stack "Birds"

beep 3
% N end nouselp

% e

Buttons — !_.T.'T-_'I '!""'—I !_"'—I !_"'—I !_"'—I !_"'—I =77
and ! Lo Lo Lo Lo Lo Lo |
fields Lo Logod Loood Lonod Loood Loood Loy
\ﬁ; ______ a [! [I
I
I I |
I_'L'—I i T i Y et
Cards X ! X . b !
L___ Lo Lo L_o__
_________ [.
I I
oo r-toA
Backgrounds | \ | |
L_._- L_._-
|_____|_____l
y !
ot
Stacks , Birds !
[
* ______________ -
Home stack
HyperCard

In Figure 4-10, the nouseUp handler executes the statement beep 2, which
is sent as a message along the current hierarchy beginning with the button
containing the handler. After the go command executes, the current card
changes. Nonetheless, the button’s mouseUp handler continues to execute,
sending subsequent statements as messages through its own hierarchy, in this
case the beep 3 statement. In addition, however, HyperCard now sends
messages to the card, background, and stack of the new current hierarchy, as
shown in Figure 4-11.

68 Message-Passing Hierarchy

CHAPTER 4

Handling Messages

Figure 4-11 Dynamic path after the go command executes

| on nouseUp
beep 2
go to card 3 of stack "Birds"

beep 3
% N end nouselp

% TR

eutons [T==).[" T T P r p r Y e
and | [[[[[[I
fields Lo Lo Lo Lo Lo Lo L_._
\ﬁ; ______ _ | : :
1 |)
1 N .
| =-"7 - a
Cards : : Card : : : :
L_o___| 3 Lo L___
\ﬁ _________ v \j___l .
1
) -t
Backgrounds L | |
: ||

Stacks Birds

Home stack

HyperCard

The Send Keyword and the Dynamic Path

You can use the send keyword to direct a message to
= any object in the current stack

= any other stack on any disk or file server accessible to your Macintosh
computer (but not any individual object in those stacks, unless you go
to that stack first); the stack need not be in the current hierarchy

= HyperCard itself

Message-Passing Hierarchy

CHAPTER 4

Handling Messages

For example, you can type the following statement into the Message box:
send "greetings" to stack "Birds"

HyperCard looks in the script of the object to which the message is sent (in this
case, st ack "Birds") for a matching handler, just as if it were in the current
hierarchy. If the matching handler isn’t found (in this case, a handler named

gr eet i ngs), the message goes down the hierarchy stemming from the object
to which it was sent (that is, from st ack " Bi r ds"). If the target of the send
command is an object other than the current one, HyperCard invokes the
dynamic path.

Figure 4-12 shows the path of a message directed with the send keyword.

The executing handler, the one currently in control, need not be in the
hierarchy belonging to the current card. Which handler has control is
determined solely by which object receives a message.

Figure 4-12 Using the send keyword

70

send "greetings” to stack "Birds

| I | | | m=-""7 m=-""7 m=-""7 -=-""-"7
1 1 Current, o o | ! |
Cards 1 P 1 1 1 1
Card 1 1 1 1 1
e | | I
[oo o o |
1 1
1 1
=" -7
Backgrounds X ! X !
|___|__J |___I___|
! Q7
I_'L'_|
Stacks X ! Birds
|
Lo }—l
Home stack
HyperCard

Message-Passing Hierarchy

CHAPTER 4

Handling Messages

For details about the send keyword, see Chapter 9, “Control Structures and
Keywords.”

Handlers Calling Handlers

When a handler executes, HyperCard sends each statement as a message first
to the object containing the executing handler so that other handlers in the
same script, as well as those in any other script lower in the message-passing
hierarchy, can be used as subroutines. A handler can also call itself, which is
known as recursion.

Subroutine Calls

You can use handlers in HyperCard the way you use procedures or subroutines
in other languages. You invoke a subroutine call in HyperTalk by executing

a statement that begins with the name of a handler. That name is sent as a
message, first to the object that contains the executing handler, then along the
current object hierarchy.

You can include a subroutine in a script by writing a handler in the same script
(or any other script lower in the object hierarchy) with whatever name you'd
like to call it. In the following example, the handler gr eet i ngs is defined in
the same script as the one from which the message gr eet i ngs is sent:

on nmouseUp
greetings
end nouseUp

on greetings
Put "You've just been drafted!" into the Message box
end greetings

When HyperCard executes the statement consisting of the subroutine handler
name and a match is found between the name and its handler, control passes to
the subroutine handler. After it has finished executing, control passes back to
the calling handler. But it’s entirely possible for the subroutine handler to issue
a similar message, beginning execution of a third handler. The third handler

Handlers Calling Handlers 71

72

CHAPTER 4

Handling Messages

must finish executing before control passes back to the second handler, which
in turn must finish executing before control passes back to the first. The
execution of a handler that has invoked another handler is suspended until the
handler it has called finishes executing.

Stopping execution

A handler can avoid giving control back to pending
handlers by executing the exit to Hyper Car d keyword
statement. You can interrupt an executing handler at any
time (and bypass pending handlers) by pressing
Command-period. O

Any handler can act as a subroutine for any other handler. The called handler
either has to be in the same script or in a script lower in the object hierarchy.
However, you can also use the send keyword to send the message (the
subroutine handler name) directly to the object that contains the handler. (See
Chapter 9, “Control Structures and Keywords,” for details on using send.)
Generally, handlers that act as subroutines are placed in the same script as the
handlers that call them.

IMPORTANT

Handlers can’t be nested. That is, they can’t be defined
with one inside another—a handler definition must not
appear between the on statement and the end statement of
another handler. a

Recursion

If you need to repeat an operation over and over, you can have a handler call
itself. In the following example, the handler decr ement subtracts 1 from a
number in the Message box until the number is reduced to 1 (a number must
be in the Message box before you call the handler). To do the subtraction, the
handler summons itself:

on decrenent

subtract 1 fromthe nessage box

if the value of the nessage box > 1 then decrenent
end decrenent

Handlers Calling Handlers

CHAPTER 4

Handling Messages

Generally, subroutine calls and recursion don’t cause any problems. In fact,
they are natural consequences of the good programming technique of
separating scripts into functional units. However, HyperCard has a limit on the
number of pending handlers. The actual number depends on the complexity of
the handlers and other factors. It doesn’t matter whether a handler is invoking
itself or another handler—either type of invocation causes another level of
pending execution.

In particular, watch out for endless recursion, as in the following handler (if it
were in a stack script or the script of every card):

on openCard
go to next card
end openCard

Thego to next card command results in an openCar d message, so the

handler recurses again and again, and you get an error dialog box. The
HyperCard limit for such a recursion is limited by memory.

Using the Hierarchy

Where you place a handler in the hierarchy determines when it will be called.
All objects that are higher in the hierarchy can call handlers in objects lower
in the hierarchy. Lower objects can’t call handlers in higher objects unless they
use the send keyword. Messages that are sent when a statement in a handler
executes always go first to the object containing the executing handler. Then
they traverse the hierarchy stemming from that object until they find a
matching handler or reach HyperCard itself. Therefore, the farther down the
hierarchy a handler is placed, the greater the number of objects that can pass
messages to it.

Sharing Handlers

In effect, every object has access to the handlers of all the objects lower than
it in the hierarchy, which also includes the handlers in stacks put into the
message-passing hierarchy with the st art usi ng command. If you want

Using the Hierarchy 73

CHAPTER 4

Handling Messages

every card in a stack to have a certain capability (that is, to respond to a certain
message), you put the appropriate handler in the stack script. Every card can
use the handler by passing the message down to the stack.

Figure 4-13 and Figure 4-14 show the effect of placing a handler at different
positions in the hierarchy. The example handler responds to the message
moveOn (the message name is for example only). The handler takes you to
the next card:

on nmoveOn
go to next card
end noveOn

Figure 4-13 Handler in a card script

on noveOn
go to next card
end nmoveOn

moveln

Qo Qo Qo Qo Q77
Card Card Card Card =]
Cards 1 5 3 4
[| __

Backgrounds

Stacks

Home stack
When the message is sent to

HyperCard cards 1-4, it goes through the
hierarchy to HyperCard without
being handled.

74 Using the Hierarchy

CHAPTER 4

Handling Messages

You can place the handler in the script of one card, as in Figure 4-13. Then,
if you send noveOn from the Message box, you invoke the handler and go
to the next card only if the current card is the one with the handler. If the
current card is not the one with the handler, however, the moveOn message
produces an error.

In Figure 4-14, the handler is in the script of the stack, so the handler is invoked
by sending noveOn to any card in the stack.

Figure 4-14 Handler in a stack script

movedn

%or %or %or %or %
Cards Cird Cazlrd Cgrd Cird

| y | %

Backgrounds
Stacks on nmoveOn
. go to next card
e end noveOn
—-t-q
Home stack X !
Lo
1
1
r-——"="="====-= TS T T T T T T "
I
HyperCard ! \
L o e e e e o - _l

Using the Hierarchy 75

76

CHAPTER 4

Handling Messages

Intercepting Messages

You can also make any card you want an exception in the way it responds to a
given message, without affecting the other cards in the stack, by putting a
special handler for the message in that card’s script: you write two different
handlers with the same message name—one in the stack script and one in

the card script. Then, for that same message, if the message comes through
that particular card, the card’s handler runs; from any other card, the stack’s
handler runs.

For instance, in the previous example, putting the handler in the stack script
caused the message moveOn to take you to the next card from any card in
the stack:

on nmoveOn
go to next card
end noveOn

But if you want the last card in the stack to be an exception, from which the
message MoveOn takes you back to the Home stack, put the following handler
in the last card’s script:

on nove(On
go to stack "hone"
end npbveOn

Figure 4-15 illustrates this example of one object intercepting a message.

A handler can intercept a HyperTalk command

In the same way that you can give one card a unique way
of handling a message that would ordinarily be handled in
the background or stack script, you can write a handler
with the same name as a HyperTalk command and place it
anywhere in the hierarchy. But remember that your
handler is the one that will ordinarily run in response to
the command message, not HyperCard’s built-in one.
HyperTalk functions can be redefined in a similar manner,
and the same warning applies. O

Using the Hierarchy

CHAPTER 4

Handling Messages

Figure 4-15 Intercepting a message

Z on nmoveOn
go to stack "Home"
movedn : end noveOn
%or%or%or %OI’%.""
Card Card Card Card =]..-
Cards 1 5 3 4
[] __
Y
Backgrounds
Stacks .-°]..| on nmoveOn
. go to next card
‘,--__ end noveOn
--t-5"
Home stack X !
Lo -
1
r'--------'l' """"" |
HyperCard X |
e e e e e oo —

Parameter Passing

When a HyperTalk message is sent, the first word is the message name. For
example, in the message

searchScript "WIdCard", " Hel p"

the message name is sear chScri pt . Any other words (or characters) are the
parameters. In the example, the parameters are " W | dCar d" and " Hel p".
Each receiving object in the hierarchy looks for a message handler with a
matching name. If the object finds a matching handler, the parameters are
passed into that handler.

Parameter Passing 77

78

CHAPTER 4

Handling Messages

Parameters are passed into handlers as a list of comma-separated expressions.
(Chapter 7, “Expressions,” describes expressions.) These expressions are
evaluated before the message is sent by the current object and, when the
message is received by the receiving object, placed into a list of comma-
separated parameter variables appearing on the first line of the matching
handler definition. (See Figure 4-16.) That is, parameters are passed by value
into handlers. In the sear chScri pt handler example shown in Figure 4-16,
the parameter variables pat t er n and st ackNane are replaced by the
parameter values " W | dCar d" and " Hel p".

Parameter variables are local variables of the handler in which they appear.
Parameter variables are also called formal parameters, to contrast them to the
actual parameters, which are the parameter values passed to them.

Function handler parameters

HyperCard passes parameters into function handlers and
message handlers in the same way, except that the syntax
of the function call requires the parameters to be placed
between parentheses. Placement of the parameter variables
on the first line of function handlers is identical to that of
message handlers. O

The value of the first expression in the message is placed into the first
parameter variable in the handler, the value of the second expression into
the second parameter variable, and so on. If there are more expressions in
the message’s parameter list than there are parameter variables in the first
line of the handler, the extra parameters are ignored. If there are more
parameter variables than parameters, the extra parameter variables are given
an empty value (equal to a string of zero length).

Passing parameters to redefined commands

HyperTalk command parameters are often more complex
than a comma-separated list of expressions. Some built-in
commands take parameters to which user-written handlers
have no access. So, if you redefine a command, you may
not be able to pass all of the parameters to your handler. O

Parameter Passing

CHAPTER 4

Handling Messages

Figure 4-16 Parameter passing

searchscript "wildCard”,"Help”

== Script o1 stack H| [Latest HyperCard:RobertStack =1

Scripting language : H jerTalk *

lon zearchScript pattern, stockMame
== search all scripts of q stack for a string
global scriptFindString

if pattern i= empty then
ask "Search for what =tring?" -
with =zcriptFindString
if it i=s empty then exit searchScript
put it into pattern
end if

put pattern into ScriptFindString
—— =0 the find dialog in the script will bring up the word gou want.

sat |ockMessages to trus
if stackMame is not empty then go to stack stackHame

put "Searching for" && pattern &% "in script of this stack"
if the script of this stack contains pattern
then edit script of this stack

Chapter Summary

Here is a summary of the material covered in this chapter:

= The HyperCard environment consists of objects related to each other in a
hierarchy using HyperTalk as the means of communicating.

= Messages sent to objects initiate all HyperCard actions.

= Messages are generated by system events, executing handlers, statements
typed into the Message box, and the execution of some commands.

= When an object receives a message, HyperCard tries to match the message
name with a handler in the object’s script; if it finds a match, it executes the
handler; otherwise it passes the message to the next object.

Chapter Summary 79

CHAPTER 4

Handling Messages

= The object hierarchy determines how messages are passed from one object
to another.

= You can modify the message-passing hierarchy to use stacks as shared-
code libraries.

= You can send a message directly to any object in the current stack, to another
stack, or to HyperCard using the send keyword.

» A handler can initiate execution of another handler as a subroutine call.

= Every object can use the handlers of objects lower than it in the hierarchy by
passing messages; conversely, an object can intercept a message to perform a
different action.

= The values of a series of expressions following the first word of a message
statement are passed to variables in the first line of the receiving handler.

Chapter Summary

CHAPTER 5

Referring to Objects,
Menus, and Windows

This chapter explains how to refer to HyperCard’s objects, menus,
and windows.

A HyperCard object has three characteristics:
= [t can send and receive messages.

= It has properties, which are its defining characteristics, and one of those
properties is its script.

= It has a visible representation on the Macintosh screen (although the object
need not always be visible).

HyperCard menus, windows, and the menu bar share many of the character-
istics of HyperCard objects, except that they don’t have the scri pt property.

You refer to an object when you use the go command (to go to a particular
card, background, or stack) or the send keyword (to send a message to a
particular object), and when you want to manipulate an object’s properties.
Fields are unique because they are HyperCard objects and are also sources of
values (described in Chapter 6, “Values”).

You can think of HyperCard itself as an object, because it can send and receive
messages and has global properties, including a “script” of built-in handlers or
commands. When this book talks about objects, however, it usually refers to
buttons, fields, cards, backgrounds, and stacks.

Names, Numbers, and IDs

You refer to objects using object descriptors. An object descriptor is formed
by combining a generic name with its specific designation. Generic names
are st ack, car d (abbreviated cd), backgr ound (abbreviated bkgnd or bg),

Names, Numbers, and IDs 81

CHAPTER 5

Referring to Objects, Menus, and Windows

but t on (abbreviated bt n), fi el d, part (which refers to a field or button), or
fam | y (which refers to a group of buttons).

HyperCard considers all references to buttons, button families, and parts to

be card buttons, card families, or card parts and all references to fields to

be background fields unless you specify otherwise. For example, but t on

"but t onNanme" and card button "buttonNanme" both refer to the card
button, and fi el d "fi el dNanme" refers to the same field as backgr ound
field "fiel dName". To refer to background buttons, you must include
backgr ound in the descriptor—for example, bkgnd but t on " but t onNane".
If you want to refer to card fields, you must include car d—for example, car d
field "fiel dName".

The only specific designation of a stack is its name. (See “Identifying a Stack,”
later in this chapter.) The specific designation of all other objects (buttons,
fields, backgrounds, and cards) can be the objects’s name, number, or ID
number. The unambiguous form of an object descriptor begins with an object’s
generic name, immediately followed by its particular name, number, or ID
number. (See Figure 5-1.)

Figure 5-1 Card Info dialog box and descriptors for the same card
Card Info =——— Card 1
First card
Card Name: | T T Card one
Card "Wl come to "
Card number: 1 out of 9 Card | D 3916
Card 1D: 3916

Contains 0 card fields.
Contains 13 card huttons.

[Card Marked
[JDon't Search Card

[< Can't Delete Card

Names, Numbers, and IDs

CHAPTER 5

Referring to Objects, Menus, and Windows

Descriptor phrasing

Be careful to phrase descriptors so that they mean what
you intend. For example, using a descriptor such as car d
field id 7,youcould mean that the name of the card is
in the background field with ID number 7, or you could be
referring to the card field with ID number 7. HyperCard
assumes that you're referring to the card field. If you want
HyperCard to get the card name from the background
field, enclose its descriptor in parentheses:

card (field id 7) O

Object Names

Names are optional for cards, backgrounds, buttons, and fields. You assign a
name for any of these objects by typing into the Name box in the object’s Info
dialog box, which appears when you choose the object’s Info command from

the Objects menu.

Object names can include any characters, even spaces. When you use a name

(background button "belly")in a statement, put quotation marks around
the object name to ensure that HyperCard recognizes it as a literal and doesn’t

look for a variable by that name. Names are not optional for stacks. You must
provide a name for each new stack you create. A stack name must be a valid

Macintosh filename.

Be careful with names

It’s difficult to manipulate a name that extends out of the
naming window, although you can scroll it left and right
(and up and down if it has more than one line) by
dragging. It’s also difficult to refer by name to an object if
you put a double quotation mark in its name. Also, if you
use numbers for an object’s name, HyperCard could
misinterpret the name: it takes card "1812" to mean a
card whose number, rather than name, is 1812. O

Names, Numbers, and IDs

83

84

CHAPTER 5

Referring to Objects, Menus, and Windows

The name of an object is one of its properties. (See Chapter 12, “Properties,” for
an explanation of properties and a description of the nane property.)

The name property of an object has three forms—| ong, abbr evi at ed, and
shor t . The long name of an object includes the type of object, its name, its
enclosing object (either a card or background), and the full pathname of

its stack:

card button "Rol 0" of card "Honme" of stack
" MyHar dDi sk: Hone"

The abbreviated form includes the type of object and its name:
card button "Rol 0"
The short form includes just the name:

" Rol o"

Object Numbers

Buttons, fields, cards, and backgrounds always have numbers by which you
can refer to them. An object’s number represents its position within its
enclosing object: buttons and fields are ordered within a card or background,
as are card parts (remember that this term refers to both buttons and fields)
and button families; cards and backgrounds are ordered within their stack.

For objects and parts with numbers one through ten, there are three ways to
express an object’s number: use an integer following its generic name (car d
2), use one of the numeric constants one through t en following its generic
name (car d two), or use one of the ordinal constants f i r st throught ent h
preceding its generic name (second car d). For objects with numbers higher
than ten, you have to use the integer value.

Object numbers are contiguous from one through the number of currently
existing objects within the enclosing object: card buttons and card fields within
their card; background buttons and background fields within their back-
ground; cards within their stack (not their background); and backgrounds
within their stack. If you delete an object, its number is reassigned to the object
following it in order, and so on for the succeeding objects as well.

Names, Numbers, and IDs

CHAPTER 5

Referring to Objects, Menus, and Windows

Part Numbers

A part is the generic name for either a button or field. HyperCard thinks of
buttons and fields as parts of either their enclosing backgrounds or cards and,
as such, numbers them as they are generated. If you don’t specify, HyperCard
assumes you are referring to card parts.

The reference to generic parts rather than specific buttons or fields makes it
much easier to iterate through all the buttons and fields in a stack. You can use
the nunber function to count the number of parts of a card or background.
(See number in Chapter 11, “Functions.”)

This example shows a handler that searches through all the scripts of a stack to
find a word pattern. It is actually a shorter form of the sear chScri pt handler,
which you can find in your Home stack, rewritten to iterate through script
parts rather than buttons and fields:

on searchScript pattern
gl obal ScriptFindString

push card -- renenber where we are
set | ockMessages to true
set | ockRecent to true

if pattern is enpty then
ask "Search for what string?" with ScriptFindString
if (it is enpty) or (the result is "Cancel")
then exit searchScri pt
put it into pattern -- otherwi se save it in pattern
end if

put pattern into ScriptFindString
set cursor to busy

-- search the stack script of the stack

if the script of this stack contains pattern
then edit script of this stack

Names, Numbers, and IDs 85

86

CHAPTER 5

Referring to Objects, Menus, and Windows

-- search the background scripts

repeat with curBkgnd = 1 to the nunber of bkgnds
set cursor to busy
go to card 1 of bkgnd curBkgnd
if the script of this bkgnd contains pattern
then edit script of bkgnd curBkgnd

-- search the scripts of background parts
-- (bg buttons and fi el ds)
repeat with curPart = 1 to the nunber of bg parts
set cursor to busy
if the script of part curPart contains pattern
then edit script of part curPart
end repeat
end repeat

-- search the card and card part scripts of the stack
repeat with curCard = 1 to the nunber of cards

set cursor to busy

go card curCard

if the script of this card contains pattern

then edit script of this card

-- otherw se search through the card buttons and fields
repeat with curCdBtnOrFld= 1 to the nunber of -
card parts
set cursor to busy
if the script of card part curCdBtnOrFld -
contains pattern
then edit script of card part curCdBtnOrFld

end repeat
end repeat
pop card -- return to where we were

set | ockMessages to fal se
set | ockRecent to fal se

Names, Numbers, and IDs

CHAPTER 5

Referring to Objects, Menus, and Windows

restoreUserlLevel -- set userlLevel back to whatever it was
answer "Search script done!"™ -- A
end searchScri pt

Button Families

Button families are specified by number only; they do not have names or IDs.
Only the numbers from 1 to 15, inclusive, are valid. An example of a HyperTalk
reference to a button family is

cd famly 1

Special Ordinals

In addition to the ordinal constants f i r st through t ent h, HyperTalk has
three special ordinals: m ddl e, | ast, and any. The values of the special
ordinals are resolved according to the number of objects in the set. M ddl e
resolves to half the number of objects (rounded down to the nearest integer)
plus 1. The ordinal | ast resolves to the number of objects. Any resolves to a
random number between 1 and the number of objects. (The special ordinals
also work with chunk expressions, which are described in Chapter 7,
“Expressions.”)

Object Numbers and Tab Order

The sequence of object numbers determines tab order for fields: you can move
from field to field within a background and card using the Tab key—it moves
from the lowest numbered field to the highest through the background fields
first, then the card fields. The sequence also determines which button or field
gets a message when several are layered on top of each other (the highest
numbered one is closest and gets the message), and it determines which card or
background is referred to by the special descriptor next or pr evi ous (see the
section “Special Object Descriptors” later in this chapter).

Reassigning object numbers

You can reassign object numbers of buttons and fields with
the Bring Closer and Send Farther menu commands. See
the HyperCard Reference Guide for details. O

Names, Numbers, and IDs 87

88

CHAPTER 5

Referring to Objects, Menus, and Windows

Object ID Numbers

HyperCard generates an object ID number for each object within a stack. This
number is unique for that type of object within its enclosing object. For
example, each button (the type of object) on a card (the enclosing object) has a
different ID number. Object ID numbers never change, and if an object is
deleted, its number is not reassigned to a newly created object (until the
HyperCard object limit, listed in Appendix G, has been reached). An object’s ID
number is its generic name, followed by the word | D (in uppercase or lower-
case), followed by an integer (for example, card id 5734).

The ID number of a copied object is different

If you copy an object and paste it into a different enclosing
object, the copy is then a different object from the original,
and it has a different ID number. For example, if you copy
a card and paste it into a different stack, the ID number of
the pasted card is different from the ID number of the card
you copied. Therefore, you can’t assume that you have
“moved” the card when you copy it, paste it, and delete
the original—a button that took you to the original will
probably not take you to the copy. O

Because ID numbers are unique and unchanging for all objects within a stack,
HyperCard uses them internally to identify objects (for example, to identify the
target of a g0 command generated with the LinkTo feature in the Button Info
dialog box). HyperCard can generally find objects faster if they are identified
by ID number. If you ask for the name of an object that has no name (put t he
name of |ast card), HyperCard returns its ID number.

The ID of an object is one of its properties. The | D property of an object has
three forms that are similar to the three forms of the name and are differen-
tiated by the same adjectives—I| ong, abbr evi at ed, and shor t . The long ID
of an object includes the type of object, its ID number, its enclosing object if
necessary, and the full pathname of its stack:

card id 2590 of stack "HyperDi sk: Hyper Card: St acks: Hone"
The abbreviated form includes the type of object and its ID number:

card id 2590

Names, Numbers, and IDs

CHAPTER 5

Referring to Objects, Menus, and Windows

The short form includes just the ID number:
2590

All objects except stacks always have ID numbers; stacks never have ID
numbers.

Special Object Descriptors

You can use the special descriptor t hi s to refer to the current card, background,
or stack—for example:

put the id of this card into whereFound

You can’t use t hi s with buttons or fields.

You can refer to the card or background preceding the current one, within the
stack, as pr evi ous, which can be abbreviated pr ev. Similarly, you can refer to
the card or background following the current one as next —for example:

go to next background

You can refer to the card that was current immediately prior to the current one
asrecent.

You use me within a script to specify the object containing the currently
executing handler. For example, this statement in a field script would put the
value of the t ext Hei ght property of the field into the variable hei ght :

put the textHeight of me into height

Identifying a Stack

A stack is a HyperCard document. In some cases when you're writing a script
or using the Message box, you can refer to a stack by its name alone. To do that,
the stack must be in the current folder, in the folder containing the HyperCard
application, or in a folder listed in the global variable st acks. (The st acks
variable gets its list of folders on startup from the Stacks Search Paths card of

Identifying a Stack 89

CHAPTER 5

Referring to Objects, Menus, and Windows

the Home stack. The Stacks Search Paths card is one of three Search Paths cards
that contain lists of search paths, or pathways through the folders on your disk,
that HyperCard should follow to retrieve a stack, application, or document.)
When the stack is located anywhere else, you must let HyperCard know the
full pathname by which it can find the stack.

A full pathname is a concatenation of the volume name, directory name or
names, and filename, separated by colons. The volume name is the name of the
disk or server containing the stack. The directory names are the names of all
the folders, if any, that HyperCard has to open to get to the stack. (HyperCard
sometimes might have to open several folders because folders may contain
other folders to any depth.) The filename is the stack name. Figure 5-2 shows
the structure of a pathname.

Figure 5-2 A pathname

90

nondoDi sk: Hyper Medi a: Hyper St uf f: Bi r dSt ac
L J L

N ‘ J ‘ ‘ J L ‘ J
Volume Directory Directory File
Disk or server Folder at Inner folder Stack name
name; desktop level disk level

The only unambiguous way to refer to a stack in a script or in the Message box
is the word st ack followed by its name in quotation marks. When you refer to
a stack, you can use the full pathname to specify the stack’s exact location:

go to stack "nyDi sk: myFol der: nmyst ack”

You can also type the folder name in the Stack Search Paths card of the Home
stack. If HyperCard can’t find a stack you request, it displays a dialog box that
allows you to click your way through the directories until you reach the stack.
HyperCard notes your path and, once you've found the stack, automatically
records its folder on the Search Path card in the Home stack.

Identifying a Stack

CHAPTER 5

Referring to Objects, Menus, and Windows

Ambiguous stack descriptors

HyperCard tries to derive a proper stack name from an
ambiguous expression in a place where it expects a stack
descriptor, but it cannot always succeed. In that case,
HyperCard displays the directory dialog box to allow the
user to find the stack file. O

Naming a Stack

You must name a stack when you create it. (For all other objects, names are
optional.) You create a stack with the New Stack command in the File menu or
with the cr eat e st ack command. (See Chapter 10, “Commands,” for more
information about the cr eat e st ack command.) When you use the New
Stack command, a dialog box appears in which you type the name for the new
stack. (See Figure 5-3.) You can also select the card size for your stack either by
dragging the rectangle on the right side of the dialog box or by selecting one of
the preset sizes available from the pop-up menu in the upper-right corner, as
shown in Figure 5-4.

Figure 5-3 New Stack dialog box

|ﬁ] HyperCard Stuff ‘VI Card size:

— Dakat

o

01 Home

O MuperCard Haip

L MupsrTalk Belerance
O Latest HyperCard

L oMear Faatures

3 Beberittack

=512 1342

Desktop

New stack name:

| | Cancel ..

(] Copy current background
[] 0Open stack in new window

Identifying a Stack 91

CHAPTER 5

Referring to Objects, Menus, and Windows

Figure 5-4 New Stack dialog card-size pop-up menu

Card size: «Classic
Pogprinnik
Largs
Maniaind
Window
BLrpen
Lustam

B Desktop «

—.Jnana

— Prajna

O puttonintolialog

2 Faetdiafobining

O yuEpforgol oomenien.
O3 HE 22hi Relonss Mabey

New stack name: [New |
[Rober{] | Cancel

] Copy current background
] Open stack in new window

—Jnana

Coe) [T

Hasking

Combining Object Descriptors

92

To refer to objects within a stack, you combine object descriptors using either
of the prepositions of and i n between an object descriptor and that of its
enclosing object. Combined object descriptors proceed left to right from the
smaller to the larger:

first field of last card of this background

This syntax lets you refer directly to any object within the current stack—you
don’t have to go to the card containing a particular field to get the field’s
contents or put something into it. For example, if the current card were the first
in the stack, you could still execute the following command:

put the selection into field "undoHol der"” of |ast card

You cannot refer to an object within another stack. You have to go to the stack
before you can address its objects directly.

You can further combine field descriptors with chunk expressions, which are
described in Chapter 7, “Expressions.”

Combining Object Descriptors

CHAPTER 5

Referring to Objects, Menus, and Windows

Referring to Menus and Menu Items

HyperCard menus and menu items have names and numbers, as well as
ID numbers.

Menu and Menu Item Names

Menus and menu items all have names. The name of a menu or menu item is
one of its properties. You assign a name for a menu when the menu is created
with the cr eat e command. You assign a name to a menu item when you put
the menu item into a menu with the put command.

Menu and menu item names can include any characters, including spaces. When
you use a menu or menu item name in a statement, put quotation marks around
the name to ensure that HyperCard recognizes it as a literal and doesn’t look for
a variable by that name, for example, menul t em "User Pref erences”.
When you refer to menus by name, you must precede the menu name with the
word menu, for example, menu " Not es" . When you refer to existing menu
items, you precede the name of the menu item with the word menul t em

for example, menul t em " Power Tool s". You must also specify which menu
the menu item is in, for example, menul t em " Power Tool s" of nenu
"Utilities".Youcan useeither of ori n. There is an exception to these rules:
you do not have to precede the name of a menu item with menul t emor specify
the menu that a menu item is in when referring to a menu item in a doMenu
statement:

doMenu " Power Tool s"

Menu and Menu Iltem Numbers

Menus and menu items always have numbers by which you can refer to them.
The menu number refers to the menu’s position within the menu bar. Menus
are ordered from left to right in the HyperCard menu bar. The menu item
number refers to the menu item’s position within its enclosing menu. Menu
items are ordered from top to bottom.

Referring to Menus and Menu Items 93

94

CHAPTER 5

Referring to Objects, Menus, and Windows

You can get the name of a menu item by referring to it with its number. For
example, typing the following statement into the Message box

menultem 3 of nenu "Uilities"

puts the name of the third menu item in the Utilities menu into the
Message box.

You can also use ordinals when referring to menus and menu items. For
example, typing the following statement into the Message box

the third nmenultemin the fifth nenu

puts the name of the third menu item in the fifth menu into the Message box.

You cannot get the number of a menu or menu item by referring to it by name.
For example, the statement

the nunber of menultem"Card Info..." of menu "Cbjects”

would result in an error dialog box.

The dashed line used in menus to visually separate menu items that have
different functions is also counted as a menu item in the number of menu
items. For example, if you have a menu with a dashed line separating the
second and third menu choices, the dashed line is referred to as menul t em 3.
You always refer to the dashed line by a menu item number because it has no
name property. To put a dashed line in an existing menu, use the put
command syntax as follows:

put "-" after menultem itemName of menu menuName

To get a return-delimited list of all of the menus in the current HyperCard
menu bar, use the functiont he menus. To get a return-delimited list of all the
menu items in a menu, use the menu name, number, or ordinal: menu

"Power Tool s",nenu 6,orthe sixth nenu

To determine how many menus are in the current HyperCard menu bar,

use the function nunber of nmenus. To determine how many menu items
are in a specified menu, use the function nunber of nmenultens in nmenu
menuName. To determine the name of a menu or menu item, use the

nane property.

Referring to Menus and Menu Items

CHAPTER 5

Referring to Objects, Menus, and Windows

You can use menu commands, functions, and properties with the HyperCard
built-in menus with the exceptions noted in the descriptions of the menu
commands, functions, and properties.

The following statements use some of the menu commands and properties to
create the simple example of a custom (user-defined) menu shown in Figure 5-5.

create menu " MyMenu"

put "lItem 1" into nmenu "M/Menu"

put "-" after nmenultem"ltem 1" of nenu "M/Menu"

put "ltem 3" after the second nenultem of nmenu "M/Menu"

put "ltem 4" after nmenultem"ltem 3" of nmenu "M/Menu"

put "-" after nmenultem"ltem 4" of nenu "M/Menu"

put "ltem 6" after the fifth menultem of nenu "M/Menu"

set the enabled of menultem"lItem 4" of nmenu "MyMenu" to false
-- or disable nenultem 4 of nmenu "MyMenu"

set the cndChar of nenultem"ltem 6" of nenu "MyMenu" to "]
set the checkMark of menultem"ltem 3" of nenu "MyMenu" to true

Figure 5-5 A custom menu
Menu MyMenu m

Item 1 — Menu item 1 of menu MyMenu
Menu item 2 of menu MyMenu
Menu item 3 with checkmark « I1tem 3
property settot r ue Item 4 —— Menu item 4 with enabled
Menu item 5 of menu MyMenu property setto f al se

Item 6 3] Menu item 6 with cnrdChar

property set to] character

Referring to Menus and Menu Items 95

CHAPTER 5

Referring to Objects, Menus, and Windows

Referring to Windows

96

In addition to referring to a window by name, you can refer to a window by ID
number or by a number representing its place in the window layer.

Card windows are referred to as car d wi ndow (for example, set t he

| ocation of card wi ndow to 45, 65). Card wi ndowalways refers to
the card window of the current stack. You can’t use the car d wi ndowsyntax
to refer to the card window of another stack unless you go to that stack first.
You can, however, refer to another visible or hidden stack’s window with

the syntax wi ndow " stackName" (for example, set the | ocation of

wi ndow "Di zzi e" to "45, 65").

You refer to the Message Watcher window as Message Wat cher (for
example, show Message Wt cher)orw ndow "Message Wat cher" (for
example, set the | oc of w ndow "Message Watcher" to "65, 80").

You refer to the Variable Watcher window as Var i abl e Wat cher (for
example, set the | oc of Variable Watcher to "64,124")or
wi ndow "Vari abl e Wat cher"” (for example, set the hBarLoc of
wi ndow "Vari abl e Watcher"” to "65,80").

The Tools palette and Patterns palette are referred to in HyperTalk as t ool
wi ndowand pattern w ndow orwi ndow "t ool s" and wi ndow
"patterns", respectively.

The Message box is referred to as message wi ndowor message box.
Message can be abbreviated msg in any of these forms.

The Scroll window is referred to as scrol | w ndowor wi ndow "Scrol | ".

In addition to HyperCard’s built-in windows, there are also external windows
you create with the pi ct ur e command. They are referred to by the name you
give to the window at the time of its creation—for example,

set the rect of wi ndow "MyBestPicture" to "60, 90, 300, 300"

Referring to Windows

CHAPTER 5

Referring to Objects, Menus, and Windows

You can also retrieve the ID of any window, including pictures and palettes.
The unique IDs of picture windows could be particularly useful for referring to
different windows that have two pictures with the same name.

In addition to its name and ID number, you can refer to a window by its
number—that is, its position in the front-to-back order of windows. (Keep in
mind that a window’s number is a read-only property, and that this number
changes as other windows are selected, opened, or closed.)

The wi ndows function evaluates to a list of all the windows (listed by name in
front-to-back order) that are currently available to HyperCard. The list could
include the Message box, Scroll window, Message Watcher window, Variable
Watcher window, FatBits window, Patterns palette, Tools palette, the windows
of the Home stack and any currently open stacks, and any user-defined
external windows.

Chapter Summary

Here is a summary of the material covered in this chapter:

= You refer to a HyperCard object using an object descriptor—its generic name
and its specific designation.

= Cards, backgrounds, buttons, fields, and windows always have unique ID
numbers that never change, always have object numbers that may change,
and may optionally be given names.

= You can use special ordinals—mi ddl e, | ast, and any—to refer to objects
by their position within their enclosing object.

= You can refer to the current card, background, or stack with t hi s. You can
refer to the card or background preceding the current one with pr evi ous,
and to the one following the current one with next . You can refer to the card
that was current prior to the current one with r ecent .

= The term e, in a script, refers to the object containing the script.

= The only unambiguous object descriptor for a stack is the word st ack
followed by the stack’s filename within quotation marks.

Chapter Summary 97

98

CHAPTER 5

Referring to Objects, Menus, and Windows

= You can combine object descriptors to refer directly to any object in the
current stack.

= Menus and menu items can be referred to by their name or number.

= Built-in HyperCard windows are referred to by names that are defined in
the HyperTalk vocabulary. An external window you create with the
pi ct ur e command is referred to by the name you give it when you create
it. Windows can also be referred to by the number of their position in the
window layer or their unique ID numbers.

Chapter Summary

CHAPTETR 6

Values

This chapter describes the elements of HyperTalk that contain values. Values
are the information on which HyperTalk operates. A HyperTalk expression is
a description of how to get a value.

The sources of values in HyperTalk are

= constants

= literals

= functions

= properties

= numbers

= containers

These sources of values are the most basic expressions.

HyperCard does not have data types: values are stored simply as strings of
characters. (For mathematical operations, numbers are represented internally
in a more efficient format; see the Standard Apple Numerics Environment
description in this chapter.)

Constants

A constant is a named value that never changes. It’s different from a variable
in that you can’t change it, and it’s different from a literal in that its value is
not always the string of characters making up the name. For example, the
constant enpt y is the same as the null string (the literal " "), and the constant
space is the same as the literal " " . All HyperTalk constants are described
in Appendix B, “Constants.”

Constants

CHAPTER 6

Values

Literals
A literal is a text string whose value is the string, exactly as it appears. Literals
are denoted by double quotation marks at both ends of the string. (You must
use the straight double quotation mark, not the printer’s double quotation
marks typed with the Option-left bracket and Option-Shift-left bracket
keys.) Any character except double quotation mark, return, or “soft” return
(generated by pressing Option-Return) can be part of a literal string. A literal
can be of any length. For example,"This is a literal string"is
a literal.
Unquoted literals are not supported
Do not use unquoted literals in HyperTalk. The value of an
unquoted literal is the literal of itself—as though you had
entered put "fred" into fred.Always put double
quotation marks around a word you want HyperCard to
take as a literal. O

Functions

100

A function is a named value that HyperCard calculates when the statement in
which the function is used executes. The value of a function varies according to
conditions of the system or according to the value of parameters you pass to
the function when you use it.

For example, the built-in function named t he ti me returns the current time in
place of itself in a HyperTalk statement:

put the tine into the nessage box

If the current time were 5:12 pm,, the above example would put 5: 12 PMinto
the Message box.

You can also define your own functions in scripts using the function handler
structure described in Chapter 9, “Control Structures and Keywords.”

All built-in HyperTalk functions are described in Chapter 11, “Functions.”

Literals

CHAPTER 6

Values

Properties

A property is a named value representing one of the defining characteristics of
an element of the HyperCard environment. Different types of objects and other
elements have different properties, according to their purpose. For example,
fields share a set of properties, many of which are different from the set shared
by buttons.

You get the value of most properties by using the property name as a function
in a script or in the Message box. For example, the following statement
retrieves the | ocat i on property (two integers separated by a comma) of
button 1, and it puts the value into the Message box:

put the location of button 1 into nsg

This next example returns a value of either t r ue or f al se for the enabl ed
property of the menu Clues.

put the enabled of nenu "d ues”

You can also change most properties with the set command. All HyperCard
properties are described in Chapter 12, “Properties.”

Numbers

A number in HyperCard is a character string consisting of any combination of
the numerals 0 through 9, representing a decimal value. A number can include
one period (.) representing the decimal point, but it can have no other
punctuation nor a space character. A number can be preceded by a hyphen or
minus sign to represent a negative value (HyperCard doesn’t recognize a plus
sign as part of a number). Numbers that consist only of numerals are integers.
Numbers that include a period are real and, when used with mathematical
operators, are manipulated with floating-point operations.

Properties 101

102

CHAPTER 6

Values

Standard Apple Numerics Environment

HyperCard performs mathematical operations with Standard Apple Numerics
Environment (SANE) routines, but you don’t have to worry about how to
represent the values. You always enter numbers into HyperCard containers

as numeric strings.

When performing a mathematical operation, HyperCard automatically
converts the strings representing the numbers to SANE numeric values. If you
put the result of the operation into a variable, it’s stored as a SANE numeric
value; if you put it into a field or the Message box, HyperCard automatically
converts it back to a string with a precision of up to 19 decimal places. The
same conversion takes place if you put the variable into a field or the Message
box at a later time, or if you use it in a way that implies a string (char act er

2 of var Nane). So although SANE values are used internally for handling
numbers with speed and precision, you can always think of HyperTalk
numbers as strings.

Precision

The precision of the decimal string, resulting from putting a SANE numeric
value into a field or the Message box, is controlled by the nunber For mat
global property (see Chapter 12, “Properties,” for a detailed description). For
example, the command

set nunber Format to 0.00

would result in a string with at least one digit to the left of the decimal point
and exactly two digits to the right of the decimal point.

The nurrber For mat property does not affect the precision with which mathe-
matical operations are executed, only the precision with which the results are
displayed. When you put a number into a field or the Message box to display
it, however, HyperCard converts it to a decimal string. So any extra precision it
may have had (beyond the nunber For mat specification in effect at the time)
is lost.

Numbers

CHAPTER 6

Values

Number Handling

The following example shows how number handling works. These three
HyperTalk statements put the constant pi into a variable, set the nunber For mat
property, and put the value of the variable into the Message box, respectively:

put pi into joe
set nunberFormat to 0.00
put joe into nsg

The result shown in the Message box is 3. 14159265358979323846. In this
case, pi is entered into the variable j oe as a string, and it remains a string,
so nunber For mat has no effect. If, however, you perform a mathematical
operation on the variable, HyperCard converts it to a SANE numeric value:

put pi into joe -- joe contains a string
add 0 to joe -- mathematical operation nmakes it a nunber
set nunberFormat to 0.00 -- affects the format of joe

put joe into nsg

The result shown in the Message box is 3. 14. In this case, nurrber For mat
takes effect when j oe is converted from a SANE numeric value to a string as
it’s put into the Message box. The example statements for number handling
work only when placed inside a handler. If entered one at a time in the
Message box, the result is in the default format, because HyperCard resets
nunber For mat to its default value during idle time.

Containers

A container in HyperCard is a place where you can store a value. Containers
include fields, buttons, variables, menus, the current selection, and the Message
box. Containers other than fields and buttons can store values of any length,
including zero length. Containers other than the Message box can have more
than one line in them; each line ends with a return character (which can be the
only character in the line).

Containers 103

104

CHAPTER 6

Values

Fields

Afield is a HyperCard object for holding and displaying editable text. Fields
are interesting objects because they are also containers—a field’s value is

the text string it contains. Fields can also act as expressions; for example,

put field 1 into it putsthe value of the expressionfi el d 1 into the
variable i t . Variables are described in the section “Variables” later in this
chapter, and expressions are described in Chapter 7, “Expressions.”

You can refer to fields directly by name, number, or ID number. (See Chapter 5,
“Referring to Objects, Menus, and Windows,” for more about how to refer
to fields.)

Fields belong to cards or to backgrounds; the text held by a field, however,
usually remains with the card (unless the shar edText property istrue),
even if the field belongs to the background. A field can contain up to 30,000
characters, including spaces, return characters, and other invisible characters. If
you put more than that many characters into a field, the extras are ignored.

You can search through text with the f i nd command unless the dont Sear ch
property of the field is t r ue. You can edit it using the I-beam pointer of the
Browse tool when the field isn’t locked.

About Paint text

You can also put text onto cards and backgrounds as Paint
text—pictures that look like characters. Paint text can’t be
edited once it has been fixed onto the card or background
(although you can paint over it or erase it as you can any
part of a picture). See the HyperCard Reference Guide for
more information on Paint text. O

Buttons

As mentioned in Chapter 2, “HyperTalk Basics,” buttons are action objects or
“hot spots” on the screen that can also contain text. Buttons, like fields, are
objects that are also containers—a button’s value is the text string it contains.
Buttons can also act as expressions,' for example,

put btn 6 into cd fld 1

puts the value of the expression bt n 6 into the card field with the number 1.

Containers

CHAPTER 6

Values

Pop-up buttons contain text that they display as menu items. The following
code fragment creates a new pop-up button whose menu items are the
currently running programs:

doMenu " New Button"
set style of last button to popup
put the programs into |ast button

See the pr ogr ans function in Chapter 11, “Functions,” and the st yl e

property in Chapter 12, “Properties.” Variables are described in the next
section, and expressions are described in Chapter 7, “Expressions.”

Variables

A variable is a named container that has no visible representation other than its
name. Its value is a character string of any length. The variable name is a
HyperTalk identifier. An identifier can be of any length, always begins with an
alphabetic character, and can contain any alphanumeric character plus the
underscore character (_).

You assign a value to a variable with the put command. You cannot read from
a nonexistent variable—you must create it by putting something into it before
you use it. The constant enpt y, the null string, counts as something you can
put into a variable. This example puts a numeric value 12 into the variable
fudge, adds 5 to that variable, and then puts the result, 17, into the Message
box. Enter each line separately in the Message box.

put 12 into fudge
add 5 to fudge
put fudge into nsg

HyperCard assumes that an unquoted word used in an expression is a variable
when it can’t interpret the word as some other source of value (the string is not
a function, constant, property, or other container name). If you haven’t put a
value into a variable by that name, HyperCard treats it as an unquoted literal.

Containers 105

106

CHAPTER 6

Values

Scope of Variables

HyperCard has both local and global variables. A local variable is valid only
during the current invocation of the currently executing handler. You don’t
need to declare a local variable before you use it—just put something into it. A
global variable is valid for all handlers. You must declare a variable as global
by using the gl obal keyword in each handler before you use the variable:

gl obal useMeEverywher e, useMeTooO

HyperTalk assumes a variable to be local unless you specifically use the
gl obal keyword.

For more details on the gl obal keyword, see Chapter 9, “Control Structures
and Keywords.”

Parameter Variables

You create parameter variables when you put their names after the message
name in a handler:

on messageNane firstParam secondParam
When the handler is called, these variables are assigned the values, if any, of
the items in a comma-separated list of expressions following the message name

in the calling statement. Parameter variables are local to their handler. See
Chapter 4, “Handling Messages,” for an explanation of parameter passing.

The Variable It

The local variable named | t is the destination of the commands get , ask,
answer,read, and r equest . For example, get the name of field 1
puts the value of that background field’s name into | t . Convert puts its
results into | t if another destination isn’t specified.

For information on these commands, see Chapter 10, “Commands.”

Containers

CHAPTER 6

Values

Menus

When a menu reference does not refer to a menu as a HyperCard element (for
example, get enabl ed of menu " Home"), then it behaves as a container.
Like variables, you assign a value (made up of text) to a menu with the put
command. The text becomes the menu’s menu items. In this manner, a menu
evaluates to a list of its menu items; the statement

put nenu "Edit" into editMenultens

stores a list of the menu items in the Edit menu in the variable edi t Menul t ens.

The Selection

The selection is a container that holds the currently selected area of text. You
can put values into, before, or after the selection or put the selection (or any
chunk of the selection) into another container. Figure 6-1 shows an example
that puts a string into the selection to replace the highlighted text.

Figure 6-1 Manipulating the selection

The selection is always [(ie(dkisls
in 1€

Starting with this selection

this HyperCard command | put "easy to change using a" into the selection

The selection is always easy to
change using aMacintosh,

produces this result

Containers 107

108

CHAPTER 6

Values

If the phrase | ' m t he sel ect ed text is selected, and your handler issues
the statement

put the selection into the Message box

thenl'mthe sel ected text appears in the Message box. (Both instances
of the word t he in the example are optional.)

Found text isn't selected

Text found by the f i nd command is indicated by a box
around it—it is not placed into the selection. To get
information about text found with the f i nd command, use
the functions f oundText , f oundChunk, f oundLi ne, and
f oundFi el d, which are described in Chapter 11,
“Functions.” 0O

You must select some text with the mouse or the cl i ck, dr ag, or sel ect
command before you can manipulate the selection container.

You can also get information about a chunk of text or a line in a field that has
been clicked with the cl i ckChunk or cl i ckLi ne function, described in
Chapter 11, “Functions.”

The Message Box

The Message box is a special container. Any HyperTalk expression can be put
into the Message box. Typically, you use the Message box to send a HyperTalk
message directly to an object or to HyperCard. The Message box is a single-line
container, as shown in Figure 6-2. If you put more than one line from a
multiple-line container into the Message box (put card field 2 into
nmsg), only the first line is copied into the Message box.

Referring to the Message box

There are several forms you can use when referring to

the Message box. The forms are nessage box, nessage,
and nsg. O

Containers

CHAPTER 6

Values

Figure 6-2 The Message box

go to stack "HyperCard wishList”

The Message box is the default destination for the put command. You can put
a value directly into the Message box without specifying the Message box by
using one of these forms of the put command:

put property [of element]
put container
put function

Property is an expression that yields any HyperCard property, element yields the
descriptor of a HyperCard element (an object, menu, menu item, or window),
container yields a container, and function yields any HyperCard function.

If you put something into the Message box when it’s hidden, HyperCard
shows it automatically. You can toggle the Message box between being hidden
or shown by pressing Command-M.

The Message box can be specified by just the word message or its abbreviation
nmsg. Optionally, you can follow either of those with either box or wi ndow and
you can precede either with the word t he.

See the description of the put command in Chapter 10, “Commands,” for more
information about the values you can put into the Message box.

Chapter Summary

Here is a summary of the material covered in this chapter:

= The most basic expressions in HyperTalk are constants, literals, functions,
properties, numbers, and containers.

= HyperTalk’s values can always be treated as strings of characters.

» Containers—fields, variables, the selection, and the Message box—are places
to store values.

Chapter Summary 109

CHAPTER 7

Expressions

This chapter describes the expressions you use to refer to values. An expression
is a description of how to get a value. It may be as simple as a single source of a
value, or it can be a complex expression built with operators.

This chapter also describes HyperTalk’s operators, the elements of the
language that you use in expressions to manipulate and calculate values,
described in Chapter 6, “Values.”

Complex Expressions

You can build complex expressions using values and operators. As a complex
expression is evaluated, the values of its basic components are manipulated to
derive a final value in place of the entire expression. (The original values are
not changed in the process.) Complex expressions are evaluated according to
rules of precedence, and restrictions apply to the values that can be used,
depending on their operators.

Chunk expressions are different

Chunk expressions are a different type of expression: they
designate pieces of the strings representing values. Chunk
expressions are described later in this chapter. O

Factors

A factor is a single element of value in an expression. The following constructs
are factors:

= asimple source of value

= an expression enclosed in parentheses

Complex Expressions 111

112

CHAPTER 7

Expressions

= an element with a minus sign in front of it that evaluates to a number

= an expression with the word not in front of it that evaluates tot r ue
orfal se

An expression can be a single source of value, or it can be any two expressions
with an operator between them.

The difference between a factor and an expression is important to the syntax of
HyperTalk commands and functions. Where a built-in HyperTalk command
parameter permits an expression, you can specify as complex an expression as
you wish. HyperCard derives the final value before passing the parameter to
the command. For example, the add command accepts a complex expression as
its first parameter:

add 46+12*mont hl yRate to total

In contrast, when a built-in HyperTalk function requires a factor, HyperCard
takes the value of the first factor as the parameter to pass to the function. For
example, the sqrt function takes the first factor following its name as its
parameter. This is illustrated by the following expression, which you can type
into the Message box or use in a statement:

the sqrt of 4+12

In the example, the sqr t function takes the factor 4 as its parameter, rather
than the value of the expression 4+12. So the entire expression evaluates to 14,
rather than 4, which would be the value if sqrt accepted an entire expression.
(To specify the entire expression 4+12 as the parameter, you can enclose it in
parentheses, which turns it into a single factor.)

Two hyphens always indicate a comment

You can put a hyphen in front of a factor to create another
factor, and you can put another hyphen in front of that and
still have a factor. However, two hyphens in sequence
indicate a comment, so you must separate the hyphens
with a space or enclose the inner factor in parentheses for
HyperCard to recognize the construct as a factor. O

HyperTalk’s built-in commands and functions are described in Chapters 10
and 11, respectively.

Complex Expressions

CHAPTER 7

Expressions

HyperTalk Operators

Operators are used in complex expressions to derive values from other
values. Operators fall into several categories:

= Arithmetic operators work on numbers and result in numbers.

= Comparison operators work on numbers, text, and Boolean values (t r ue
or f al se) and result in Boolean values.

= Logical operators work on Boolean values and result in Boolean values.

= Text operators manipulate text strings and result in text strings.

Table 7-1 is a list of all the operators in HyperTalk.

Table 7-1 HyperTalk operators

Operator
&

&&

Complex Expressions

Description

Concatenate: Text string operator that joins the text
string yielded by the expression on its left to the
text string yielded by the expression on its right.

Concatenate with space: Text string operator that joins
the text string yielded by the expression on its left

to the text string yielded by the expression on its right,
with a space between them.

Divide: Arithmetic operator that divides the number
to its left by the number to its right.

Equal: Comparison operator that results int r ue if
the expression to its left and the expression to its
right have the same value. The expressions can be
arithmetic, text string, or logical.

Exponent: Arithmetic operator that raises the number
to its left to the power of the number to its right.

Greater than: Comparison operator that results in

t r ue if the expression to its left has greater value than
the one to its right. The expressions can be both
arithmetic or both text.

continued

113

CHAPTER 7

Expressions

Table 7-1

HyperTalk operators (continued)

Operator
>

0

IN

Complex Expressions

Description

Greater than or equal to: Same as >=. The 2 character
is obtained on the Macintosh keyboard by pressing
Option-period (.).

Greater than or equal to: Same as 2. Comparison
operator that results in t r ue if the expression to its
left has greater value than the one to its right or the
same value. The expressions can be both arithmetic
or both text.

Grouping: Expressions within the innermost pair of
parentheses are evaluated first. Parentheses don’t
force a new level of evaluation; they change the
sequence in which the current level of evaluation
proceeds.

Less than: Comparison operator that results in t r ue if
the expression to its left has less value than the one to
its right. The expressions can be both arithmetic or
both text.

Less than or equal to: Same as <=. The < character is
obtained on the Macintosh keyboard by pressing
Option-comma (,).

Less than or equal to: Same as <. Comparison operator
that results in t r ue if the expression to its left has less
value than the one to its right or the same value. The
expressions can be both arithmetic or both text.

Minus: Arithmetic operator that makes negative the
number to its right or, if it is between two numbers,
subtracts the one on the right from the one on the left.

Multiply: Arithmetic operator that multiplies two
numbers it appears between.

Not equal: Same as <>. The # character is obtained on
the Macintosh keyboard by pressing Option—equal
sign (=).

continued

CHAPTER 7

Expressions

Table 7-1 HyperTalk operators (continued)

Operator Description

<> Not equal: Comparison operator that results int r ue
if the expression to its left and the expression to its
right have different values. The expressions can be
arithmetic, text, or logical.

+ Plus: Arithmetic operator that adds two numbers it
appears between.

and AND: Logical operator that results in t r ue if both
the expression to its left and the expression to its right
aretrue.

cont ai ns Contains: Comparison operator that results in t r ue if
the text string yielded by the expression on its right is
found in the text string yielded by the expression on
its left.

div Divide and truncate: Arithmetic operator that divides
a number to its left by a number to its right, ignoring
any remainder, resulting in just the whole part.

is Is: Same as =.

is a Is a, is an: Comparison operator that tests for types.

or Types include nunber, i nt eger, poi nt,rect,date,

is an enpty, and | ogi cal .

isin Is in: Converse of cont ai ns; comparison operator
that results in t r ue if the text string yielded by the
expression on its left is found in the text string yielded
by the expression on its right.

is not Is not: Same as <>.

is not a Is not a, is not an: Comparison operator that tests for

or types. Types include nunber, i nt eger, poi nt, r ect,

is not an dat e,and | ogi cal .

is not in Is not in: Opposite of i S i n; comparison operator

Complex Expressions

that results in t r ue if the text string yielded by the
expression on its left is not found in the text string
yielded by the expression on its right.

continued

115

CHAPTER 7

Expressions

Table 7-1 HyperTalk operators (continued)

Operator Description

is within Is within: Thei s wi t hi n operator tests whether
or not a point lies inside a rectangle; it results in a
Boolean value: t rue or f al se.

mod Modulo: Arithmetic operator that divides the number
to its left by the number to its right, ignoring the
whole part, resulting in just the remainder.

not NOT: Logical operator that results in t r ue if the
expression on its right is f al se, and f al se if
the expression on its rightis t r ue.

or OR: Logical operator that results in t r ue if either

there is a
or
there is an

there is not a
or
there is not an

116 Complex Expressions

the expression to its left or the expression to its right
istrue.

There is a, there is an: Unary operator that results in

t r ue if the item exists. Items include the descriptor of
a window, menu, menu item, file, button, field, card,
card picture, background, background picture, part,
stack, folder, document, file, or program.

You can use this operator to check for any currently
executing System 7—friendly program. The expression

there is a program programName

returns t r ue if the program is both System 7—friendly
and currently executing. When searching for an
application or document, this operator uses the search
paths stored in the Home stack. When searching for a
file, it does not use the search paths.

There is not a, there is not an: Opposite of t here is
a; unary operator that results in t r ue if the specified
item does not exist. Items include the descriptor of a
window, menu, menu item, file, button, field, card,
card picture, background, background picture, part,
stack, folder, document, file, scripting language, or
program. When searching for an application or
document, this operator uses the search paths stored
in the Home stack. When searching for a file, it does
not use the search paths.

CHAPTER 7

Expressions

Operator Precedence

Parentheses alter the order of expression evaluation. Different operators have
different orders of precedence that determine how things get evaluated. The
order in which HyperCard performs operations is shown in Table 7-2.

Table 7-2 Operator precedence
Order Operators Type of operator
1 O) Grouping
2 - Minus sign for numbers
not Logical negation for Boolean values
there is a Boolean test for HyperCard items
there is an Boolean test for HyperCard items
there is not a Boolean test for HyperCard items
there is not an Boolean test for HyperCard items
Wi thin Boolean test for point within rectangle
3 A Exponentiation for numbers
4 */div nod Multiplication and division for numbers
5 +- Addition and subtraction for numbers
6 & && Concatenation of text
7 ><<=>=<2 Comparison for numbers or text
is in contains Comparison for text
is not in Comparison for text
is a Comparison for types
is an Comparison for types
is not a Comparison for types
is not an Comparison for types
8 =isis not <> # Comparison for numbers or text
9 and Logical for Boolean values
10 or Logical for Boolean values

Complex Expressions

117

CHAPTER 7

Expressions

Operators of equal precedence are evaluated left to right, except for exponentia-
tion, which goes right to left. For example, 2" 34 means “3 raised to the fourth
power, then 2 raised to that power,” whereas 1- 2- 3 means “2 subtracted from
1, then 3 subtracted from that.” If you use parentheses, HyperCard evaluates
the parenthetical expression first.

Operators and Expression Type

The operator you use must match the values you're using it with: "t ont' +
"cat" would cause an error, because numeric values are required for addition.
However,t om + cat would be acceptable if t omand cat were names of
containers with numbers in them, and "t o' & "cat " would be acceptable
because the & operator works on text strings (the result of this operation would
be the text string t ontat). Text operators work on any value, because any
value in HyperTalk can be treated as a text string; they always yield text
strings.

Because numeric values are automatically converted to strings when necessary
(see “Numbers” in Chapter 6, “Values”), they can be manipulated by both text
operators and arithmetic operators. For example, 5 & 78 yields 578, and

5 + 78 yields 83.

Comparison operators try to treat both of their operands as numbers; if they
can’t both be regarded as numbers, HyperCard treats them as text and does a
lexical comparison. A lexical comparison uses the order of the ASCII table (see
Appendix D, “Extended ASCII Table”). For letters, it’s the same as alphabetical
order; for numerals, it’s 0-9, but it’s different from a numerical comparison
because a lexical comparison looks at just one character at a time, rather than
the number as a whole. For example, 9 < 10 resultsint r ue, because 9 is less
than 10 arithmetically. But " 9x" < " 10x" resultsinf al se, because the
operands are evaluated lexically and 9 is greater than 1.

Chunk Expressions

118

You use a chunk expression to specify a particular piece—a chunk—of the
value of any source of value: constant, literal, function, property, number, or
container. Chunk expressions can specify any character, word, item, or line in
the source.

Chunk Expressions

CHAPTER 7

Expressions

Syntax of Chunk Expressions

The form of a chunk expression designates the smallest part of the chunk
first, then specifies each larger, enclosing part. You separate each part of
the expression with the preposition of or its synonym i n. For example, the
expression

first character of second word of third line of field 1

specifies a single character in the field.

You modify the specification of the kind of chunk—character, word, item, or
line—with the number of the particular one you want. The number can be an
ordinal constant preceding the kind (t ent h wor d) or an integer following the
kind (I i ne 2). You can also use a numeric constant in place of the integer

(I'i ne two), or any numeric expression that resolves to an integer.

You can use the special ordinals i ddl e, | ast, and any to specify a chunk
within its enclosing part. HyperCard resolves a special ordinal to a number
using the total number of chunks of the specified type within its enclosing part:
m ddl e resolves to one more than half the total (rounded down to the nearest
integer), | ast resolves to the total, and any resolves to a random number
between 1 and the total. For example,

put "Joe" into any word of line 2 of field 1

replaces a random word in the line with Joe.

It isn’t necessary to specify the enclosing parts of the source in strict
hierarchical order. You can designate any smaller part within any larger part:

character 35 of field 1

And, although you must go left-to-right from smaller to larger, you don’t have
to specify any smaller part than you want:

third itemof It

Chunk Expressions 119

120

CHAPTER 7

Expressions

Characters

Characters are designated by the chunk name char act er (or char). Spaces
count as characters in any part of a source except words. (Words are delimited
by spaces.) Commas count as characters except in items. (Items are delimited
by commas.) Return characters count as characters in whole sources and items.
(A return character delimits the last word on the line as well as the line itself.)

For example, if field 6 contains the phrase

It was the turtle, not I, who spilled the beans.
the chunk expression

character 25 of field 6

yields a comma (the one after not 1).

Words

Words are composed of any characters, including punctuation, delimited by
spaces and return characters, and are designated by the chunk name wor d:

word 2 of "Where's ny cubicle?"

yields my.

Items

Items are composed of any characters, including punctuation, delimited by
commas, and are designated by the chunk name i t em

itemthree of "cat's, rat's, bat's, gnat's"

yields" bat's" (including the space character in front).

Chunk Expressions

CHAPTER 7

Expressions

Lines

Lines are composed of any characters, including punctuation, delimited by
return characters, and are designated by the chunk name | i ne.

The chunk name | i ne denotes text between the beginning of a container and
the first return character, between two return characters, or between the last
return character and the end of the container.

It doesn’t matter how many display lines it takes to display one container line.
For example, a single line in a field might occupy several lines on the display
if the text wraps around (which it does if the field isn’t wide enough to
accommodate the whole line). Figure 7-1 shows two examples of lines in a
field: one with text wrap, and one without text wrap.

Figure 7-1 Lines in a field
This is line ong Thisisline one in the field.
inthe field. Thisis line fwno.
This is line two. and here's line three
and here's line
three.
Ranges

The preposition t 0 in a chunk expression specifies a range of a chunk within
the larger chunk:

word 1 to 5 of line 2 of field "fred"
The numbers given in a range are inclusive. For example:
char 2 to 5 of "Hedgehog"

yields edge.

Chunk Expressions 121

CHAPTER 7

Expressions

You specify the range with integers (or with constants or numeric expressions
that resolve to integers) following the chunk name, rather than with ordinal
numbers preceding the chunk name. That is, you must say char 1 to 3 of
"george";youcan'tsayfirst to third char of "george".

When the first number in a character range is greater than the second, you get
an empty string. For example, char 5 to 3 of "Mdtorcycle" yields""
or enpt y. For words, items, and lines, a “reversed” range evaluates to the first
chunk of the range. For example,word 2 to 1 of "Mdtorcycle

hel met " yields " hel met ".

Figure 7-2 shows some chunk expressions, labeled in various valid forms of
chunk expression syntax, in a hypothetical card fiel d 1.

122

Figure 7-2 Chunk expressions
Third word - - : .
of line 1 of This is one line,
card field 1 X T . Character 2
&nd here 15 another line. of word 4 of
Char4to 6 T) . . line 2 of
of line 3 of This entire sentence is card field 1
card field 1 actually one line (line 3
Tenth word of —}==
third line of that has wrapped araound
d field 1 X i
caratie inthe field.
Here's a line with items
; : Item 2 of
that are, you know, fourth line of
card field 1
separated by comimas.

Chunks and Containers

Combining a chunk expression with the object descriptor of a field lets
you refer directly to any piece of text down to a single character within the
current stack:

put char 2 of line 2 of field 1 of last card

"

Figure 7-3 shows an example that refers to the single character “a”.

Chunk Expressions

CHAPTER 7

Expressions

Figure 7-3 Combining chunks and objects

Third character of second word of third line of first field of fourth card.

Character ——— a Field
Thizsis line one,
Word ————— what This.is line two.
Line That’'s what | thought. | That's what | thought.

Card

This.is.line one,_ .

You can’t specify chunks in another stack
You can’t combine a stack name with a chunk expression;
you must go to the stack first. O

Chunks as Destinations as Well as Sources

Chunk expressions can be used to specify a part of the value in a container
wherever a container name is used. So, the chunk can specify the destination of
a value—where you're putting it—as well as the source of a value—where
you're getting it. For example,

put "M Steve" into word 3 of field 1

replaces only the third word in the field with the value M St eve, leaving the
rest of the field’s former contents intact.

Chunk Expressions 123

CHAPTER 7

Expressions

Nonexistent Chunks

If you specify chunks that don’t exist as sources of values, you get nothing.
For example,

put char 5 of "hey" into nsg

puts enpt y (or nothing) into the Message box, because the word hey contains
only three characters.

If you specify a nonexistent chunk as the destination of a put command, the
outcome depends on the kind of chunk. If you put a value into a character or a
word that doesn’t exist in a container, you put just the value. That is, if field 1 is
empty, the statement

put "hey" into word 5 of field 1

puts hey (with no characters before it) into background field 1.

If you put a value into a nonexistent line, however, HyperCard puts in a return
character, and if you put a value into a nonexistent item, HyperCard puts

in a comma. (In both cases, you put a null chunk delimited by its particular
delimiting character.) For example, if field 1 is empty, the statement

put "hey" into line 5 of field 1

puts four return characters (four null lines) followed by hey into background
field 1. Similarly,

put "hey" into item5 of field 2

puts four commas (four null items) followed by hey into the first line of
background field 2.

Chapter Summary

124

Here is a summary of the material covered in this chapter:
= Complex expressions are built with values and operators.
= Operators are used to manipulate and calculate values.

= Chunk expressions can specify any chunk—character, word, item, or line—
either in a source of value or as the destination of a put command.

Chapter Summary

CHAPTER 8

System Messages

This chapter describes the messages HyperCard sends in response to events,
such as mouse clicks or Apple event commands, that you or an external process
initiate in its environment.

Most system messages are sent by HyperCard to the current card, but those
having to do with a specific button or field are sent to that object. The receiving
object has the first chance to respond to the message before it goes on to the
next encompassing object, as described in Chapter 4, “Handling Messages.”
The receiving object can respond to the system message with a handler

that begins

on messageName

where messageName is one of the system messages in the lists in this chapter.

Messages and Commands

Most system messages are informational—they cause no action if passed all the
way to HyperCard, although they may be a result of a HyperTalk command
executing. For example, HyperCard sends del et eBut t on to a button while

it is executing either a Cut Button or Clear Button menu command. The

del et eBut t on message is a result of a command, not the command itself.
Consequently, you can’t prevent the deletion of buttons by intercepting the

del et eBut t on message with a handler named del et eBut t on. All system
messages that are a result of a command can be intercepted, but the inter-
cepting handler will have no effect on the action of the command that sends
that message.

Messages and Commands 125

CHAPTER 8

System Messages

Other system messages, however, are commands if passed to HyperCard. For
example, all menu commands are passed to HyperCard as parameters of the
doMenu message. (So you can prevent deletion of buttons by intercepting
doMenu. But see the section “Redefining Commands” at the beginning

of Chapter 10 before trying it.) All system messages that are HyperTalk
commands are noted as such in this chapter and are also listed in Chapter 10,
“Commands.” If a message that reaches HyperCard is neither a system
message nor a command, HyperCard displays a “Can’t understand” error
dialog box.

Although system messages are usually sent by HyperCard, they can be sent by
other objects as well. For example, a handler could invoke a mouseUp handler
in another object by executing a statement such as

send "nouseUp" to button 1 of card 1

The tables in this chapter correspond to the type of object to which the listed
system messages are sent initially. If that object has no handler with a name
matching the system message, it passes the message on to succeeding objects
in the hierarchy. So, for example, a card can have a handler for a message
sent initially to a button.

Messages Sent to a Button

126

The only messages that are sent initially to buttons are those having to do with
a specific button. They are of two types: those announcing the button’s creation
or deletion, and mouse messages.

All of the mouse messages that can be sent to buttons can also be sent to fields.
When buttons and fields are layered on top of each other, mouse messages are
sent only to the closest one. Background buttons and fields can never overlay
those belonging to the card. Both background buttons and card buttons
precede the card in the message-passing hierarchy even though the back-
ground itself comes after the card.

Table 8-1 shows the system messages HyperCard sends initially to buttons.

Messages Sent to a Button

CHAPTER 8

System Messages

Table 8-1 Messages sent to a button

Message
del et eButt on

nmouseDoubl ed i ck

mouseDown

nmouseEnt er

nouselLeave

nmouseSti | | Down

Messages Sent to a Button

Meaning

Sent to a button that is being deleted just before
it disappears.

Sent to a button after a second mouse click is released
when all of the following occur:

» The second click is within the double-click time
interval set in the Mouse control panel.

= The second click is at a location within 4 pixels of
the first click.

= The second click is within the same object as
the first.

When the nouseDoubl ed i ck message is sent,
it’s the only system message sent as a result of the
second click.

If someone clicks repeatedly, faster than the double-
click speed, each odd-numbered click is treated as a
first click and each even-numbered click is treated as
a second click.

Sent to a button when the mouse button is pressed
down while the pointer is inside its rectangle. (This
message may also be sent to a field or card; see
Table 8-2 and Table 8-3.)

Sent to a button as soon as the pointer is moved
within its rectangle. (This message may also be sent
to a field; see Table 8-2.)

Sent to a button as soon as the pointer is moved
outside its rectangle. (This message may also be sent
to a field; see Table 8-2.)

Sent to a button repeatedly while the mouse button
is held down and the pointer is inside its rectangle.
(This message may also be sent to a field or card; see
Table 8-2 and Table 8-3.)

127

CHAPTER 8

System Messages

Table 8-1 Messages sent to a button (continued)
Message Meaning
mouseUp Sent to a button when the mouse button is released

while the pointer is inside its rectangle. The pointer
must be in the same button rectangle it was in when
the mouse button was pressed down for the message
to be sent. (This message may also be sent to a field
or card; see Table 8-2 and Table 8-3.)

mouseW t hin Sent to a button repeatedly while the pointer is inside
its rectangle. (This message may also be sent to a
field; see Table 8-2.)

newBut t on Sent to a button as soon as it has been created;
because a button can have no script with which to
respond to this message (unless it was created by
pasting), the message passes to objects lower in the
hierarchy that can respond with handlers such as

on newButton
set autoHilite of the target to true
end newButton

Messages Sent to a Field

128

The only messages that are sent initially to fields are those having to do with a
specific field. They are of three types: those announcing the field’s creation or
deletion, those announcing its opening for text entry or closing afterward, and
mouse messages.

All of the mouse messages that can be sent to fields can also be sent to buttons.
When buttons and fields are layered on top of each other, mouse messages are
sent only to the closest one. Background buttons and fields can never overlay
those belonging to the card. Both background fields and card fields precede the
card in the message-passing hierarchy even though the background itself
comes after the card.

Messages Sent to a Field

CHAPTER 8

System Messages

Table 8-2 shows the system messages HyperCard sends initially to fields.

Table 8-2 Messages sent to a field

Message
cl oseField

del eteFi el d

enterlnField

exitField

mouseDoubl ed i ck

Messages Sent to a Field

Meaning

Sent to an unlocked field when it is closed after text
editing by clicking outside the field, moving the text
insertion point to the next field with the Tab key,
pressing the Enter key, clicking a button, going to
another card, or quitting HyperCard. The message is
not sent unless some text was actually changed.

Sent to a field that is being deleted just before it
disappears.

Sent to a field when the Enter key is pressed while
there is an insertion point or selection in the field. If
ent er | nFi el d is not intercepted by a handler and
the contents of the field have been changed,
HyperCard sends the cl oseFi el d message.

Sent to an unlocked field when it is closed without
having its text changed.

Sent to a locked field after a second mouse click is
released when all of the following occur:

» The second click is within the double-click time
interval set in the Mouse control panel.

= The second click is at a location within 4 pixels of
the first click.

= The second click is within the same object as
the first.

When the nouseDoubl eQ i ck message is sent, it’s
the only system message sent as a result of the
second click.

If someone clicks repeatedly, faster than the double-
click speed, each odd-numbered click is treated as a
first click and each even-numbered click is treated as
a second click.

continued

129

CHAPTER 8

System Messages

Table 8-2 Messages sent to a field (continued)
Message Meaning
nmouseDown Sent to a locked field when the mouse button is

nmouseEnt er

nouseleave

mouseSti | | Down

nmouseUp

mouseWt hi n

newFi el d

openFi el d

130 Messages Sent to a Field

pressed down while the pointer is inside it.
MouseDown is not sent to a scrolling field when the
mouse is clicked while the pointer is in the scroll bar.
You can send nouseDown to an unlocked field by
holding down the Command key while clicking the
mouse in the field. (This message may also be sent to
a button or card; see Table 8-1 and Table 8-3.)

Sent to a field as soon as the pointer is moved into
it. (This message may also be sent to a button; see
Table 8-1.)

Sent to a field as soon as the pointer is moved
outside it. (This message may also be sent to a
button; see Table 8-1.)

Sent to a locked field repeatedly while the mouse
button is held down and the pointer is inside it. (This
message may also be sent to a button or card; see
Table 8-1 and Table 8-3.)

Sent to a locked field when the mouse button is
released while the pointer is inside it. The pointer
must be in the same field it was in when the mouse
button was pressed down for the message to be sent.
(This message may also be sent to a button or card;
see Table 8-1 and Table 8-3.)

Sent to a field repeatedly while the pointer is inside
it. (This message may also be sent to a button; see
Table 8-1.)

Sent to a field as soon as it has been created.

Sent to an unlocked field when it is opened for text
editing by clicking the field or moving the text
insertion point from the previous field with the
Tab key.

continued

CHAPTER 8

System Messages

Table 8-2 Messages sent to a field (continued)
Message Meaning
returninField Sent to a field when the Return key is pressed while

there is an insertion point or selection in the field. In

response to a r et ur nl nFi el d message, HyperCard
sends a t abKey message to the field if the following
conditions are true:

» The field’s aut oTab property (described in
Chapter 12, “Properties”) ist r ue.

» The Ret ur nl nFi el d message is not intercepted
by a handler.

» The field is not a scrolling field.

= The insertion point or selection is on the last line.
Otherwise, HyperCard inserts a return character into
the field. The t abKey message, if it’s not intercepted,

causes HyperCard to place the insertion point in the
next field.

t abKey Sent to a field when the Tab key is pressed while the
text insertion point is in the field. (This message may
also be sent to the current card; see Table 8-3.)

Messages Sent to the Current Card

System messages not sent to buttons or fields are sent initially to the current
card, even when they concern the background or the stack.

Mouse messages are sent to the card only when there is no button or field,
belonging to either the card or the background, under the pointer.

Table 8-3 shows the system messages HyperCard sends initially to the
current card.

Messages Sent to the Current Card 131

CHAPTER 8

System Messages

Table 8-3 Messages sent to the current card
Message Meaning
appl eEvent class, Sent to the current card when an Apple event is received.
id, sender

arr owkey ovar

cl ose

In an appl eEvent message, class is the general category of the
event (aevt, m sc), id is the actual event received (0app, odoc,
pdoc, cl os, qui t, dosc, eval), and sender is the name of the
application or process that sent the event.

Since Apple event commands are usually generated by other
processes, you may want to check to make sure that they are not
destructive. You can intercept an appl eEvent message with an
Apple event handler like this one written for the Home stack:

on appl eEvent cl ass, id, sender
answer "Apple Event Alert!" & return & =
"The class is" &&% class & return & -
"The IDis" && id & return & -
"The Sender is" && sender -
with "Pass" or "Kill"
if It is "pass" then pass appl eEvent

end appl eEvent

If you pass the event on at the end of your handler to HyperCard
using the pass keyword, HyperCard executes the event; other-
wise, the event is not executed.

Sent to the current card when an arrow key is pressed (see also
the t ext Ar r ows property in Chapter 12, “Properties”). The
value passed into the parameter variable var can be | ef t,

ri ght, up, or down, depending on which arrow key is pressed.
The beginning of a handler for this message could read

on arrowkey whi chKey
i f whichKey = "left" then go previous card

(This message is also a HyperTalk command; see Chapter 10,
“Commands.”)

Sent to the current card, just before leaving that card, when you
close a stack window with the cl ose wi ndowcommand and
when you click the close box of a card window.

continued

132 Messages Sent to the Current Card

CHAPTER 8

System Messages

Table 8-3

Messages sent to the current card (continued)

Message
cl oseBackgr ound

cl oseCard

cl osePal ette
paletteWindowName,
paletteWindowID

cl osePicture
pictureWindowName,
pictureWindowID

cl oseSt ack

commandKeyDown var

control Key wvar

del et eBackground

del eteCard

Meaning

Sent to the current card, just before leaving that card, when a
background is closed by going to another card that has a
different background.

Sent to the current card just before leaving that card.

Sent to the current card when a palette that was opened with the
pal et t e command is closed.

Sent to the current card when a window that was created with
the pi ct ur e command is closed.

Sent to the current card, just before leaving that card, when a
stack is closed by opening another stack.

Sent to the current card when a combination of the Command
key and another key is pressed. The parameter variable var can
be any character on the keyboard. The beginning of a handler for
this message could read

on commandKeyDown whi chKey
i f whichKey = j then doMenu "MyMenu"
-- nore statenents..

Sent to the current card when a combination of the Control key
and another key is pressed. The possible values of the parameter
value var and the keys each value corresponds to are shown in
Appendix D, “Extended ASCII Table.” (See also the cont r ol Key
command in Chapter 10, “Commands.”) The beginning of a
handler for this message could read

on control Key whi chKey
i f whichKey = 16 then doMenu "Print Card"
-- additional statenents..

Sent to the current card when a background is deleted just before
it disappears.

Sent to a card that is being deleted just before it disappears.

continued

Messages Sent to the Current Card 133

CHAPTER 8

System Messages

Table 8-3 Messages sent to the current card (continued)
Message Meaning
del et eSt ack Sent to the current card when a stack is deleted just before it

doMenu varl, wvar2

ent er Key

functi onKey var

hel p

disappears.

Sent to the current card when a menu item is selected. The
parameter variable varl has the exact name of the menu item
selected, including the three periods following menu items
that invoke dialog boxes. Uppercase and lowercase don’t
matter, but you must type the three periods—don‘t use the
Option-semicolon ellipsis character. The second parameter
variable, var2, has the exact name of the menu in the menu
bar. (This message is also a HyperTalk command, which is listed
in Chapter 10, “Commands.” An example handler to intercept
the doMenu message is shown in the section “Redefining
Commands,” at the beginning of Chapter 10.)

Sent to the current card when the Enter key is pressed unless the
text insertion point is in a field. (This message is also a HyperTalk
command; see Chapter 10.)

Sent to the current card when a function key on the Apple
Extended Keyboard is pressed. The parameter variable var can
range from 1 to 15. Function keys 1 through 4 are preprogrammed
for the Undo, Cut, Copy, and Paste commands, respectively. The
beginning of a handler for this message could read

on functionKey whi chKey
i f whichKey < 5 then pass functionKey
else if whichKey is 5 then doMenu "New Card"
el se if whichKey is 6 then choose browse t ool
else if whichKey is 7 then choose button tool

You can override the preprogrammed functions of keys 1
through 4 in a f unct i onKey message handler. (This message is
also a HyperTalk command; see Chapter 10, “Commands.”)

Sent to the current card, just before leaving that card, when Help
is chosen from the Go menu (or Command-? is pressed). You can
intercept this message if you want to provide your own Help
system for your stack. (This message is also a HyperTalk
command; see Chapter 10, “Commands.”)

continued

134 Messages Sent to the Current Card

CHAPTER 8

System Messages

Table 8-3

Messages sent to the current card (continued)

Message
hi de nenubar

idle

keyDown wvar

Meaning

Sent to the current card when the menu bar is visible and you
press Command-Space bar. (H de is also a HyperTalk command;
the command accepts other parameter variable values besides
menubar ; see its description in Chapter 10, “Commands.”)

Sent to the current card repeatedly when nothing else is
happening and the Browse tool is current.

An idle handler can interfere with typing. For example, if you
have an idle handler that puts text into a field, it can remove the
insertion point from another field while the user is typing. Here
is an example of such a handler:

on idle
put the tine into card field "Tinme"
pass idle

end idle

If this on i dI e handler were to execute during typing into
another field (i dl e is sent during a typing pause), and if the time
had changed, HyperCard would remove the insertion point from
the user’s field. The user would have to click the field or press
the Tab key to replace the insertion point after every pause,
which would be annoying and tedious.

Sent to the current card when a key is pressed. The parameter
variable var can be any character on the keyboard. The beginning
of a handler for this message could read

on keyDown whi chKey
if whichKey =t then put "That's the key"
-- nmore stuff...

The key Down message is not sent for keys that generate special
messages or for programmed function keys. A programmed
function key would send a f unct i onKey message and any
additional messages that the specified function key is
programmed to generate. See also the f unct i onKey message
description.

continued

Messages Sent to the Current Card 135

CHAPTER 8

System Messages

Table 8-3

Messages sent to the current card (continued)

Message
nmouseDoubl eCl i ck

mouseDown

mouseDownl nPi ct ur e
pictureWindowName,
point

mouseSti | | Down

nmouseUp

mouseUpl nPi cture
pictureWindowName,
point

moveW ndow

Meaning

Sent to a card, after a second mouse click is released, when all of
the following occur:

= The second click is within the double-click time interval set in
the Mouse control panel.

» The second click is at a location within 4 pixels of the first click.
» The second click is within the same object as the first.

When the nouseDoubl eCl i ck message is sent, it’s the only
system message sent as a result of the second click.

If someone clicks repeatedly, faster than the double-click speed,
each odd-numbered click is treated as a first click and each
even-numbered click is treated as a second click.

Sent to the current card when the mouse button is pressed down
and the pointer is not in a button rectangle or field. (This message
may also be sent to a button or field; see Table 8-1 and Table 8-2.)

Sent to the current card when the mouse button is held down
while the pointer is in a window created with the pi ct ur e
command. See also the pi ct ur e command in Chapter 10,
“Commands.”

Sent to the current card repeatedly while the mouse button is
held down. (This message may also be sent to a button or field;
see Table 8-1 and Table 8-2.)

Sent to the current card when the mouse button is released. (This
message may also be sent to a button or field; see Table 8-1 and
Table 8-2.)

Sent to the current card when the mouse button is released
after being down while the pointer is in a window created with
the pi ct ur e command. See also the pi ct ur e command in
Chapter 10, “Commands.”

Sent when you change a card window’s | ocat i on property
with HyperTalk, drag or zoom the card window, or change the
location of the card window with the showcommand. See also
the | ocati on and r ect angl e properties in Chapter 12,
“Properties,” and the showcommand in Chapter 10,
“Commands.”

continued

136 Messages Sent to the Current Card

CHAPTER 8

System Messages

Table 8-3

Messages sent to the current card (continued)

Message
newBackgr ound

newCar d
newSt ack

openBackgr ound

openCard

openPal ette
paletteWindowName,
paletteWindowID

openPi cture
pictureWindowName,
pictureWindowID

openSt ack

qui t

resune
resunesSt ack

ret ur nkey

show nmenubar

Meaning

Sent to the current card as soon as a background has
been created.

Sent to a card as soon as it has been created.
Sent to the current card when a stack is created.

Sent to the current card when a background is first opened by
going to a card whose background is different than that of the
previous card.

Sent to a card when you go to it.

Sent to the current card when a palette is opened with the
pal ett e command.

Sent to the current card when a window is created with the
pi ct ur e command.

Sent to the current card when a stack is opened by going to a
card in a different stack than that of the previous card. In this
case the following three messages are sent, in order: openCar d,
openBackgr ound, and openSt ack

Sent to the current card when you choose Quit HyperCard
from the File menu (or press Command-Q) just before
HyperCard quits.

Sent to the current card when HyperCard resumes running after
having been suspended.

Sent to the current card when you return to an already
open stack.

Sent to the current card when the Return key is pressed unless
the text insertion point is in a field. (This message is also a
HyperTalk command; see Chapter 10, “Commands.”)

Sent to the current card when the menu bar is hidden and you
press Command-Space bar. (Showis also a HyperTalk command;
the command accepts other parameter variable values besides
menubar ; see the description in Chapter 10, “Commands.”)

continued

Messages Sent to the Current Card 137

CHAPTER 8

System Messages

Table 8-3

Messages sent to the current card (continued)

Message
si zeW ndow

suspend

suspendSt ack

start Up
t abKey

Message Order

Meaning

Sent to the current card when the card window is resized, such as
in the following cases:

» The window is resized from the size box or scroll palette.

» The window is zoomed in or out, thereby changing the
window size.

» A script sets the one of the r ect angl e properties (height,
width, and so on) of the card window to a new rectangle.

= Ascript sets ther ect of the card to a new rectangle and the
resizing of the card causes resizing of the card window.

In all cases except the first, a noveW ndowmessage also may be
sent. When both messages are pending, si zeW ndowis sent first.

Sent to the current card when HyperCard is suspended by
launching another application with the open command just
before the other application is launched.

Sent to the current card, just before leaving that card, when you
switch to another stack.

Sent to the first card displayed when HyperCard is first started.

Sent to the current card when the Tab key is pressed unless
the text insertion point is in a field. In that case, t abKey is
sent initially to the field; see Table 8-2. (This message is also a
HyperTalk command; see Chapter 10, “Commands.”)

For some events, HyperCard sends a sequence of system messages. The
messages are sent in a specific message order. You can create message handlers
that use the message sending order to set properties or perform other actions
when opening stacks, creating new backgrounds, creating new cards, deleting
cards, backgrounds, or stacks, moving from card to card, and moving from

138 Message Order

CHAPTER 8

System Messages

stack to stack. For example, the st ar t Up system message is always sent when
HyperCard first starts up and the first stack is opened, so you can create a
handler for the st ar t Up system message that sets properties for the first card
before it appears.

You can create handlers for any message that is sent earlier in the message
sending order to change the actions that take place before the messages that
follow it are acted upon by HyperCard. The HyperCard message sending order
that results from some of the actions most frequently performed when creating
or modifying stacks is shown in Table 8-4. You can also open the Message
Watcher to watch the messages that result from other actions.

Table 8-4

HyperCard message sending order

Action

Create a new
background

Create a new card
Create a new stack
Cut a card

Delete a background

Delete a card

Delete a stack

Paste a card

Resume HyperCard
Start up HyperCard

Resulting message order

cl oseCard, cl oseBackgr ound, newBackgr ound, newCar d,
openBackgr ound, openCard

cl oseCard, newCar d, openCard

cl oseCard, cl oseBackgr ound, cl oseSt ack, newSt ack,
newBackgr ound, newCar d, openSt ack, openBackgr ound,
openCard

cl oseCard, cl oseBackgr ound, del et eCar d,
del et eBackgr ound, openBackgr ound, openCard

cl oseCard, cl oseBackground, del et eCard,
del et eBackground

cl oseCard, cl oseBackground, del et eCard,
del et eBackgr ound, openBackgr ound, openCard

cl oseCard, cl oseBackgr ound, cl oseSt ack, del et eSt ack

cl oseCard, cl oseBackgr ound, newBackgr ound, newCar d,
openBackgr ound, openCard

resune, openSt ack, openBackgr ound, openCard

start Up, openSt ack, openBackgr ound, openCard

Message Order

139

CHAPTER 9

Control Structures and Keywords

This chapter describes the nature of control structures and the control structure
vocabulary, which is made up of HyperCard keywords.

A keyword is a word whose meaning is predefined in HyperTalk. You cannot
redefine keywords as variable names. Keywords are not sent as messages when
they execute in scripts, nor can they be used in the Message box (except for do,
i f,and send). Some keywords provide the structure for handlers; others
control the flow of execution within handlers.

HyperTalk has two kinds of handlers: message and function handlers, denoted
by the initial keywords on and f unct i on, respectively. Message and function
handlers are defined in the same way (except for the initial keyword), but

they differ in how they are invoked and in how they return values.

The syntax for each keyword is given. In the syntax statements, words in
italic represent general elements that you replace with a specific instance
when you write a statement; brackets ([]) denote optional elements (don't
type the brackets).

Keywords in Message Handlers

The on keyword identifies a HyperCard message handler. Message handlers
are written to define your own messages, or to modify or redefine what
happens in response to any message (including a HyperTalk command). The
general syntax of a message handler looks like this:

on messageName [parameterList]
statementList
end messageName

Keywords in Message Handlers 141

CHAPTER 9

Control Structures and Keywords

MessageName is an identifier: a string starting with a letter and containing no
spaces or punctuation marks except underscore; parameterList is a series of zero
or more parameter variables (separated by commas if more than one); and
statementList is one or more HyperTalk statements.

The handler dictates the method by which its object responds to messageName.
When a message called messageName is sent to an object, HyperCard checks all
of that object’s message handlers to see if it has one named messageName. If

so, the object responds according to that handler, and the message is sent no
further (assuming the script has no pass statement, described later in this
chapter). If the object has no handler to match messageName, HyperCard passes
the message to the next object in the hierarchy.

You can override HyperTalk

If you name a message handler the same as a built-in
command, your name overrides the built-in one if yours is
anywhere along the message-passing hierarchy between
the object sending the message and HyperCard. O

The statements in the handler execute until an end, exi t, pass,orreturn
keyword is reached (these keywords are discussed later in this section). A
message handler can return a value through the built-in functiont he resul t
(discussed in Chapter 11, “Functions”).

142

on messageName [parameterList]

The on keyword marks the beginning of a message handler and connects the
handler with a particular message. MessageName is the first word of the
message to which the handler responds, and it is the name of the handler.

The optional parameterList allows the message handler to receive some values
sent along with the message. This list is a series of local variable names, called
parameter variables, separated by commas. When the message is sent, each
source of value following the message name is evaluated; when the handler
receives the message, each value is plugged into the parameter variable that
appears in the corresponding position following on messageName. The first
value in the list goes into the first parameter variable, and so on. If no values
are sent with the message name, enpt y goes into each parameter variable.

Keywords in Message Handlers

End

CHAPTER 9

Control Structures and Keywords

Chapter 4, “Handling Messages,” explains more about parameter passing.
See also the par am par anCount , and par anms functions in Chapter 11,
“Functions.”

Exit

end messageName

The end keyword begins the last line of a handler—it is reached when all of the
handler’s statements have been executed (except for any bypassed conditional
blocks). When the end statement is reached, the message that initiated
execution of the handler is sent no further unless a pass messageName
statement follows the end statement. (Pass is defined later in this section.)

If the message that initiated this handler’s execution was part of some other
handler, control passes back to the other handler.

Pass

exit messageName
exit to HyperCard

The exi t messageName statement ends execution of the handler.

Theexit to Hyper Card form makes program flow return directly to
HyperCard, bypassing any pending handlers that have not finished executing.

pass messageName

The pass messageName statement ends execution of the handler and sends the
entire message that initiated execution of the handler to the next object in the
hierarchy. (Ordinarily, a message is sent no further than the object containing
the executing handler.)

Keywords in Message Handlers 143

CHAPTER 9

Control Structures and Keywords

Return

return expression

The r et ur n statement ends execution of the handler and, when it appears
within a message handler structure, places the value of expression into the
HyperTalk functiont he resul t .

The value of t he result set by ther et ur n statement is valid only
immediately after it executes; each new statement resetst he resul t.
(See the r esul t function in Chapter 11, “Functions,” for examples.)

Message Handler Example

The following example shows a handler that originates a message that in turn
initiates execution of a second handler. (The second handler could be in the
same script as the first or anywhere farther along the object hierarchy:.)

on nmouseUp
heyNow 5,10 -- heyNow i s the nessage name that's sent
end nouseUp

on heyNow tinmeVar,tinmeVar2 --Handl er name heyNow nmat ches nessage namne

pl ay "boing" tenpo 200 "cd4e ¢ dq ¢ f eh" -- Happy Birthday
wait tinmeVar seconds
pl ay stop

pl ay "harpsichord" "ch d e f g a b c5w
wait tinmeVar?2 seconds
pl ay stop

end heyNow

Execution of the first handler is initiated when its object receives a nrouseUp
message. The nbuseUp message could be generated when the user clicks the
mouse or types mouseUp in the Message box and presses Return. It could also
originate from another handler executing the statement nbuseUp or could be
sent explicitly to the handler’s object with a send command.

144 Keywords in Message Handlers

CHAPTER 9

Control Structures and Keywords

When the nouseUp handler executes, it sends its one command statement
(heyNow 5, 10) as a message, first to its own object. The message name (the
first word of the message) matches the handler name (the word following on in
the first line of the handler), so the statements in the second handler begin
executing. (If the current object had no hey Nowmessage handler, that object
would pass the entire message on to the next object in the hierarchy:.)

The values of the parameters following hey Nowin the first handler are passed

into the parameter variables following hey Nowin the second handler. So when
the second handler is executing, t i meVar has the value 5, and t i neVar 2 has

the value 10.

Keywords in Function Handlers

A function is a named value that is calculated by HyperCard when a statement
in which it’s used executes. The function keyword identifies a HyperCard
function handler. You can use this structure to define your own functions, which
then can be called from any place in a statement where their values are needed.
(User-defined functions are called like built-in HyperCard functions except that
you must always use parentheses—see “Return,” later in this section.)

Like message handlers, function handlers cannot be nested inside each other
(or inside message handlers). The general syntax of a function handler looks
like this:

function functionName [parameterList]
statementList
end functionName

FunctionName is an identifier: a string starting with a letter and containing no
spaces or punctuation marks except underscore; parameterList is a series of zero
or more parameter variables separated by commas; and statementList is one or
more HyperTalk statements.

User-defined function handlers use the message-passing hierarchy in the same
way as do message handlers. That is, when the function name appears in a
statement or in the Message box, HyperCard searches through all of the scripts
along the current message-passing hierarchy for a matching function handler. If

Keywords in Function Handlers 145

Function

CHAPTER 9

Control Structures and Keywords

a match is found, the function handler executes. If none is found, the function
call is passed to HyperCard; if there is no built-in function of that name,
HyperCard displays an error dialog box.

If you name a function handler the same as a built-in function, your function
is called when you use the function call syntax that uses parentheses. Of
course, your function handler must also be in the script of an object lower or
equal in the hierarchy than the originator of the function call. You can make
calls to built-in functions using the function call syntax with t he preceding
the function name, which bypasses the message-passing hierarchy and calls
HyperCard built-in functions directly.

Program flow runs through the function handler until it encounters an end,
exi t, pass, orr et ur n statement (discussed later in this section). A function
handler returns a value directly into the statement in which its name was used.

146

function functionName [parameterList]

The f unct i on keyword marks the beginning of a function handler and
connects the handler with a particular function call. FunctionName is the
function call to which the handler responds, and it is the name of the handler.

The optional parameterList allows the function handler to receive some values
sent along with the function call. This list is a series of local variable names,
called parameter variables, separated by commas. When the function call is
made, each source of value appearing between parentheses following the
function name is evaluated; when the handler begins to execute, each value is
plugged into the parameter variable that appears in the corresponding position
following f unct i on functionName, the first value in the list going into the first
parameter variable, and so on.

For more details on passing parameters to function handlers, see “Return,”
later in this section.

Keywords in Function Handlers

End

CHAPTER 9

Control Structures and Keywords

Exit

end functionName

The end statement is the last line of the handler, reached when all of
the handler’s statements have been executed (except for any bypassed
conditional blocks).

When the end statement is reached, control passes back to the handler
containing the function call that originated the function handler’s execution.

Pass

exit functionName
exit to HyperCard

The exi t functionName statement ends execution of the handler.

Theexit to Hyper Card form makes program flow return directly to
HyperCard, bypassing any pending handlers that have not finished executing,
including the handler containing the function call.

pass functionName

The pass statement ends execution of the handler and sends the entire
function call that initiated execution of the handler to the next object in
the hierarchy. (Ordinarily, a function call is sent no further than the object
containing the executing handler.)

Keywords in Function Handlers 147

CHAPTER 9

Control Structures and Keywords

Return

return expression
The r et ur n statement ends execution of the handler and, when it appears
within a function handler structure, dictates the returned value of the function.
The value of expression replaces the function in the calling statement.
The function appears in the calling statement in the form functionName
(expressionList):
put square(17) into card field 1
ExpressionList is a series of zero or more expressions separated by commas
whose values are assigned to the parameter variables in the parameterList
of the function handler. In the above example, the expressionList comprises
only the number 17.
A user-defined function handler that would respond to the function call
example squar e(17) , shown above, is
function square x

return x * X
end square
In this example, the function handler has one parameter variable to receive one
value passed to it by the calling statement. The value 17 is passed to the
function handler, where it is assigned to the parameter variable X; the value of
X * Xisreturned by the r et ur n statement, replacing squar e(17) in the
calling statement. So, the effect of the calling statement is to put the value 289
into card field 1.
Parentheses required
User-defined functions are always followed by parentheses
(which are empty if there are no parameters to pass).
Unlike built-in functions (explained in detail in
Chapter 11), user-defined functions can’t be called with
the formt he function of. O

148 Keywords in Function Handlers

CHAPTER 9

Control Structures and Keywords

Function Handler Example

The following function handler determines whether a number passed to it as a
parameter is even or odd, returning the constant t r ue if it’s even or f al se if
it’s odd:

functi on evenNunber nunber Passed
return nunberPassed nod 2 is O
end evenNunber

A calling statement that would invoke the evenNunber function handler
could be one like the following:

i f evenNunber (nunber Vari abl e) then add 1 to evenNunber Count

In the calling statement, nurrber Var i abl e can be the name of any variable or
other source of value (including an actual number). HyperCard evaluates
nunber Var i abl e before it passes the function call along the hierarchy, and its
value is given to the parameter variable nunber Passed when the evenNunber
function handler is found. The part of the calling statement following t hen is
arbitrary—the point of the example is to show how the function handler receives
a value, examines it, and returns another value into the calling statement, based
on the result of its execution.

Repeat Structure

The r epeat structure causes all of the HyperTalk statements between its first
and last lines to execute in a loop until some condition is met or until an exi t
statement is encountered. The general syntax of a r epeat structure looks
like this:

repeat controlForm
statementList
end repeat

ControlForm is one of the forms of the r epeat statement described below, and

statementList is any number of HyperTalk statements. Repeat structures can be
used only within message handlers or function handlers.

Repeat Structure 149

CHAPTER 9

Control Structures and Keywords

Note
If you want to try the examples in this chapter, be sure to
put them within handlers. O

Repeat Statements

The r epeat keyword begins the first line of a r epeat structure. The r epeat
statement has five forms differentiated by the second word of the statement.
Additionally, the r epeat Wi t h form has two variations.

Repeat Forever

150

repeat [forever]

The loop repeats forever, or until an exi t statement is encountered (whichever
comes first):

put 1 into Message box
repeat

add 1 to Message box

if Message box contains 6 then exit repeat
end repeat

The example ends with 6 in the Message box.

For information on exi t repeat, see “Exit Repeat Statement,” later in this
chapter. For information on i f, see “If Structure,” later in this chapter.

Repeat Structure

Repeat For

CHAPTER 9

Control Structures and Keywords

Repeat Until

repeat [for] number [tinmes]

Number is a source that yields a positive integer specifying how many times the
loop is executed:

put 1 into Message box
repeat for 5 tines

add 1 to Message box
end repeat

The example ends with 6 in the Message box.

repeat until condition

Condition is an expression that always evaluates to t r ue or f al se. The loop is
repeated as long as the condition is f al se. The condition is checked prior to
the first and any subsequent executions of the loop:

put 1 into Message box

repeat until Message Box contains 6
add 1 to Message box

end repeat

The example ends with 6 in the Message box.

Repeat Structure 151

CHAPTER 9

Control Structures and Keywords

Repeat While

Repeat With

repeat whil e condition

Condition is an expression that evaluates to t r ue or f al se. The loop is
repeated as long as the condition is t r ue. The condition is checked prior
to the first and any subsequent executions of the loop:

put 1 into Message box

repeat while Message Box < 6
add 1 to Message box

end repeat

The example ends with 6 in the Message box.

152

There are two variations of the r epeat wi t h form: one that increments a
variable and one that decrements a variable.

repeat with variable = start to finish

Variable is a local or global variable name, and start and finish are sources of
integers. The value of start is assigned to variable at the beginning of the loop
and is incremented by 1 with each pass through the loop. Execution ends when

the value of variable equals the value of finish.

repeat with increment =1 to 6
put increnment into the Message box
end repeat

The example ends with 6 in the Message box. (This structure works much like
a FOR. . . NEXT loop in BASIC.)

repeat with variable = start down to finish

Repeat Structure

Exit Repeat

CHAPTER 9

Control Structures and Keywords

The down t o form is the same as the t 0 form above, except that the value of
variable is decremented by 1 with each pass through the loop. Execution ends
when the value of variable equals the value of finish.

repeat with decrenent = 6 down to 1
put decrenent into the Message box
end repeat

The example ends with 1 in the Message box.

exit repeat

The exit repeat statement sends control to the end of the r epeat structure,
ending execution of the loop regardless of the state of the controlling condi-
tions specified in the r epeat statement.

put 1 into the Message box
repeat with increment = 1 to 100
add increment to the Message box
i f Message box > 20 then
beep 5
exit repeat
end if
end repeat

The example ends with 22 in the Message box.
An exi t statement can appear anywhere within the structure.

For information on i f, see “If Structure,” later in this chapter.

Repeat Structure 153

Next Repeat

CHAPTER 9

Control Structures and Keywords

next repeat

When a next repeat statement is encountered, control returns immediately
to the top of the structure. (Usually, flow doesn’t return to the top of the repeat
structure until an end statement is encountered.)

repeat 20
put random(9) into tenpVar
if tenmpVar nod 2 = 0 then next repeat
put tenpVar after field "oddNunbers”
end repeat

The example appends only the odd random numbers to the field, skipping any
even ones.
A next statement can appear anywhere within the repeat structure.

For information on i f, see “If Structure,” later in this chapter. For more
information about the r andomfunction, see Chapter 11, “Functions.”

End Repeat
end repeat
The end repeat statement marks the end of the loop; it’s the last line of a
repeat control structure. When the controlling conditions specified in the
r epeat statement have been satisfied or an exi t statement is encountered,
control goes beyond the end statement:
repeat for 5 tines
beep
end repeat
154 Repeat Structure

CHAPTER 9

Control Structures and Keywords

If Structure

Thei f structure tests for the specified condition and, if the condition is t r ue,
executes the command statement or series of command statements that follow.
Thei f structure has several forms, described in the following sections.

Note

If you want to try the examples in this section, be sure to
put them within handlers. O

Single-Statement If Structure

A single-statement i f structure has the form shown below:
i f condition t hen statement [el se statement]
A single-statement i f structure can also occupy more than one line:

i f condition
t hen statement
[el se statement]

Within the i f structure, condition is an expression that evaluates to t r ue or
f al se, and statement is a single HyperTalk command statement.

In the single-statement i f structure, only one command statement can follow
either t hen or el se (if present), and the command statement must be on the
same line with t hen or el se.

If the condition between i f and t hen ist r ue, HyperCard executes the state-
ment between t hen and el se if el se is present, or between t hen and the end
of the line if el se is not present following the statement, either on the same
line or on the next line.

If Structure 155

CHAPTER 9

Control Structures and Keywords

If the condition between i f and t hen is f al se, HyperCard executes the state-
ment between el se and the end of the line if el se is present, or it ignores the
rest of the line if el se is not present:

if Message box > 10 then beep 5 el se beep 15

In this example, if the Message box holds a value greater than 10, the
Macintosh beeps 5 times; if the value in the Message box is 10 or less,
the Macintosh beeps 15 times.

Note

Single-statement i f structures can be used in the
Message box. O

Multiple-Statement If Structure

A multiple-statement i f structure accommodates more than one executable
statement following t hen and, optionally, more than one statement
following el se:

i f condition t hen
statementList
[el se
statementList]
end if

You can also end a multiple-statement t hen clause with a single-line el se, in
which caseno end i f statement is needed:

i f condition t hen
statementList
el se statement

Condition is an expression that evaluates to t r ue or f al se, and statementList is
any number of HyperTalk statements.

156 If Structure

CHAPTER 9

Control Structures and Keywords

In the multiple-statement i f structure, more than one command statement can
follow either t hen or el se (if present), and the first command statement must
be on the line following t hen or el se. That is, if you want to have more than
one statement in a block following t hen or el se, put a return character after
the respective t hen or el se. Such a multiple-statement block must be ended
explicitly: a multiple-statement t hen block can be ended with either end i f
or el se; a multiple-statement el se block must be ended withend i f.

If the condition between i f and t hen ist r ue, HyperCard executes the state-
ment or statements between t hen and el se if el se is present, or between
thenandend if if el se is not present.

If the condition between i f and t hen is f al se, HyperCard executes the
statements between el se and end i f if el se is present, or it ignores
what’s between t hen and end i f if el se is not present:

if nunber of this card is 10 then

put "We're done!" into nsg
go Hone
el se

put "And the next question is:
go next card
end if

into nsg

Note
Multiple-statement i f structures can be used only within
message handlers or function handlers. O

Nested If Structures

| f structures can be nested; that is, statements following at hen or an el se
can include more i f structures. Each nested multiple-line i f Structure must
haveitsownend if, and an el se always goes with the closest preceding

i f clause.

If Structure 157

CHAPTER 9

Control Structures and Keywords

The next example could be used as a nrouseUp handler within a button.

r epeat
ask "Q@uess a nunmber between 1 and 10:"
if it is enpty then
exit repeat
el se
if it is random(10) then
put "You guessed it!"
el se
put "Sorry, try again."
end if
end if
end repeat

In this example, satisfying thei f it is enpty condition in the firsti f
structure allows the user to exit the loop by selecting the OK button without
entering a number in the dialog box that is created with the ask command.
Executing this example without the firsti f structure results in an endless loop,
which you can exit by simultaneously clicking the Cancel button and pressing
the Command-period keys.

Note
Nested-statement i f structures can be used only within
message handlers or function handlers. O

158

do expression
do expression [as scriptingLanguage]

The do keyword causes HyperCard to get the value of expression; HyperCard

then sends that value as a message. (The do keyword in HyperTalk does not
work like the do in Pascal does.)

If Structure

Global

CHAPTER 9

Control Structures and Keywords

You can use the do expression [as scriptingLanguage] form to execute scripts
in any scripting language supported by an OSA-compliant scripting
component, as well as HyperTalk. Here are some examples:

do field 1 as Appl eScri pt
do "people.dw stuff = 1" as UserTal k

In versions of HyperCard before HyperCard 2.0, if expression was a field with
more than one line, only the first line of the field was used by HyperCard

and any lines that followed were ignored. HyperCard now evaluates any
expression after the do keyword and sends it as a command. For example, if
field 3 contains several lines of HyperTalk code and yousay do fi el d 3, the
entire contents of field 3 are sent to HyperCard. Each line of the container
executes just as if it were contained in a handler.

The do keyword can be used in the Message box.

gl obal wvariableList

VariableList is one or more HyperCard variable names separated by commas.

The gl obal keyword makes a variable name known and its contents available
to any script of any object in HyperCard. The following two lines are
individual examples of gl obal statements:

gl obal nyVar
gl obal pages, sections, chapters

The following example handlers show a global variable being used for two
handlers to access the same value:

on nouseUp
gl obal nyvariable -- |oad the gl obal here
put 3 into nyVariable
writeResult

end nouseup

If Structure 159

Send

CHAPTER 9

Control Structures and Keywords

on witeResult
gl obal nyVariable -- now we can use the gl obal
put nyVariable -- the value remains 3

end writeResult

Changing the value of a global variable in any script changes its value every-
where. The gl obal keyword must be used in each handler in which the global
variable is used.

Global variables are not saved in between sessions of HyperCard or when
HyperCard is suspended by launching another application with the open
command.

160

send expression t 0 program programName [W t h| wi t hout reply]
send expression to program | D programID [wit h| wi t hout reply]
send expression to this program[w th|w thout reply]

send "messageName [parameterList]" [t o object]

Expression is any valid expression or sequence of commands in the scripting
language supported by the target program, programName is the pathname of
the application to send the message to, programlID is the signature of the
application to send the message to, messageName is a string beginning with a
letter and containing no spaces or punctuation marks other than underscore,
parameterList is one or more expressions (separated by commas if more than
one), and object is a HyperCard object descriptor or HyperCard itself. If no
object is specified, the message continues along the message-passing hierarchy.
(See Chapter 4, “Handling Messages,” for information on how the message-
passing hierarchy works.)

The send keyword sends a message directly to a particular object, bypassing
any handlers in the intervening message-passing hierarchy that might
otherwise intercept the message.

If Structure

SCRIPT

CHAPTER 9

Control Structures and Keywords

send "hidelt" to field 3

send "addSuns travel,food, hotel" to stack "expenseAccount"
send nouseUp to button "pushMe"

send "doMenu Print Card" to HyperCard

send "nmake waves" to program "Fi shi ngNet: M/HD: Hyper Card"
send "build {project}" to program"MPW Shel|l" without reply

You can send a message directly to any object in the current stack or to another
stack, but not to a specific object in another stack.

If the object has no message handler for messageName, the message is passed
along the message-passing hierarchy stemming from the object to which the
message was sent. If the object does have a matching handler, the handler
executes, but the card to which it belongs does not necessarily open. Messages
sent by executing the statements of the object’s handler are sent along the
receiving object’s hierarchy.

The send expressiont 0 pr ogr amform sendsa " do scri pt" Apple event
from HyperCard to another application running remotely. You can use it to
send a script to any program that understands the standard ' dosc' Apple
event. By default, HyperCard waits for a reply from the target program before
continuing. However, you can specify with the [wi t hout reply] option if
you don’t want to wait for a reply.

If the target program is running on a different Macintosh you must specify the
Macintosh name; if it is in a different zone you must specify that also. The form
of such a full pathname is zone:Macintosh:program.

The following handler directs a copy of HyperCard 2.2 on a Macintosh compu-
ter named “MyMac,” in the same zone as the sending computer, to go to the
last card of its currently active stack. It then checks the result to make sure that
the command executed:

on changeRenot eCard
send "go |l ast card" to program"M/Mac: HyperCard 2. 2"
if the result is not enpty -- problens?
then answer "Error during send!"

end changeRenot eCard

If Structure 161

CHAPTER 9

Control Structures and Keywords

The next handler sends a message to a copy of HyperCard running on a
Macintosh computer named “Oahu” on a network zone named “Hawaii.”
The message tells the remote copy of HyperCard to execute the handler
“doThisNow,” already defined in the remote stack:

on doRenot eHandl| er
send "doThi sNow' to program " Cahu: Hawai i : Hyper Card 2. 2"
end doRenot eHandl er

NOTES

When sending Apple events to another program, if HyperCard has not
established a link with the target program, the user is presented with a
dialog box, through which the link is established. If a link has already been
established between HyperCard and the target program, the Apple event
is sent without further user interaction.

The following error messages go into the container t he result of the source
program when the send fails:

Condition the result contents

Information returned is not recognized Unknown data type

by HyperCard as text

System software prior to version 7.0 Not supported by this version of
the system

Target program didn’t handle event Not handled by target program

Target program returned error number Got error <errorNum> when

in reply, or AESend returned some sending Apple event

other error

Target program returned error string <errorString>

in reply

Target program timed out Timeout

User canceled “Link to program” dialog Cancel

Chapter 4, “Handling Messages,” has more information about how the send
command interacts with the message-passing hierarchy.

Parameter expressions are evaluated before they are sent, even though the
entire message has quotation marks around it.

162 If Structure

CHAPTER 9

Control Structures and Keywords

The send keyword does not change cards when a message is sent to an object
on a card other than the current card, or cause HyperCard to send open or

cl ose messages to cards, backgrounds, or stacks. For example, if you are on
the second card and send a message to a button on the ninth card in the stack,
the ninth card doesn’t get an openCar d message.

You can use it in the Message box

The do, i f, and send keywords, unlike all other
keywords, work in the Message box. O

If Structure 163

CHAPTER 10

Commands

This chapter describes all the commands in HyperTalk, showing their syntax
and meaning.

HyperTalk commands are built-in message handlers that reside in HyperCard
itself. When you issue a HyperTalk command, it’s passed along the message-
passing hierarchy as a message to HyperCard. In most cases there’s no handler
in any script along the way to intercept the message, so HyperCard receives the
message and acts on it.

Some commands (such as ar r owKey) are system messages as well as com-
mands. This means two things: a system event can generate the message
(pressing an arrow key generates the ar r owKey message), and HyperCard has
a built-in response to the message (ar r owKey takes you to another card).

Redefining Commands

You can write a message handler that redefines a built-in command. Redefining
commands is especially useful for trapping menu commands you want to
modify or that you want to prevent a user from issuing (for example, on
doMenu nenul t em.

Be wary, however: once a command—or any message—has been intercepted
by a handler, it’s sent no further along the hierarchy, so your newly defined
command replaces HyperCard’s built-in one. If, for example, you write a

Redefining Commands 165

CHAPTER 10

Commands

handler for the doMenu command, be sure to pass the message if you don’t
want to prevent every instance of it from reaching HyperCard:

on doMenu nenultem
if menultemis "Delete Card" then
answer "Are you sure?" with "Delete" or "Cancel"
if It is not "Delete" then exit doMenu
end if
pass doMenu
end doMenu

If you inadvertently fail to pass doMenu, you may find yourself apparently
unable to use any menu command, even to fix the doMenu handler. (In that
case, from the Message box, execute the command edi t scri pt for the
object containing the handler. If the Message box is hidden and blind typing
is f al se, go to the last card of the Home stack and turn blind typing on.)

Syntax Description Notation

166

The syntax descriptions use the following typographic conventions. Words or
phrasesint hi s font are HyperTalk language elements or are those that you
type to the computer literally, exactly as shown. Words in italics describe
general elements, not specific names—you must substitute the actual instances.
Brackets ([]) enclose optional elements that may be included if you need
them. (Don’t type the brackets.) In some cases, optional elements change what
the message does; in other cases they are helper words that have no effect
except to make the message more readable.

It doesn’t matter whether you use uppercase or lowercase letters; names that
are formed from two words are shown in lowercase letters with a capital in the
middle (I i keThi s) merely to make them more readable.

The term yields indicates a specific kind of value, such as a number or a text
string, that must result from evaluation of an expression when a restriction
applies (for example, the expression and the destination in an add command
must yield numbers). However, any HyperTalk value can be treated as a

text string.

Syntax Description Notation

CHAPTER 10

Commands

Some of the syntax statements and examples in this chapter use the soft return
(=) character to continue long statements onto the next line. The soft return is
used here because of the line length limitations of the page format used in this
chapter. You should avoid using soft returns in your scripts so that the
statements in your handlers are easier to read.

System 7 Commands

Some commands require system software version 7.0 or later. If you try to run a
script with any of these commands in them while running an earlier version of
system software, HyperCard sets the HyperTalk functiont he r esul t to “Not
supported by this version of the system.”

Command Descriptions

The rest of this chapter describes the commands supported by HyperCard 2.2.

Add
SYNTAX
add number to [chunk of] container
Number is an expression that yields a number. Chunk is an expression that
yields a chunk of a container. Container is an expression that identifies a
container, such as a field, the Message box, the selection, or a variable.
EXAMPLES

add 3 to It
add field "Amount" to field "Total"

System 7 Commands 167

DESCRIPTION

CHAPTER 10

Commands

The add command adds the value of number to the value of [chunk of]
container and leaves the result in [chunk of | container. The value in the
container when you begin must be a number; it is replaced with the new value.

SCRIPT
The following example handler sums numbers in a field, if each line of the field
contains one number, and puts the result into the Message box. The name of
the field is passed to the handler as a parameter.
on sunfield whichField
put O into total
repeat with count = 1 to the nunber of |ines-
in whichField
add line count of whichField to total
end repeat
put total into nsg
end sunField
Answer
SYNTAX

168

answer question [With reply [or reply2 [or reply3]]]
answer file promptText [of type fileType]
answer program promptText [of type processType]

Question and reply are expressions that yield text strings. If no reply is specified,
HyperCard displays one button containing OK.

PromptText is an expression that yields a string of text that will appear in the
dialog box as a prompt, telling the user what action to take. Use a string
consisting of the space character, " ", if you do not want a prompt to appear. If
you are using the answer pr ogr amform of the answer command and you
use the null string, " ", for the prompt text parameter, HyperCard displays the
default prompt “Choose a program to link to:”. (See Figure 10-3.) PromptText
can be up to 254 characters.

Answer

EXAMPLES

DESCRIPTION

CHAPTER 10

Commands

Reply, reply2, and reply3 can be up to 254 characters each.

FileType is one of the following literal file types: st ack, t ext,appl i cati on,
pi ctur e, pai nt, and pai nti ng. You can also specify the same file types with
the following Macintosh four-letter file-type designators: STAK, TEXT, APPL,

Pl CT, and PNTG

ProcessType is a System 7—friendly process currently running on your machine
or any others on the network.

answer "Which is the way the world ends?" with =
"Bang" or "VWhinper”

answer nmyQuestion with nmyAnswer or field 7
answer file "Pick a text file:" of type text
answer file "" of type PICT

answer program "Pick a Zone, Macintosh, and Program"

The answer command either displays a dialog box with a question and up to
three buttons, each representing a different reply, or displays a standard file
dialog box, with a list of either all the files of a certain type or a PPC Browser
that contains a list of all the System 7—friendly processes currently running on
your machine and any others on the network.

When you use the answer guestion form of the answer command, the last
reply you specify correlates to the default button in the resulting dialog box.
If no reply is specified, HyperCard displays one button containing OK. The
dialog box stays on the screen until one of the buttons is clicked. Pressing
Return or Enter has the same effect as clicking the default button.

When you use the answer fi | e form of the answer command, HyperCard
displays a standard file dialog box containing your prompt and a list of files.
You can specify a file type using the fileType parameter. When your user selects
a file from the file list, its name is placed in the local variable | t .

Answer 169

SCRIPT

CHAPTER 10

Commands

The answer pr ogr amcommand displays a dialog box in which the user can
choose from all the System 7—friendly programs, or processes, running on the
user’s Macintosh computer or any other networked Macintosh computers.

When you select a program from the PPC Browser, its program path goes into
the local variable | t . If you click the Cancel button or press the Command-
period keys, the variable I t is empty and t he r esul t contains Cancel.

The following example handler produces the dialog boxes in Figure 10-1 (the
second one depends on which button you click in the first one):

on chooseCol or
answer "Which color do you prefer?" with "Red" or-
"Bl ue" or "Yell ow
if It is "Red" then answer "You picked Red."
else if It is "Blue" then answer "You picked Blue."
elseif It is "Yellow' then answer "You picked Yellow"
end chooseCol or

Figure 10-1 Answer command dialog boxes

170

Which color do you prefer?

[Red | [Buwe | [vellow ||

You picked Blue.

Answer

CHAPTER 10

Commands

The following example handler displays the standard file dialog box shown in
Figure 10-2.

on nmouseUp
answer file "Print what docunment?" of type text
if It is not enpty then
put It into doc
answer file "Use what application?" of type -
application
if It is not enpty then print doc with It
end if
end nouseUp

Figure 10-2 Answer command display of the standard file dialog box

Print what document?
|ﬁ Latest HyperCard ¥ |

0O Changes <+ & Extra Space
Desktop

[_open]

"

Execute the following line of code from either a script or the Message box to
produce the PPC Browser shown in Figure 10-3.

answer program

Answer 171

CHAPTER 10

Commands

Figure 10-3 The PPC Browser produced using the answer pr ogr amcommand

NOTES

172

Choose a program to link to:
Macintoshes Programs
CastleSparkle

Finder
Diane’s Excellent Mac HyperCard 2.2 d12
JP's s

The Serengeti

AppleTalk Zones
RDZ/ 45w
Read Me Firstl
RFel Lab 1
Feliability Eng.
Restaon

=

There is no way for a script to reply to a dialog box by itself, so it’s important
that a script meant to run unattended not use answer.

The text of the button clicked goes into the local variable I t . If no reply is
specified, HyperCard displays one button containing OK.

The question can be up to 14 lines or 254 characters.

If you use a container with more than one line for a reply, the middle line is
displayed in the button. (Only the center portion shows if the line is too long
to fit in the button.) However, all lines go into the local variable | t when

the button is clicked.

Unless you're using container names, put the question and the replies inside
quotation marks if they contain any spaces.

If you do not supply a file type for the answer fi | e form, all file types are
displayed in the dialog box. If you try to execute answer pr ogr amunder
System 6,t he resul t returns “Not supported by this version of the system”.

See also the ask command, later in this chapter.

Answer

CHAPTER 10

Commands

ArrowKey
SYNTAX
arr owkey direction
Direction is an expression that yields the name of one of the arrow keys: | ef t,
right, up, or down.
EXAMPLES
arrowkey | eft
arrowKkey down
DESCRIPTION

The ar r owKey command takes you to another card. The effects of the
ar r owkey command are shown in Table 10-1.

The ar r owKey message, which invokes the ar r owkey command if it reaches
HyperCard, is normally generated by pressing any of the arrow keys on the
keyboard. (Which arrow key you press determines the message’s parameter
value.) You can also send ar r owKey from the Message box or execute it as a
line in a script.

Table 10-1 Effects of the ar r owkey command

Parameter value Effect

| eft Go to previous card in current stack
right Go to next card in current stack

up Go forward through recent cards
down Go back through recent cards

ArrowKey 173

SCRIPT

Ask

CHAPTER 10

Commands

Note

The t ext Ar r ows property alters the effect of pressing the
arrow keys (see “TextArrows” in Chapter 12), but it does
not affect the ar r owKey command. O

See also the ar r owKey message in Table 8-3.

The following example handler works with extended keyboards. It makes
function keys 9, 10, 11, and 12 send the ar r owKey message with parameters
of | eft,right, up, and down, respectively:

on functionKey whichKey -- map function keys to arrow keys
if whichKey is 9 then arrowKkey | eft
else if whichKey is 10 then arrowKey ri ght
el se if whichKey is 11 then arrowKey up
else if whichKey is 12 then arrowKey down
el se pass functionKey
end functionKey

SYNTAX

174

ask question [W th defaultAnswer]
ask password [clear] gquestion [W th defaultAnswer]
ask file promptText [W th fileName]

Question and default Answer are expressions that yield text strings. PromptText is
an expression that yields a text string. FileName is an expression that yields a
default filename to be displayed in the filename field of the dialog box.

Put the question and the default answer inside quotation marks if they contain
any spaces or if they are telephone numbers containing a hyphen (see the
example script), unless you're using container names.

Ask

EXAMPLES

DESCRIPTION

CHAPTER 10

Commands

ask "Who needs this kind of grief?" with "Not ne."
ask field 1 with line 1 of field 2

ask password "Pl ease enter your password:"

ask file "Save this file as:" with "MyTextFile"
ask file ""

The ask command displays a dialog box containing a question with a text box
into which the user can type an answer. The optional default Answer string
specifies an answer that appears initially in the window, highlighted so it can
be easily replaced. The dialog box appears with OK and Cancel buttons. The
question and defaultAnswer can have up to 14 lines between them for all text to
display properly.

The ask passwor d form causes the answer to be encrypted as a number
(which is placed into the local variable | t). The encrypted answer can be
stored in a field to be compared to a later answer to ask passwor d if, for
example, you want the user to be able to protect data he or she enters into the
stack. Password protection built into a stack in this manner is separate from
that set up by the Protect Stack command in the File menu. The text entered in
the password dialog box is hidden from the user. Like the ask form, the ask
passwor d form’s question and default Answer can have up to 14 lines between
them for all text to display properly.

The ask fil e form of the ask command displays a standard dialog box for
saving files. You can use the optional fileName form of the command to place a
default filename in the filename text entry field of the dialog box. The fileName
string should be 23 characters or less in length to fit into the text entry field.
The default filename is replaced by the user when the user starts typing. If you
do not supply a default filename, the filename text entry field is empty when
the dialog box is displayed.

The promptText string should be 7 lines or less to fit into the dialog box. If you

do not want a prompt, use " " .

Ask 175

SCRIPT

CHAPTER 10

Commands

The following example handler produces the dialog box in Figure 10-4:

on phone
ask "Dial what nunber:" with "555-1212"
if It is not enpty then dial It

end phone

Figure 10-4 Ask command dialog box

NOTES

176

Dial what number:
[Bss-122___ |

The text typed into the box (the answer to the question, the password, or the
filename) goes into the local variable | t, either when the OK button is clicked
or when Return or Enter is pressed. If the Cancel button is clicked, the dialog
box goes away, but the answer is not placed into | t . The functiont he resul t
returns “Cancel”.

If you use the ask password cl ear form of the ask passwor d command,
the password is not encrypted when it is typed in the dialog box.

Unless you're using container names, put the question and the default answer
inside quotation marks if they contain any spaces (or if, as in the example, they
are telephone numbers containing a hyphen—to prevent HyperCard from
doing subtraction).

See also the answer command, earlier in this chapter.

Ask

CHAPTER 10

Commands

Beep
SYNTAX
beep [number]
Number is an expression that yields an integer.
EXAMPLES
beep 5
beep Iine 3 of field 1
DESCRIPTION
The beep command causes the Macintosh speaker to play the system beep
sound number times. If no number is given, the speaker sounds the system
beep once.
SCRIPT

The following example handler uses the beep command to alert the user that
an answer dialog box, to which the user must reply, is being displayed:

on openSt ack
beep 2
answer "Do you need instructions?" with "Yes" or "No"
if It is "Yes" then go to stack "Instructions"

end openSt ack

Beep 177

CHAPTER 10

Commands

Choose
SYNTAX
choose toolName t ool
choose tool toolNumber
ToolName is an expression that yields the name of any one of the tools from the
HyperCard Tools palette (shown in Figure 10-5). ToolNumber is an expression
that yields an integer from 1 to 18.
EXAMPLES
choose browse tool
choose tool 11
choose eraser tool
DESCRIPTION

178

The choose command changes the current tool as though you had chosen it
from the Tools palette. Valid tool names and numbers are

browse (1) oval (14)

brush (7) pencil (6)

bucket (13) pol y[gon] (18)

button (2) rect[angle] (11)

curve (15) reg[ular] poly[gon] (17)
eraser (8) round rect[angle] (12)
field (3) sel ect (4)

| asso (5) spray [can] (10)

line (9) text (16)

Choose

CHAPTER 10

Commands

Figure 10-5 Tools palette

SCRIPT

NOTES

The following example shows a typical use of the choose command in
a handler:

on dr awBox
reset paint
choose rectangle tool
set lineSize to 2
drag from 50,50 to 150, 150
choose browse tool
end dr awBox

You must have the user level set to Painting, Authoring, or Scripting to use the
choose command, but the Tools palette need not be visible.

You can get the name of the current tool by using the functiont he tool ina
handler or the Message box.

Setting user levels is described in the HyperCard Reference and in the user Level
global property description in Chapter 12, “Properties.” The t ool function is
described in Chapter 11, “Functions.”

Choose 179

CHAPTER 10

Commands

Click
SYNTAX
click at point [With key [, key2[, key3]]]
Point is an expression yielding a point: two integers separated by a comma,
representing horizontal and vertical pixel offsets (respectively) from the top-left
corner of the card. Key, key2, and key3 are expressions that yield one of the
following key names, separated by commas: shi f t Key, opt i onKey, or
conmmandKey (or cndKey).
EXAMPLES
click at 100, 100
click at the loc of button "Press ne" with optionKey
DESCRIPTION

180

The cl i ck command causes the same actions as though you had clicked
with the pointer at the specified point on the screen: the system messages
nmouseDown and nouseUp are sent to the objects under the pointer (but the
visible pointer is not moved from its current location).

Using a wi t h key form produces the same result as clicking the mouse button
while holding down the specified key (or keys).

If point is within an unlocked field, the insertion point is set: if there is text at or
past point, the insertion point is set at point; if there is text on the same line as
point but point is beyond the end of text, the insertion point is set at the end of
text on that line; if there is no text at point, the insertion point is set at the start
of the line.

You can select a word by double-clicking it (that is, by executing the cl i ck
command twice in succession at the location of the word). You can select
any string of text by using cl i ck at the beginning, then using cl i ck wi t h
shi f t Key at the end of the string.

Click

SCRIPT

NOTES

Close

CHAPTER 10

Commands

The following example handler selects and displays a word from a locked field
when you click the word (mbuseUp is not sent to unlocked fields when you
click them):

on nouseUp
set lockText of nme to fal se
click at the clickLoc -- simul ates double-click
click at the clickLoc
get the selection
put It into the Message box
set lockText of me to true
end nouseUp

The pixel offset values of point are not restricted to the size of the screen but are
misinterpreted if greater than 32767.

See also the dr ag command, later in this chapter.

SYNTAX

cl ose [docPathname [in|with]] appPathname

DocPathname is an expression yielding a text string that is a valid document
name. AppPathname is an expression yielding a text string that is a valid
application name or desk accessory.

You must provide the full pathname of the document if it cannot be found
through the search paths. When running System 7, both parameters,
docPathname and appPathname, can refer to Finder alias files.

Close 181

EXAMPLES

DESCRIPTION

SCRIPT

182

CHAPTER 10

Commands

cl ose "HD: Applications: TeachText 7.1"
cl ose "TestDoc" with "HD: MyApp 1.0"

The cl ose command closes an application, a document opened with another
application, or a desk accessory, by sending one of the Apple event messages
qui t orcl os to the other application. The form cl ose [docPathname
[in|with]] appPathname sends the cl os Apple event, and the form cl ose
appPathname sends a qui t Apple event.

The other application or desk accessory must be on the same Macintosh
computer as HyperCard, and that Macintosh computer must be running
System 7. Also, the other application must recognize the Apple event qui t
to close itself and the Apple event cl 0s to close a document. (See also the
system message appl eEvent described in Chapter 8, “System Messages.”)

The following button handler closes a specific application after the user’s
intention is confirmed:

on mouseUp -- Button handl er
answer "Are you sure you want to close"=
&&" Ot her Hyper Card?" with "No" or "Yes"
if It is "Yes"
then cl ose "MacHD: O her Hyper Car d"

end nouseUp

Close

CHAPTER 10

Commands

NOTE
The following error messages go into the container t he result of the source
program when the cl 0se command fails:
Condition the result contents
Closing an application that’s not running No such application
Target program didn’t handle event Not handled by target program
Target program returned error number Got error <errorNum> when
in reply, or AESend returned some sending Apple event
other error
Target program returned error string <errorString>
in reply
Target program timed out Timeout
Close File
SYNTAX
close file fileName
FileName is an expression that yields a text string that is a valid filename.
EXAMPLES

close file nyData
close file "nyDi sk: nyFol der: nyFil e"

Close File 183

DESCRIPTION

SCRIPT

NOTES

184

CHAPTER 10

Commands

Thecl ose fil e command closes a disk file previously opened with the
open fil e command to import or export ASCII text. The expression fileName
must yield a valid Macintosh filename, including pathname if required.

The following example handler reads any size text file into a global variable
named t enp:

on i nport Text
gl obal tenp
put "M/Filename" into fil enane
open file fil enane
read fromfile filename until end
put It into tenp
close file fil enane

end i nport Text

If the specified file is not open, an error is generated. The error is stored in the
HyperCard functiont he resul t . Use the cl ose fil e command to close
files explicitly after you use them. HyperCard automatically closes all open
fileswhenanexit to Hyper Car d statement is executed, when you press
Command-period, or when you quit HyperCard.

You must provide the full pathname of the file if it’s not at the same directory
level as HyperCard. (See “Identifying a Stack” in Chapter 5 for an explanation
of pathnames.)

See also the open fil e, read, and wi t e commands, later in this chapter,
and the r esul t function in Chapter 11, “Functions.”

Close File

CHAPTER 10

Commands

Close Printing

SYNTAX
close printing

DESCRIPTION

The cl ose pri nting command ends a print job previously begun with the
open printing command or the open report printingcommand.
Nothing is actually printed until the cl ose pri nti ng command is executed.

SCRIPT

The following example handler executes a printing job. It prints a specified
number of cards, beginning on a specified card:

on printRange | ow, hi gh
push card
open printing
go to card | ow
print (high-low + 1 cards
close printing
pop card
end print Range

NOTE

See also the open printing,open report printing,print,andprint
car d commands, later in this chapter.

Close Printing 185

CHAPTER 10

Commands

Close Window

SYNTAX

DESCRIPTION

EXAMPLE

NOTE

186

cl ose wi ndow window

Window is an expression that identifies a stack window or picture window.

The cl ose w ndowcommand closes the specified stack. The cl ose wi ndow
command works on stack windows only if more than one stack is open and the
stack is active (or frontmost). The cl ose wi ndowcommand also works on
picture windows, external windows, and stacks that are hidden. When the
specified window is closed, a ¢l 0se system message is also sent by HyperCard.

cl ose wi ndow " Pl anet s"

You cannot use the cl ose w ndowcommand on HyperCard'’s built-in
palettes; use the hi de command instead.

See also the go command in this chapter and the cl 0ose system message
described in Chapter 8, “System Messages.”

Close Window

CHAPTER 10

Commands

CommandKeyDown

SYNTAX

EXAMPLE

DESCRIPTION

commandKeyDown char

Char is an expression yielding a character (spaces count as characters).

commandKeyDown "H' -- go Hone
commandkKeyDown "V' -- paste
commandKeyDown "5" -- doMyConmand

The commandKey Down command passes a character, char, which represents a
key pressed in combination with the Command key. HyperCard has various
built-in responses to the conmandKey Down command, depending on the
character passed with it.

You can use the conmandKeyDown command to take advantage of the built-in
meanings for Command-key combinations in HyperCard. For example,
commandKeyDown " P" is the same as pressing the Command key and “P”
key together or selecting Print Card from the File menu.

You also can override HyperTalk Command-key combinations. If you name a
message handler the same as a built-in command, your name overrides the
built-in one if yours is anywhere along the message-passing hierarchy between
the object sending the message and HyperCard.

In the case of keys other than those built into HyperCard, nothing happens
when a given Command-key combination is pressed or a conmandKey Down
command is executed unless you have a handler for that Command-key
combination in the script of the current card or in a script somewhere in the
message-passing hierarchy between the current card and HyperCard.

CommandKeyDown 187

CHAPTER 10

Commands

SCRIPT
The following example handler in a stack script in the current message-passing
hierarchy opens the Navigator palette at the coordinates 20,30 when it
intercepts the comrandKey Down system message and the parameter " Y". The
handler works either if the Command-Y key combination is pressed or if you
type the command comrandKeyDown "Y" in the Message box.
on comuandKeyDown whi chKey
i f whichKey = "Y" then
pal ette "navigator","20, 30"
exit conmmrandKeyDown
end if
pass conmandKeyDown
end conmandKeyDown
NOTES
CommandKey Down is also a system message sent to the current card when the
Command key is pressed in combination with another key. See Table 8-3 for
more information.
See also the keyDown and cont r ol Key commands in this chapter, and the
conmmandKey function in Chapter 11, “Functions.”
ControlKey
SYNTAX
cont rol Key keyNumber
KeyNumber is an expression that yields an integer between 1 and 127. The
values 97 through 126 do not correspond to any key.
EXAMPLE
control Key 26
188 ControlKey

DESCRIPTION

NOTES

CHAPTER 10

Commands

The cont r ol Key command passes a numeric value, keyNumber, which
represents a key pressed in combination with the Control key.

Cont r ol Key is also a system message sent to the current card when the Control
key is pressed in combination with another key. The acceptable values for the
keyNumber parameter are shown in Table 10-2.

There are no built-in meanings for Control-key combinations in HyperCard.
Nothing happens when a given Control-key combination is pressed or a

cont r ol Key command is executed unless you have a handler for that Control-
key combination in the script of the current card or in a script somewhere in
the message-passing hierarchy between the current card and HyperCard.

See also the cont r ol Key system message in Table 8-3.

Table 10-2 Cont r ol Key message parameter values

Parameter Parameter
value Keys value Keys
1 a, Home 12 1, Page Down
2 b 13 m, Return
3 ¢, Enter 14 n
4 d, End 15 o
5 e, Help 16 p, all function keys
6 f 17 q
7 g 18 r
8 h, Delete 19 S
9 i, Tab 20 t
10 j 21 u
11 k, Page Up 22 v

continued

ControlKey 189

SCRIPT

190

CHAPTER 10

Commands

Table 10-2 Cont r ol Key message parameter values (continued)

Parameter Parameter
value Keys value Keys
23 w 47 Slash (/)
24 X 48 0
25 y 49 1
26 z 50 2
27 Esc, Clear, left 51 3
bracket ([)
28 Backslash (\), 52 4
Left Arrow
29 Right bracket 53 5
(1),
Right Arrow
30 Up Arrow 54 6
31 Hyphen (-), 55 7
Down Arrow
39 Single 56 8
quotation
mark (")
42 Asterisk (*) 57 9
43 Plus (+) 59 Semicolon (;)
44 Comma (,) 61 Equal (=)
45 Minus (-) 96 Tilde (~)
46 Period (.) 127 Forward delete

The following example handler in a stack script in the current message-passing
hierarchy prints the current card when it intercepts the cont r ol Key system
message and the parameter 16. The handler works either if the Control-P key

ControlKey

Convert

CHAPTER 10

Commands

combination is pressed or if you type the command cont r ol Key 16 in the
Message box.

on control Key whi chKey
i f whichKey = 16 then
doMenu "Print Card"
exit control Key
end if
pass control Key
end control Key

SYNTAX

convert [chunk of] container| literal [[from format] [and format]]
to format [and format]

Container is an expression that identifies a container, and format is an expression
that yields a time or date format. The optional [and format] specification is
used when both a date and time are included. Valid formats and their
meanings are as follows:

abbrevi ated date The date in text form with abbreviated day of week:

abbrev date Tue, Cctober 17, 1989.

abbr date

abbreviated tine Same form as short: 5: 15 PM

abbrev tine

abbr time

datel tens A comma-separated list of numbers representing (in
order) year, month, day, hour, minute, second, and
day of week.

| ong date The date in text form: Tuesday, October 17,
1989.

Convert 191

EXAMPLES

DESCRIPTION

192

CHAPTER 10

Commands
long tine The time in colon-separated form including
seconds: 5: 15: 15 PM
seconds Seconds since midnight, January 1, 1904.
continued
short date The date in slash-separated numeric form:
10/ 17/ 89. The date separators may be different in
countries other than the United States.
short tinme The time in colon-separated form without seconds:

5:15 PM

This line of code puts the content of the first line of the second card field into
the internationally invariant format dat el t ens:

convert line 1 of card field 2 fromdate to dateltens
If line 1 of card field 2 contains the date April 9, 1993, then HyperCard puts this
into card field 2: 1993, 4, 9, 0, 0, 0, 6. Other examples using the convert

command are

convert card field "Date and Tine" fromdate and tine to -
datel tens

convert timeVariable to seconds
convert nyVar from seconds to |ong date

convert line 1 of second cd field to long date and -
short tinme

The convert command gets a date or time and converts it from a particular
format, if you choose to specify one, to a particular format. This command
works with any date format supported by an installed script.

Convert

SCRIPT

CHAPTER 10

Commands

The first form of the convert command gets the date or time from a container
and places the converted date or time in that container. When you use a literal
as input to the convert command, the resulting date or time is stored in the
HyperTalk variable I t .

If you know precisely what format the input is in, you can choose to specify a
format to convert from. If the input can’t be parsed as specified, HyperTalk sets
the result to"Invalid date".

Note that if you try to convert an invalid date, for example, a date that has the
wrong number for the day, like Wednesday, May 6, 1993, when it should be
Thursday, May 6, 1993, HyperTalk setst he result to"I nvalid date".

IMPORTANT

A script that needs to perform calculations on dates and
times should first convert to one of HyperTalk’s invariant
formats for dates and times—seconds and dat el t ens.
This avoids problems that may occur when someone trys
to run your stack on a machine where the format of the
date has been localized (to Swedish format, for instance) or
customized (to display military time, for instance) by
changing resources in the System file. To make sure your
scripts and stacks are localizable, you should also be
careful to save dates and times in either seconds or

dat el t ers format. These formats are the only ones that
the commands convert and sort are guaranteed to
recognize on any system. a

Here’s an example that shows how to get tomorrow’s date in the short format
(this works no matter what format the date is set to by system resources):

on nouseUp

get the date -- the current date in short format
convert it to dateltems -- year, nonth, day, hour

-- mnute, second, day of week
add 1 to item3 of it -- nake it tonorrow

convert it to short date
end nouseUp

Convert 193

CHAPTER 10

Commands

The following example handler counts the seconds elapsed while a command
in the Message box executes:

on nmouseUp

put the long tine into startTinme

convert startTime to seconds

if msg is not enpty then do nsg

put the long tine into endTi ne

convert endTine to seconds

answer "That took" && endTinme - startTine & "seconds."”
end nouseUp

Create Menu

SYNTAX
create nenu menuName
MenuName is an expression that yields the name of a new menu to be added to
the menu bar.
EXAMPLES
create nenu " Hone"
create nenu "Vacation | ocations”
DESCRIPTION

You use the cr eat € command to add a new menu to the HyperCard menu
bar. After the new menu is created, it remains in the menu bar until it is deleted
with the del et e command, or you use the r eset nmenubar command, or you
quit HyperCard. If you want a set of menus to remain in the menu bar while a
certain stack is open, create your menus in that stack’s openSt ack system
message handler. You can delete or disable your menus when you close your
stack or open another stack by using the del et e or di sabl e command in

cl oseSt ack or suspendSt ack system message handlers. See Chapter 8,
“System Messages,” for more information about system messages.

194 Create Menu

NOTES

Create Stack

CHAPTER 10

Commands

You can put menu items into the new menu with the put command, described
later in this chapter. You can also specify a menu message to be sent when a
menu item is chosen.

See also the checkMar k, cormandChar, enabl ed, mar kChar, mrenuMessage,
name, and t ext St yl e properties in Chapter 12, “Properties.”

See also the del et e, di sabl e, enabl e, and put commands in this chapter.

SYNTAX

EXAMPLES

DESCRIPTION

create stack stackName [W th background] [in a new w ndow]

StackName is an expression that yields the name you want to assign to the
new stack. Background is an expression that yields the descriptor of a back-
ground you want to use in the new stack. The background must be one in the
current stack.

create stack "Chosts" with this background
create stack "Mystery" with bkgnd 3

The cr eat e command creates a new stack with the specified name and
optionally with a specified background of the current stack.

If you do not specify a background, the stack is created with a blank back-
ground. If you use the form cr eat e stack stackNamein a new w ndow
the stack is created, appears in another window, and becomes the current stack.
If you do not use the form in a new window, the current stack is closed.

Create Stack 195

NOTES

CHAPTER 10

Commands

The creat e st ack command no longer allows stackName to begin with the
period character.

To create a stack with a background in a stack other than the current stack, you
must go to the stack with the background you want to use before using the
create stack command.

If the cr eat e st ack command generates an error, it is stored in the
HyperCard functiont he resul t.

The new stack is created with the same card size as the current stack. You
can change the card size by resetting the r ect angl e property of the car d
wi ndow or by clicking the Resize button in the Stack Info dialog box, and
then dragging the lower-right corner of the representation of the card to the
size you want.

See also the r esul t function in Chapter 11, “Functions,” and the r ect angl e
property in Chapter 12, “Properties.”

Debug Checkpoint

SYNTAX

EXAMPLE

DESCRIPTION

196

debug checkpoi nt

debug checkpoi nt

The debug checkpoi nt command sets a checkpoint in a HyperTalk handler.
When HyperCard encounters this message in a handler, it enters the debugger:
it pauses execution of the handler and opens the script editor window, putting
a box around the line where the checkpoint is set.

Once you are in the debugger, you can step or trace through the remaining
lines of the script. You can step by pressing Command-S or choosing Step from
the Debugger menu. You can step into by pressing Command-I or choosing

Debug Checkpoint

NOTES

Delete

CHAPTER 10

Commands

Step Into from the Debugger menu. You can trace by choosing Trace from the
Debugger menu. You can trace into by pressing Command-T or choosing Trace
Into from the Debugger menu. With each step, the next line of HyperTalk in the
current handler is selected and executed.

In combination, checkpoints and stepping can be used to examine, diagnose,
and modify the behavior of sophisticated HyperTalk handlers.

See also Chapter 3, “The Scripting Environment,” for more information about
the debugger environment.

SYNTAX

EXAMPLES

del et e chunk of container
del et e menu

del et e menultem of menu
del ete part

Chunk is a chunk expression referring to some text in a specified container, and
container specifies the container. Menu is an expression that yields a menu
descriptor. Menultem is an expression that yields a menu item descriptor. Part is
an expression yielding a button or field descriptor.

delete line 1 of field 1

delete char 1 to 5 of line 4 of field "Charlie" =
of second card

del ete nmenultem "Paths. ..

del ete nmenu "W ndows"

del ete second nenultem of nenu 6

delete button 1

of nmenu " Hone"

Delete 197

DESCRIPTION

SCRIPT

198

CHAPTER 10

Commands

del ete | ast button
delete card field "Tenp Data"
delete field id 1234

The del et e command removes

= text from a container in the current stack

= amenu item

= amenu

= a part (button or field) from the current card

Note that this command lets you delete menus from the standard HyperCard
menu bar, including the Tools, Patterns, Font, and Apple menus; but you can’t
delete menu items within those menus. If you delete those menus, the menu
items in those menus can still be activated with the doMenu command or with
their Command-key equivalents.

The following example handler finds and deletes a name from a list with one
name per line:

on zapaNamne
put "Maller" & return & "Cal houn" & return & "W nkl er"-
into |ist
ask "Del ete which name fromthe list?" with enpty
repeat with count = the nunmber of lines in |ist-
down to 1
if It isinline count of list then =
delete line count of |ist
end repeat
end zapaName

Delete

NOTES

CHAPTER 10

Commands

Using the del et e command to delete a chunk is not the same as using put
enmpty i nt o with the same chunk of text specified. For example, if you delete
a line in a field with a statement like

delete line 4 of field 7

you delete the return character as well as the text; what was previously the fifth
line becomes the fourth. The following statement leaves the return character in
line 4:

put enpty into line 4 of field 7

Even if you delete all of the text in a field, the field remains defined on the card
or background, unlike selecting the field and choosing Cut Field or Clear Field
from the Edit menu.

When you delete text in a field on a card other than the current one, the current
card does not change. If you delete the text in a background field that has the
shar edText property set to t r ue, the text in that background field is deleted
on every card with that background field.

Because deleting parts causes a del et eBut t on or del et eFi el d message to
be sent, you can delete only parts on the current card. In other words, del et e
button 1 of next card doesn’t work; however, you do not get an error
message when you try to do this.

In the case of the HyperCard standard menu items, the doMenu command
works even when the item is deleted with the del et € command. For example,
if the File menu is deleted and the following handler is executed, HyperCard
exits to the Finder:

on nouseDown
del ete menultem "Quit HyperCard" fromnenu "File"
doMenu "Quit Hyper Card"

end nouseDown

Command-key equivalents, however, do not work for menu items that have

been deleted, with one exception: Command-Q still works after the Quit
HyperCard menu item is deleted.

Delete 199

CHAPTER 10

Commands

Chapter 5, “Referring to Objects, Menus, and Windows,” describes how to
designate menus and menu items. Chunk expressions are described in
Chapter 7, “Expressions.” See also the cr eat e nenu, di sabl e, enabl e,
and put commands in this chapter.

Dial
SYNTAX
di al number [W th nmodem [modemCommands]]
Number is an expression that yields a string with numbers in it, and
modemCommands are commands for your modem.
EXAMPLES
dial steve -- if steve is a variable containing a nunber
di al "415-555-1212"
di al "493-996-1010" with nbdem " ATS0=0S7=1DT"
di al "493-973-6000" with nmbdem
DESCRIPTION

200

The di al command, without the wi t h nmbdemoption, generates the touch-
tone sounds for the digits in number through the Macintosh speaker. Holding
the telephone handset up to the speaker works on some telephones; for others
you need a device that feeds the Macintosh audio output to the telephone.

If you use the wi t h mbdemoption, the di al command sets up telephone
calls using the Apple Modem 300/1200, the Apple Personal Modem, or
any Hayes-compatible modem attached to the Macintosh serial port. The
modemCommands parameters are those described in the manual for your
modem. Their default value is " ATSO=0DT" .

If number yields a string with numbers including a hyphen (as in 555-1212),
enclose it within quotation marks to prevent HyperCard from doing
subtraction with the hyphen before passing the number to the di al command
(which ignores characters other than numbers). Similarly, enclose the
modemCommands parameter within quotation marks.

Dial

CHAPTER 10

Commands

NOTES
You can press Command-period to exit the di al command during the
ten-second wait imposed when dialing with a modem.
A one-second delay occurs between opening the modem port and first using it.
Disable
SYNTAX
di sabl e menu
di sabl e menultem of menu
di sabl e button
Menu is an expression that yields a menu descriptor. Menultem is an expression
the yields a menu item descriptor. Button is an expression that yields a button
descriptor.
EXAMPLES
di sabl e background button 5
di sabl e nenu " Hone"
di sabl e nenu 5
di sabl e menultem "Get Back" of nmenu "Direction”
di sabl e the fourth nenultem of sixth nenu
DESCRIPTION

The di sabl e command disables a menu, menu item, or button. When any of
these objects is disabled, it is gray and inactive. The di sabl e command also
sets the enabl ed property to f al se. You should be aware that when you
create a menu item, it is automatically enabled unless you use the di sabl e
command to change it.

If you try to use the di sabl e command on a menu item, menu, or button
that does not exist, HyperCard displays an error dialog box with the text,
"No such nenu" (or menu item or button) unless the | ockEr r or Di al ogs
property is set tot r ue.

Disable 201

CHAPTER 10

Commands

Except for Command-Q, Command-key equivalents do not work on menu
items that have been deleted or disabled.

NOTE
See also the commandChar, enabl ed, mar kChar, and nenuMessage and
button properties in Chapter 12, “Properties,” and the cr eat e nenu,
enabl e, and put commands in this chapter.
Divide
SYNTAX
di vi de [chunk of] container by number
Chunk is an expression that yields a chunk expression. Container is a container
that holds a numeric value, and number is any expression that yields a
numeric value.
EXAMPLES
divide field "total" by 3
di vide fahrenheit by celsius -- if fahrenheit and
-- celsius are variables
divide Iine 3 of field 4 by 10
DESCRIPTION

202

The di vi de command divides the value of [chunk of] container by the value
of number and puts the result into [chunk of] container.

Divide

CHAPTER 10

Commands

SCRIPT
The following example handler figures the percentage represented by a fraction
of two numbers specified as parameters:
on percent varl,var?2

divide varl by var2
put trunc(varl * 100) & "%

end percent

NOTES
The value previously in the container must be a number; it is replaced with the
new value.
Division by 0 puts the result | NF into container. (I NF is the SANE value for
infinity.) Division is carried out to a precision of up to 19 decimal places. The
value for the amount of precision is set with the nunber For mat property.
See also the nunber For mat global property in Chapter 12, “Properties,” and
the discussion of numbers in Chapter 6, “Values.”

DoMenu

SYNTAX
doMenu itemName [,menuName] [W t hout di al og] -~

[wi t h modifierKey [,modifierKey]]

ItemName is an expression that yields the name of a menu command.
MenuName is an expression that yields the name of a menu. ModifierKey is
one or more comma-delimited combinations of opt i onKey, cormandKey,
and shi f t Key.

EXAMPLES

doMenu "open stack...
doMenu " Copy Card"
doMenu "Open Stack..." with shiftKey

DoMenu 203

DESCRIPTION

204

CHAPTER 10

Commands

The doMenu command performs the menu command specified by itemName
as though you had chosen the command directly from the appropriate
HyperCard menu. In conjunction with the doMenu command, you can choose
to suppress a dialog box by using the wi t hout di al og option.

You may also use an optional modifier key to apply to your menu item choice.
For instance, if someone chooses the Open Stack menu item while holding
down the Shift key, the Open Stack dialog box appears with the New Window
checkbox already checked. This HyperTalk command line does the same thing:

doMenu "Open Stack..." with shiftKey

Note

If you write your own doMenu handler to intercept menu
commands, you can examine par an{ 6) to find out if a
modifier key parameter was specified. O

There are several caveats to be aware of when using or intercepting the
doMenu command:

= Both the specified menu item and the menu in which it resides must
be available at the current user level (as described in the HyperCard
Reference Guide).

» If there are periods following the menu item, you must include them in
menultem (you can’t use the ellipsis character in their place). For example,
"Open Stack..." isa HyperCard menu item with three periods.

= Some menu commands change with conditions (for example, Paste Card can
change to Paste Button, depending on the contents of the Clipboard).

= If you write a handler to intercept the doMenu system message that is sent to
the current card when a menu item is selected, be sure to pass the message
after examining the new menu item. (See the example.) Otherwise, you may
find yourself apparently unable to use any menu command, fix the doMenu
handler, or quit HyperCard. (In that case, from the Message box, execute the
command edi t scri pt for the object containing the handler. If the
Message box is hidden and blind typing is f al se, go to the last card of the
Home stack and turn blind typing on.)

DoMenu

SCRIPT

Drag

CHAPTER 10

Commands

The following example handler checks for a doMenu message with the Quit
HyperCard menu item and puts up a dialog box when the Quit HyperCard
menu item is selected:

on doMenu menuChoi ce
i f menuChoice is "Quit HyperCard"
t hen
answer "Are you sure you want to Qit" =
with "OK" or "Cancel"
if it is "Cancel”
t hen
exit doMenu
el se
pass doMenu
end if
el se
pass doMenu
end if
end doMenu

SYNTAX

drag from pointl to point2 [W th key [, key2[, key3]]]

Point1 and point2 are expressions, each of which yields a point: two integers
separated by a comma, representing horizontal and vertical pixel offsets
(respectively) from the top left of the Macintosh screen. Key, key2, and key3
are one of the following key names, separated by commas: shi f t Key,

opt i onKey, or commandKey (or cndKey).

Drag 205

EXAMPLES

DESCRIPTION

SCRIPT

NOTES

206

CHAPTER 10

Commands

drag from 100, 100 to 200, 200
drag fromthe loc of button 1 to the nouseLoc with =
commandKey, shi f t Key

The dr ag command performs the same action as though you had dragged
manually, except that in order to select text in a field using the dr ag command,
you must use Wi t h shi f t Key. In all other cases, using the wi t h key form
produces the same result as dragging while holding down the specified key.

The following example handler draws random-sized ovals filled with random
patterns on a new card:

on nmouseUp

doMenu "New Card" -- so we don't draw on current card

choose oval tool

set filled to true

repeat until the nousedick
set pattern to randon{(30)
drag fromrandom(319), randon{199) to -
randon(319), random(199)

end repeat

choose browse tool

doMenu "Del ete Card" -- get rid of the card we just made
go previous card -- take us back where we started from

end nouseUp

You can use dr ag with any tool selected, but it has no effect with some
Paint tools.

The location of the actual pointer doesn’t change from where it was before the
command was issued.

Drag

CHAPTER 10

Commands

See also the cl i ck command earlier in this chapter, and the dr agSpeed
property in Chapter 12, “Properties.”

Edit Script

SYNTAX
edit [the] script of object
Object is an expression that yields a descriptor of an object: a stack, card,
background, field, or button.

EXAMPLES
edit script of button 1
edit script of this stack

DESCRIPTION
Theedit script command opens the script of the specified object with the
HyperCard script editor as though you had clicked the Script button in the
object’s Info dialog box.

SCRIPT
The following example handler enables you to edit the script of any button or
field merely by positioning the pointer over it and pressing the Option key:
on nmouseWthin

if the optionKey is down then edit script of the target

end nouseWthin

NOTE

Refer to Chapter 3, “The Scripting Environment,” for an explanation of how the
script editor works.

Edit Script 207

CHAPTER 10

Commands

Enable

SYNTAX
enabl e button
enabl e menu
enabl e menultem of menu
Button is an expression that yields a card or background button descriptor.
Menu is an expression that yields a menu descriptor. Menultem is an expression
that yields a menu item descriptor.

EXAMPLES
enabl e menu " Home"
enabl e menu 5
enabl e menultem "Get Back" of menu "Direction”
enabl e the fourth nenultem of sixth nmenu
enabl e background button id 3
enabl e btn "PanAnt

DESCRIPTION
The enabl e command makes the specified menu, menu item, or button active
by setting its enabl ed property to t r ue and making its text and outline
appear solid rather than dimmed.
If you enable a menu, menu item, or button that does not exist, HyperCard
displays an error dialog box with the text" No such menu” (or menu item
or button) unless the | ockEr r or Di al ogs property is settot r ue.

NOTES

208

See also the commandChar, enabl ed, mar kChar, and nenuMessage and
button properties in Chapter 12, “Properties,” and the cr eat e nenu,
di sabl e, and put commands in this chapter.

Command keys do not work on menu items that have been deleted or disabled.

Enable

CHAPTER 10

Commands

EnterInField

SYNTAX
enterinField
DESCRIPTION
The ent er | nFi el d command closes a field that is open for text editing.
NOTES
The ent er | nFi el d system message, which invokes the ent er | nFi el d
command if it reaches HyperCard, is normally sent by pressing the Enter key
on the keyboard, but you can also execute it as a line in a script.
Closing a field with ent er | nFi el d sends the cl oseFi el d system message;
if no text was changed, the exi t Fi el d system message is sent.
See also the ent er Key and exi t Fi el d system messages in Chapter 8,
“System Messages.”
EnterKey
SYNTAX
ent er Key
DESCRIPTION

The ent er Key command sends a statement typed into the Message box to the
current card or, if a field is open for text editing, closes the field.

EnterInField 209

CHAPTER 10

Commands

NOTES
The ent er Key system message, which invokes the ent er Key command if it
reaches HyperCard, is normally sent by pressing the Enter key on the keyboard,
but you can also execute it as a line in a script.
Closing a field with ent er Key sends the cl oseFi el d system message; if no
text was changed, the exi t Fi el d system message is sent.
See also the ent er Key and exi t Fi el d system messages in Chapter 8,
“System Messages.”

Export Paint

SYNTAX
export paint to file fileName
FileName is an expression that yields any valid Macintosh filename.

EXAMPLE
export paint to file "TreeFrogs"

DESCRIPTION
The export pai nt command creates a Macintosh paint file containing the
image of the current card and saves it with the specified filename. If you are
working in the background, only the graphics, buttons, and fields visible in the
background are exported. If you are not working in the background, expor t
pai nt exports both the card and background graphics plus all the visible card
and background buttons and fields.

NOTES
If an error is generated while using the export pai nt command, the error is
stored in the HyperCard functiont he resul t.

210 Export Paint

CHAPTER 10

Commands

The export pai nt command only works when a Paint tool is chosen. If
you use export pai nt while using the br owse, button,orfi el d tool, an
error message is putintot he result.

See also the i nport pai nt command in this chapter and the r esul t
function in Chapter 11.

Find

SYNTAX
find [international] text [in field [of marked cards]
find chars [international] text [in field [of marked cards]
find string [international] tfext [in field [of marked cards]
find whole [international] text [in field [of marked cards]
find word [international] text [in field [of marked cards]
Text is an expression that yields a series of one or more text strings separated by
spaces, and field is an expression that yields a card field or background field
descriptor.

EXAMPLES
find "nmoney" in field "Charity"
find chars "WId" in field 1
find word nmsg in second field
find word international "able" in field 5

DESCRIPTION

The f i nd command searches through all the card and background fields
(visible or not) in the stack for the text strings yielded by text. The search begins
on the current card and continues through the last card, the first card, and on to
the card previous to the current card. The of marked car ds option searches
only marked cards.

Find 211

SCRIPT

212

CHAPTER 10

Commands

You can use the i nt er nat i onal option with the f i nd command to enable
searching that recognizes international characters like s and o as unique from a
and o. This is important in languages such as Danish, where such characters
are distinguished.

Note

If you write a handler to override the f i nd command,
you can examine par an(1) to determine whether the
i nternational option was specified. O

Choosing Find from the Go menu (or pressing Command-F) puts the f i nd
command in the Message box with the text insertion point after it between
double quotation marks.

The following example handler queries the user for search criteria, then
executes the f i nd command:

on doMenu var
gl obal findString
if var is "Find..." then
ask "Find what string:" with findString
if It is not enpty then
put It into findString
answer "Match" && findString & "how " =
with "Chars" or "Wrd" or "AIl"
if It is "Chars" then find chars findString
else if It is "Wrd" then find word findString
el se find findString
end if
el se pass doMenu
end doMenu

Find

NOTES

CHAPTER 10

Commands

The f i nd command executes faster if you use as many three-character
combinations as possible in the search string. That is, three characters are
faster than one, six are faster than three, nine are faster than six, and so on.

The f i nd form finds the match only at the beginnings of words. The
find chars form finds the match anywhere within words. The fi nd wor d
form matches only complete words.

The fi nd whol e form (also invoked by pressing Command-Shift-F) lets you
search for a specific word or phrase, including spaces. For HyperCard to find a
match, all the characters must be in the same field, and they must be in the
same order as they appear in the string derived from text.

When you use f i nd without whol e, HyperCard finds a card that contains
every word in the string derived from text, but the words can appear in
different order or in different fields. That is, with f i nd whol e, interword
spaces are part of the search string; without whol e the spaces delimit separate
search strings. With every form of f i nd, you can limit the search to a specific
background field.

The following example finds a card with a field that has the phrase Apple
Computer in it; it won't find Apple Computers or This apple is a computer. (The
fi nd command without whol e would find a match in all three cases.)

find whole "Apple Conputer"”

Fi nd whol e won't find partial-word matches, and it pays no attention to case
or diacritical marks: apple Compiiter and aPPle cOmputer are seen as the same.
(If thei nt er nati onal option is specified, however, diacritical marks are
recognized.)

Thefind string form lets you search for a contiguous string of characters,
including spaces, regardless of word boundaries. (Fi nd whol e searches for
characters at the beginnings of words.) For HyperCard to find a match, all the
characters must be in the same field, and they must be in the same order as in
the string derived from text. For strings without spaces, fi nd stri ng works
the sameasfind chars.

Find 213

214

CHAPTER 10

Commands

In the following example, HyperCard finds the string in Apple computers but
not in computers, not apples. (The f i nd command without st ri ng would not
find a match in either case.)

find string "ple Conputer"”

If the match is on a different card, it becomes the current card; if a match isn’t
found, the current card doesn’t change. If you enter the f i nd command from
the Message box and a match isn’t found, HyperCard sounds a beep. If it finds
a match, HyperCard puts a box around the word containing the found string if
the field containing the string is visible. If a match is found in a hidden field,
the field’s card becomes the current card, but the field remains hidden.

As the fi nd command evaluates the expression passed to it, it places the
resulting values internally between quotation marks as a single parameter
string. The following examples show text expressions on the left and the
resulting parameter string on the right:

find "ny" &% "word" find "ny word"
find "nmy" & "word" find "myword"
find a&b &c find "xyz" -- if a="x",
-- b="y", ¢c="2z"
find a & b && ¢ find "x y z"

If more than one search string (separated from each other by spaces) is
included in the parameter string, all of them must be on a single card or
its background for a successful search. However, they can be in any order
on the card, and only the first is shown with a box around it.

The text in shared background fields and in backgrounds, cards, and fields
with the dont Sear ch property set to t r ue is ignored by the f i nd command.

Press Command-F to display the parameter string from the most recently
executed f i nd command in the Message box.

An unsuccessful search sets HyperTalk’s function t he result tonot found.
After a successful search, t he result is empty. (See the r esul t function in
Chapter 11, “Functions.”)

For more information about retrieving text, see the f oundChunk, f oundFi el d,
f oundLi ne, and f oundText functions in Chapter 11, “Functions.”

Find

FunctionKey

CHAPTER 10

Commands

SYNTAX

EXAMPLES

DESCRIPTION

SCRIPT

NOTES

functi onKey keyNumber

KeyNumber is an expression that yields an integer between 1 and 15.

functionKey 1
functionKey 15

The f unct i onKey command has built-in Undo, Cut, Copy, and Paste
functions for keyNumber values 1 through 4, respectively. Any other value
of keyNumber has no built-in effect.

The following example handler uses the f unct i onKey command to
implement the message undo as a command:

on undo
functionKey 1 -- preprogramed as undo in HyperCard
end undo

The f unct i onKey message, which invokes the f unct i onKey command if it
reaches HyperCard, is normally generated by pressing one of the 15 function
keys on the Apple Extended Keyboard. But you can also send it from the
Message box or execute it as a line in a script.

You can program function keys 5 through 15, or reprogram keys 1 through 4,
by writing an on functi onKey handler in the script of any object in the
hierarchy between the current card and HyperCard. The following

FunctionKey 215

CHAPTER 10

Commands

funct i onKey handler opens the print report dialog box when function
key 9 is pressed.

on functionKey whi chKey
i f whichKey = 9 then
doMenu "Print Report..."
exit functionKey
end if
pass functionKey
end functi onKey

7

See also the f unct i onKey system message in Chapter 8, “System Messages.”

Get
SYNTAX
get expression
Expression yields any value.
EXAMPLES
get the long name of field 1
get the location of button "newButton"
get 2+3 -- puts 5 into It
get the date
DESCRIPTION

The get command puts the value of any expression into the local variable | t .
That is, get expression is the same as put expressioninto |t.

216 Get

SCRIPT

CHAPTER 10

Commands

The following example handler saves the current user level, sets the user level
to 5, then restores the saved level:

on

doMyt hi ng
get userlLevel -- get the current userlLevel
put It into savedLevel -- save userlLevel before
-- changing it
set userlLevel to 5 -- set userlLevel for ny
-- button or script
-- (put ny script here)
-- restore userlLevel when |eaving
set userlLevel to savedLevel

end doMyt hi ng

SYNTAX

go
go

go

go
go
go
go

[to] [stack] stackName [in a new wi ndow] [w thout dial og]
[to] background [of [stack] stackName [in a new wi ndow]] -
[wi t hout di al og]

[to] card [of background] [of [stack] stackName-

[in a new window]] [wi thout dial og]

back

forth

[to] ordinal

[to] position

StackName is an expression that yields a valid stack name. Card is an expression
that yields a valid card descriptor. Background is an expression that yields a
valid background descriptor. Ordinal is an expression that yields an ordinal
constant. Position is an expression that yields a special object descriptor.

217

EXAMPLES

DESCRIPTION

218

CHAPTER 10

Commands

go card 23

go to stack "Artldeas"

go bkgnd field 1 -- if bkgnd field 1 contains a stack nane
go "hone
go md card of stack "clip art"

go next

go to first card of second background of "home
go card 2 of stack "VacationSpots" in a new w ndow

go stack "VacationSpots" in a new w ndow w t hout dial og
go card 4 of stack "VacationSpots" wi thout dialog

go "hd: bi gFol der: i nner Fol der: nyStack"” -- full pathnanme

The go command takes you to the specified destination. If you name a stack
without specifying a card, you go to the first card in the specified stack. If you
don’t name a stack, you go to the specified card in the current stack. If you go
to a background, you go to the next card with that background (not the first
card). If the current card has the specified background, you won’t move. Go
forthand go back move you forward and backward among the recent
cards. You can specify a visual effect to be used on opening the card by issuing
the vi sual effect command before you use the go command.

If the destination is in a stack other than the current one and you use thei n a
new wi ndowform of the go command, the destination stack is opened in
addition to any existing stacks. If you do not specify thei n a new w ndow
form, the current stack is closed before the specified stack is opened. If only one
stack is open and you do not specify thei n a new wi ndowform of the go
command, the current stack closes and the specified stack appears without a
close box.

If you use the wi t hout di al og form of the go command and the destination
can’t be found, you do not get a standard dialog box for opening files. Instead,
the result issetto”No such stack"” or"No such card".If the destina-
tion is a marked card within a stack that has no marked cards, you won’t move.

Go

CHAPTER 10

Commands

SCRIPT
The following example handler queries the user for a destination, then executes
a go command with a visual effect:
on nouseUp
ask "Were to?" with "This card"
if It is enpty then put "this card" into It
put It into goWere
visual effect fade to black
go to goWere
end nouseUp
Help
SYNTAX
hel p
DESCRIPTION
The hel p command takes you to the first card of the stack named
HyperCard Help.
NOTE

See also the hel p system message in Chapter 8.

Help 219

Hide

CHAPTER 10

Commands

SYNTAX

220

hi de background picture
hi de card picture

hi de groups

hi de menuBar

hi de object

hi de picture of background
hi de picture of card
hide titl ebar

hi de wi ndow stackName

hi de wi ndow windowName

Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

message [box] ornmessage [w ndow] orw ndow "message"
pattern wi ndoworw ndow "patterns" (thePatterns palette)
t ool w ndoworw ndow "t ool s" (the Tools palette)

wi ndow "navi gator" (the Navigator palette)

message wat cher orw ndow "nessage wat cher"

vari abl e wat cher orwi ndow "vari abl e wat cher™

card wi ndow

Card yields the descriptor of a card in the current stack. Background yields the
descriptor of a background in the current stack. WindowName is the name of a
window created with the pi ct ur e command. StackNarme is the name of an
open stack.

Hide

EXAMPLES

DESCRIPTION

SCRIPT

NOTES

CHAPTER 10

Commands

hi de nessage

hi de bkgnd button "goHone"
hide field id 1

hi de wi ndow " Pl anet s"

hi de card w ndow

The hi de command removes the specified object from view. Its effect is the same
as setting the vi si bl e property of the specified object to f al se or clicking a
window’s close box (except for external windows and stack windows).

The hi de pi ct ur e form of the hi de command removes from view the
graphic bitmap on the card or background, and the show pi ct ur e form of
the showcommand displays it.

The hi de gr oups form of the hi de command removes the gray 2-pixel
underline made visible below group style text by the show gr oups form of
the showcommand. The hi de gr oups command affects all group style text in
all fields globally.

The following example handler hides a field or button when the user puts the
pointer over the button or field:

on mouseWt hin
hi de t he target
end nmouseWt hin

Message can be abbreviated nsg. Backgr ound can be abbreviated bkgnd.
But t on can be abbreviated bt n. Car d can be abbreviated cd.

Hi de menuBar is also sent as a system message when the menu bar is hidden.

Hide 221

222

CHAPTER 10

Commands

If the screen is locked, hi de menuBar has no effect. See the | ock and unl ock
commands later in this chapter, and the | ockScr een property in Chapter 12,
“Properties.”

The hi de command does not affect the | ocat i on property of an object or
window. You can’t use t he with the object name. For example, the following
statement results in the error message " Can' t under stand argunents
of command hi de":

hi de t he wi ndow"navi gat or"

Hidden fields aren’t in the tab order. (They are skipped when you move the
text insertion cursor from one visible field to the next by pressing the Tab key:.)
The f i nd command does search through them, however, and you can put
values into them and put their values elsewhere.

Hidden card and background pictures are not displayed when a Browse,
Button, or Field tool is chosen, but if you attempt to use a Paint tool manually, a
dialog box appears asking if you want to make the picture visible; clicking OK
displays the picture. (You can draw on hidden pictures from a script.) Whether
or not you are working in the background determines whether your actions
pertain to the card or background picture.

If there is another card window behind the current stack’s card window and
you hide the current stack’s card window, the card window behind it becomes
the current card window.

If you use either the hi de card wi ndowor hi de wi ndow stackName form
of the hi de command to hide the current card or specified stack, the cards in
that stack won't be visible again until you set the card window or stack
window’s Vi si bl e property tot r ue, use the show card w ndowor show
W ndow stackName command, or close the stack and reopen it.

You can move hidden windows without changing their visible state with the
| ocat i on property, which is described in Chapter 12, “Properties.”

See also the pi ct ur e and showcommands, later in this chapter, and the
vi si bl e property in Chapter 12, “Properties.”

Hide

Import Paint

CHAPTER 10

Commands

SYNTAX

DESCRIPTION

NOTES

inport paint fromfile fileName

FileName is an expression that yields a valid Macintosh filename.

Thei nmport pai nt command reads in the specified paint file and makes it the
current selection. Thei nport pai nt command allows you to put digitized
images and other pictures created with Macintosh paint programs onto
backgrounds or cards.

You can use the export pai nt andi nport pai nt commands together to
enhance graphics created with HyperCard. For example, you could export a
card image to a file and open it in your favorite paint application. You could
then paste in your own pictures and make changes to the file containing the
HyperCard card art with your paint program. Once you complete the art work,
import the finished paint file to the original card or new card or background.

If an error is generated while using the i rport pai nt command, the error is
stored in the HyperCard functiont he resul t.

Thei mport pai nt command only works when a Paint tool is chosen. If you
use i nport pai nt while using the Browse, Button, or Field tools, an error
message is putintot he resul t.

Imported pictures are clipped to the size of the current card. The maximum
area of an imported paint file that can be displayed is 576 pixels by 720 pixels.

See also the export pai nt command in this chapter and the r esul t
function in Chapter 11, “Functions.”

Import Paint 223

CHAPTER 10

Commands
KeyDown
SYNTAX
keyDown char
Char is an expression yielding a character (spaces count as characters).
EXAMPLE
keyDown "h"
DESCRIPTION
The key Down command passes a character, char, which represents any charac-
ter on the keyboard. The key Down command causes HyperCard to enter the
character passed with the command at the insertion point in a field, if one is
open for text editing, or, otherwise, in the Message box.
NOTES
keyDown is also a system message sent to the current card when the user
presses a character key. When the key Down message reaches HyperCard, it
invokes the key Down command.
See also the commandKeyDown and cont r ol Key commands in this chapter.
224 KeyDown

CHAPTER 10

Commands

Lock
SYNTAX
| ock screen|error dial ogs| mnessages|recent
EXAMPLES
I ock screen
| ock error dial ogs
| ock messages
I ock recent
DESCRIPTION
The | ock command can be used for four different unrelated purposes. Using
the | ock command, you can
= prevent HyperCard from updating the screen by setting the | ockScr een
global property tot r ue
= prevent HyperCard from displaying error dialogs in response to an error in
an executing script by setting the | ockEr r or Di al 0ogs property tot r ue
= prevent HyperCard from sending automatic open, cl ose, suspend, and
Ir esunme system messages by setting the | ockMessages property tot r ue
= prevent HyperCard from recording miniature representations of each card to
the Recent card by setting the | ockRecent global property totr ue
NOTE

See also the unl ock command in this chapter and the | ockEr r or Di al ogs,
| ockRecent , | ockMessages, and | ockScr een properties in Chapter 12,
“Properties.”

Lock 225

CHAPTER 10

Commands

Mark

SYNTAX
mar k card
mar k cards where condition
mark all cards
mark cards by finding [international] text [in field]
mark cards by finding chars [international] text [in field]
mark cards by finding string [international] text [in field]
mark cards by finding whole [international] text [in field]
mark cards by finding word [international] text [in field]
Card is an expression that yields a card descriptor. Condition is an expression
that evaluates to t r ue or f al se. Text is any text. Field is an expression that
yields a field descriptor.

EXAMPLES
mark [the] next card
mar k cards where "We be shaking" is in field 2
mark all cards
mark cards by finding whole chicken in field 1
mar k cards where the short nanme of this bkgnd is "Cients"
mar k cards where the nunber of buttons > 0

DESCRIPTION

226

The mar k command sets the mar ked property for the specified card or cards to
t r ue. Cards can also be marked with the Card Marked option in the Card Info
dialog box. By default, cards are unmarked.

The by fi ndi ng form of the mar k command uses char s, wor d, whol e, and
st ri ng to define the search criteria the same way the f i nd command does.
See the description of the f i nd command for information about how to use

these forms.

Mark

NOTES

CHAPTER 10

Commands

You can use the i nt er nat i onal option with the f i nd command to enable
searching that recongnizes international characters like e and o as unique from
a and o. This is important in languages such as Danish, where such characters
are distinguished.

The mar k command can be used with the unmar k command in searches where
you want to find and mark cards containing particular information while
excluding other unnecessary information.

For example, say you want to mark and print all cards with information about
“San Francisco” but not “earthquake.” You might have a script that uses the
following statements:

unmark all cards
mar k cards where "San Francisco" is in field 1
unmark cards where "earthquake" is in field 1

You could then show, print, or display the number of cards containing that
combination of search criteria.

show mar ked cards
print marked cards
put the nunber of narked cards into word 3 of field 2

See also the mar ked property in Chapter 12, “Properties,” and the unmar k
command, later in this chapter.

You can’t mark cards in a read-only stack, even if the user Modi f y property is
settot r ue. See the user Modi fy property in Chapter 12, “Properties.”

Mark 227

CHAPTER 10

Commands

Multiply

SYNTAX
mul tiply [chunk of] container by number

Chunk is an expression that yields a chunk expression. Container is a con-
tainer holding a numeric value, and number is an expression that yields a
numeric value.

EXAMPLES
mul tiply Subtotal by Tax
multiply field 1 by field 3
multiply line 3 of card field 2 by 25
multiply It by 2 -- puts result into It,
-- replacing the old val ue

DESCRIPTION

The mul ti pl y command multiplies the value in [chunk of | container by the
value of number and puts the result in [chunk of | container.

SCRIPT

The following example handler adds 6 percent to the value of items in
a list:

on taxMe
put "12.45, 15. 00, 150. 00, 76. 95, 10. 00, 14. 95" into taxabl es
repeat with count = 1 to the nunber of itenms in taxables
multiply itemcount of taxables by 1.06
end repeat -- the new values are stored in taxables
end taxMe

228 Multiply

NOTES

Open

CHAPTER 10

Commands

The value previously in the container must be a number; it is replaced with the
new value.

The result is calculated to a precision of up to 19 decimal places and, if put into
a field or the Message box, is displayed according to the nurber For mat global
property.

See also the nuber For mat global property in Chapter 12, “Properties,” and
the discussion of numbers in Chapter 6, “Values.”

SYNTAX

EXAMPLES

DESCRIPTION

open [fileName W t h] application

Application is the name of any application, and fileName is the name of any
document on your Macintosh computer. Either one can be an expression that
yields such a name.

open " Apps: Bi gApp"

open "Letter" with "Apps: MacWite"
open Field 3

open FavoriteApp

The open command launches the named application. A specific document may
be opened with its own creator or a compatible application by using the open
filename Wi t h application form of the open command.

Open 229

SCRIPT

NOTES

230

CHAPTER 10

Commands

The following example handler queries the user for a document and
application before executing the open command:

on nouseUp
ask "Open what docunent?" with enpty
if It is not enpty then
put It into doc
ask "Use what application?" with enpty
if It is not enpty then open doc with It
end if
end nouseUp

The open command can also bring HyperCard itself to the front—when it is
running under system software version 7.0 or later. When you need to make
HyperCard the frontmost process, use command lines like these in your
own script:

get the long name of HyperCard -- get pathname of HyperCard
open it

This is useful if, for instance, you want to transfer data from another applica-
tion to HyperCard via the Clipboard. Neither MultiFinder nor the System 7
Process Manager allows access to the Clipboard when an application is in

the background. So, if you want to automate a copy and paste between some
other application and HyperCard, you must also automate switching between
applications.

If the document or application you specify isn’t at the top level of the file
hierarchy (the “disk” level), then the path to it must be specified on the
appropriate Search Path card of the Home stack. Alternatively, you can specify
the full pathname with the open command:

open "MyHar dDi sk: Apps: Appl es”

Open

CHAPTER 10

Commands

Note that handlers that override the open command may use the function
t he par ans to determine the parameters of the original command.

If HyperCard can’t find the requested document or application, it displays
the dialog box for locating files to the user. Error messages go into the container
the result of the source program when the open command fails.

When running single Finder in System 6 and you quit the application, you go
to the card you were on in HyperCard when you executed the open command.
However, any global variables you had previously declared are now gone, and
any portions of handlers that remained unfinished when you executed the
open command do not finish.

Open File
SYNTAX
open file fileName
FileName is the name of any file accessible to your Macintosh computer, or an
expression that yields such a name.
EXAMPLES
open file "textOnly"
open file field 1
DESCRIPTION

The open fil e command opens the named file for reading or writing.
Usually, the file is an ASCII text file opened in preparation for importing or
exporting text. If the specified file doesn’t exist, HyperCard creates it.

Open File 231

CHAPTER 10

Commands

SCRIPT
The following example handler opens a given file, reads a line of data from it,
then closes the file:
on openCard
open file "nyUpdate"
read fromfile "myUpdate" until return
put It into card field 1
close file "nyUpdate"
end openCard
NOTES
If the specified file is already open, an error is generated. The error is stored in
the HyperCard functiont he resul t.The result is empty if the command
is successful. Use the cl ose fi | e command to close files explicitly after you
use them. HyperCard automatically closes all open files whenanexit to
Hyper Car d statement is executed, when you press Command-period, or when
you quit HyperCard.
You must provide the full pathname of the file if it’s not at the same directory
level as HyperCard. (See “Identifying a Stack” in Chapter 5, “Referring to
Objects, Menus, and Windows,” for an explanation of pathnames.)
See also theread, wite,and cl ose fil e commands in this chapter and the
resul t function in Chapter 11, “Functions.”
Open Printing
SYNTAX
open printing [wth dial og]
232 Open Printing

DESCRIPTION

SCRIPT

NOTES

CHAPTER 10

Commands

The open pri nti ng command starts a print job to be ended later by a
cl ose printing command.

The settings specified in the Print Stack dialog box are used unless wi t h
di al og is specified, in which case the dialog box is displayed and new settings
can be chosen.

The following example handler prints a selection of cards:

on printSel ection
put "1, 3,8,15,21" into nyCards
open printing with dial og
repeat with count = 1 to the nunber of itens in mnmyCards
go card item count of nyCards
print this card
end repeat
close printing — print the cards
end printSel ection

Printing cards with open pri nti ng is similar to printing with the Print Stack
command in the File menu, except that Print Stack prints all cards in the stack,
while open pri nti ng prints only the ones you specify with the pri nt card
command, described later in this chapter.

You must use some form of the pri nt command and then the cl ose

pri nti ng command to print and then close a print job begun with open
printing.Don’t use the pri nt fileName wi th appli cati on command
while a print job is active.

See also the cl ose printing,open report printing,print,and
print card commands in this chapter.

Open Printing 233

CHAPTER 10

Commands

Open Report Printing

SYNTAX

EXAMPLES

DESCRIPTION

SCRIPT

234

open report printing [with tenplate templateName]
open report printing [w th dial og]

TemplateName is an expression that yields the name of a previously defined
print template.

open report printing
open report printing with tenplate "fieldsOnly"
open report printing with dial og

The open report printingcommand prepares a report printing job. The
print report job is sent to the printer and closed with a cl ose printi ng
command.

The following script sets the report template and prints the marked cards in the
current stack:

on PrintlLabels
open report printing with tenplate mailing | abels
-- choose the "mailing | abel s" tenpl ate
print rmarked cards -- specify which cards to print
close printing -- generate the report & print

end PrintLabels

Open Report Printing

NOTES

Palette

CHAPTER 10

Commands

Settings previously specified in the Print Report dialog box are used unless
thewi t h di al og form is used, in which case the Print Report dialog box is
displayed and new settings can be chosen.

If you do not specify a print report template with thewi t h tenpl ate
templateName form or do not use the wi t h di al og form, the settings from the
last print report template accessed in the Print Report dialog box are used for
the current print job. If no print report template has been used previously

for printing and you neither specify a print report template nor use thewi t h
di al og form, nothing is printed.

Printing cards with open report printing is similar to printing with the
Print Report command in the File menu, except that you can specify the report
template to use in the script without using the Print Report dialog box.

You must use some form of the pri nt command and the cl ose printing
command to send the job to the printer and then close a print job begun with
open report printing.If you start another print job without closing the
previous one, HyperCard notifies you that it will close the previous print job
before starting the new one. Don’t use the pri nt fileName W t h application
command while a print job is active.

When you choose Cancel after opening the Print Report dialog box with open
report printing,the functionthe result issetto Cancel.

See also the cl ose printing,open printing,print,andprint card
commands in this chapter.

SYNTAX

pal ette paletteName[, point]

PaletteName is an expression that yields the name of the palette you wish to
invoke. Point is an expression that yields two comma-separated integers that
represent the horizontal and vertical coordinates at which the palette should
appear. Point is the offset from the upper-left corner of the current card window
to the upper-left corner of the palette minus the title bar. Point needs to be in
quotation marks or passed in a container.

Palette 235

EXAMPLES

DESCRIPTION

NOTES

236

CHAPTER 10

Commands

pal ette "Navigator", "50, 100"
pal ette "CGeneral Pal ette", "150, 80"

The pal et t e command displays the specified custom XCMD palette or the
HyperCard palette called Navigator. If you do not specify a point parameter,
the palette appears at the default location of 10,20 inside the current card
coordinate system if it’s the first time it’s been displayed. After the first time,
it appears at its last location if you don’t specify a point parameter. Point is
reset to the default location at the beginning of each HyperCard session.

The pal et t e command and associated palette properties have no effect on the
Tools palette or Patterns palette.

If you specify a palette that is already visible, the pal et t € command moves
the palette to the location specified by the point parameter.

You can set the | ocat i on property of a palette window after the palette is
displayed with the pal et t € command:

set the loc of w ndow "Navigator” to "65, 80"

You can close a palette that is displayed by using the cl 0se command:

cl ose wi ndow " Navi gat or"

After a palette has been displayed with the pal et t € command, you can hide
and show a palette by using the hi de and showcommands or setting the

vi si bl e property. The hi de and showcommands have no effect if the palette
hasn’t been displayed yet by the pal et t e command. Here are some examples
of statements that hide or show palettes:

hi de wi ndow " Navi gat or "
set the visible of window "Navigator" to true
show wi ndow " Gener al Pal ette"

Palette

CHAPTER 10

Commands

There is a group of properties that apply only to HyperCard XCMD palettes.
The palette properties are but t onCount , conmands, hi | i t edBut t on, and
properties.

You can use the but t onCount property to determine the total number of
buttons in a palette.

Commands returns a return-delimited list of the commands or messages
associated with the palette’s buttons. The commands are listed according to the
number of the button they are associated with, that is, first the command
associated with button number 1, then the command associated with button
number 2, and so forth.

The Hi | i t edBut t on property determines or sets the number of the currently
highlighted button of the specified palette. Setting Hi | i t edBut t on does not
cause the message associated with the button to be sent. For example, the
statement

set the hilitedButton of wi ndow "Navigator"” to 3
does not send the doMenu " Hel p" message associated with button 3 of the

Navigator palette.

In the case of action palettes, such as Navigator, the value of the
hi | i t edBut t on property is always - 1.

The properti es palette property returns a comma-separated list of the names
of the properties that apply to the specified palette.

HyperCard palettes consist of two resources: one of type' PLTE' and one of
type' PI CT' . The' PLTE resource contains the functional code for the palette,
and the ' PI CT" resource supplies the palette image. The two resources must
have the same name and resource ID number. Because the palette image is a

' PI CT" resource, palettes can be in color.

See also the hi de and showcommands in this chapter.

Palette 237

Picture

CHAPTER 10

Commands

SYNTAX

238

pi ct ur e [fileName,sourceType,windowStyle,visible,depth,floatingLayer]

FileName is the name of a file or resource of type ' PI CT' or' PNTG on your
Macintosh computer or an expression that yields such a name.

SourceType isresource,fil e, or cl i pboar d. (The default source type
isfile.)

WindowStyle is the style of window in which the picture is displayed. The
window styles are pl ai n,rect,zoomroundRect, di al og, docurent,
shadow and wi ndoi d. (The default window type is zoom)

Visible is a Boolean value: t r ue for visible, f al se for invisible. This parameter
allows you to create an invisible window and set its properties before
displaying it with a showcommand. See the description for more information
about the picture window properties.

Depth is the bit depth of the offscreen buffer that the pi ct ur e command
creates. Bit-depth values between 0 and 32 inclusive are supported. The

pi ct ur e command allocates an offscreen buffer of the bit depth you specify
(rounded down to a power of 2) or the bit depth of the picture file, whichever is
smaller. This allows you to display picture files with a deeper bit depth in less
memory, but at the cost of lower resolution. If the value is 0, the pi ct ure
command doesn’t create an offscreen buffer; instead, the ' Pl CT' file is drawn
directly into the window. A value of 0 for depth makes scrolling and zooming
slower and prevents dithering from working. If available system memory

is extremely low and the bit depth is set to O, the file is spooled to the display,
but pi ct ur e properties do not work. It does, however, allow you to display
pictures in less memory and animated ' Pl CT* files and format-1"' PI CT" files
with color.

FloatingLayer is a t r ue or f al se value that signals whether the new picture is
in the floating layer, whose elements always appear above elements in the
document layer (where cards and scripts reside), or in the document layer,
which is always behind miniwindows and palettes. If you don’t specify this
parameter, HyperCard selects a layer appropriate to the window style—the
floating layer for wi ndoi d, shadow and r ect styles; the document layer for
pl ai n,zoomr oundRect, di al og, and docurnent styles.

Picture

EXAMPLES

DESCRIPTION

CHAPTER 10

Commands

pi cture "d owns",resource, plain,false,0
picture "MyPICT",file,rect
pi cture "Picnic",clipboard, roundRect

The pi ct ur e command displays color or gray-scale pictures in an external
window. The pictures can come from the Clipboard, from PICT or MacPaint
files, or from ' PI CT" resources in the current stack or any stack in the
message-passing hierarchy.

The pi ct ur e command works best if HyperCard’s application memory size in
the Get Info dialog box is set to 2 megabytes or more. If the picture cannot be
displayed because of insufficient memory, an error describing the condition is
returned in the r esul t function.

There is a set of properties that apply to windows created with the pi ct ure
command. They are r ect , gl obal Rect, gl obal Loc,scrol | ,zoomscal e,
and di t her i ng. The properties are in addition to the standard HyperTalk
properties | ocat i on and vi si bl e, which also apply to windows created
with the pi ct ur e command.

Ther ect and gl obal Rect properties are set just like the r ect angl e property
for other HyperCard windows. The r ect property applies to the rectangle of
the window created with the pi ct ur e command in coordinates local to the
current card window. The gl obal Rect property applies to the rectangle of the
window created with the pi ct ur e command in global screen coordinates. See
the r ect angl e property in Chapter 12, “Properties.”

Ther ect or gl obal Rect property is specified as four comma-separated
integers representing the bounding window rectangle. The first two integers
represent the top-left corner position of the window on the screen, and the
second two integers represent the bottom-right corner of the window. Four
literals can also be used to set the r ect and gl obal Rect properties. They are
cardScreen (orcard), | argest Scr een (or | ar gest), deepest Scr een (or
deepest), and mai nScr een (or mai n). These literals display the picture
window centered on the same screen as the card window, on the screen with
the largest area, on the screen with the greatest bit depth, and the main screen,
respectively.

Picture 239

240

CHAPTER 10

Commands

Here are examples that set the r ect and gl obal Rect properties:

set the rect of wi ndow "d owns" to "120, 225, 300, 480"
set the gl obal Rect of wi ndow "Clowns" to "largest"

The | oc (also called | ocat i on) property applies to the location of the window
created with the pi ct ur e command in coordinates local to the current card
window. The gl obal Loc property applies to the location of the window
created with the pi ct ur e command in global screen coordinates. For more
information on the | oc (I ocati on) and gl obal Loc properties, see

Chapter 12, “Properties.”

The | oc or gl obal Loc property specifies a point in the screen’s coordinate
system where the top-left corner of the window is to be displayed. The point is
specified as two integers that represent the horizontal and vertical offsets,
respectively. Four literals can also be used to set the | oc and gl obal Loc
properties. They are car dScr een (or car d), | ar gest Scr een (or | ar gest),
deepest Scr een (or deepest), and mai nScr een (or mai n). These literals
display the picture window centered on the same screen as the card window,
on the screen with the largest area, on the screen with the greatest bit depth,
and the main screen, respectively. Here are examples that set the | oc and

gl obal Loc properties:

set the loc of w ndow "Flowers" to "65, 100"
set the global Loc of window "Cl owns" to "card"

The scrol | property for windows created with the pi ct ur e command is
like the scr ol | property for cards in card windows. See the scr ol | property
in Chapter 12, “Properties.” Scr ol | is specified as two comma-separated
integers representing the horizontal and vertical offsets, in the picture’s
coordinate system, to be displayed at the top-left corner of the window. Here
is an example that sets the scr ol | property for a window:

set the scroll of wi ndow "Water" to "45, 60"
The di t her i ng property is a Boolean value: t r ue for dithering, f al se for
no dithering. (The default for the di t her i ng property is f al se.) Here is an

example that sets the di t her i ng property for a window:

set the dithering of window "Garlic" to true

Picture

CHAPTER 10

Commands

The scal e property scales a picture in a window created with the pi ct ur e
command. The value for scal e is an integer between - 5 and 5, inclusive.
Negative integers scale down the picture, and positive integers scale up the
picture. Scaling is done using 2 raised to the scal e power. For example, if the
scale is -2, the picture is scaled to 25 percent. The default value for scal e is 0.
Here is an example that sets the scal e property for a picture in a window:

set the scale of wi ndow "Sunmer fun" to 4

The zoomproperty applies to windows created with a window style that
supports a zoom box. It zooms a window in or out. The possible values
for zoomare i n and out . Here is an example that sets the zoomproperty
for a window:

set the zoom of wi ndow "Alligators" to out

NOTES

If you do not provide a valid name for the fileName parameter, a standard
dialog box for opening files is displayed from which you can choose a' Pl CT'
or' PNTG file. The one exception to this is when you specify cl i pboar d for
the sourceType parameter. In that case any name can be used. If you cancel the
standard file dialog box, HyperCard setst he resul t to cancel .

If the sourceType parameter is a resource and the filename specified in the
fileName parameter can’t be found, the pi ct ur e command converts

the fileName parameter to a number and looks fora' Pl CT' resource with
the specified number as its ID.

If you do not set the r ect or gl obal Rect property, HyperCard displays the
picture in a window that is the same size, or as close to the same size as
possible, as the original picture.

If you do not set the scr ol | property, the picture is displayed with its 0,0
coordinate at the top-left corner of the external window.

The new 32-bit Color QuickDraw is fully supported. You can display 16-, 24-,
and 32-bit images with the pi ct ur e command. The di t her i ng property is
ignored if 32-bit Color QuickDraw isn’t installed in the System Folder.

Picture 241

242

CHAPTER 10

Commands

The r ect and shadowwindow types are created behind all the HyperCard
windows. This allows you to create picture windows that appear to pop up
above the card window.

You can close windows created with the pi ct ur e command by clicking the
close box or with the ¢l o0se command as follows:

cl ose w ndow " fileName"

FileName is the filename specified in the fileName parameter for the pi ct ur e
command. It is also the name displayed in the title bar of the window.

If an error occurs when creating a window, the pi ¢t ur e command sets t he
resul t to an error message that begins with "Coul dn' t di spl ay picture".

If the picture file is displayed successfully, t he result is empty.

When you click a window created with the pi ct ur e command, two system
messages are sent. When the mouse button is down, a nouseDownl nPi ct ur e
message is sent. When the mouse button is released, a mouseUpl nPi ct ure
message is sent. Each message is sent with two parameters: the name of

the window and the point within the picture’s default (not scaled) local
coordinates at which the mouse button was clicked. You can place handlers for
these messages anywhere in the message-passing hierarchy or in the stack
script of the stack that invokes the pi ct ur € command. You can use these
messages to simulate button actions, card flipping, or anything else that you
would use mouseUp and nouseDown system messages for.

The following handler checks for a mouseDownl nPi ct ur € message sent by a
window created by the pi ct ur e command and puts its name and the location
where the mouse button was clicked into the Message box:

on nmouseDownl nPi ct ure wNane, cLoc
put "You clicked wi ndow' &"e& wNanme " e&& -
"at location" && clLoc

end nouseDownl nPi cture

See also the ¢l 0se command in this chapter, and the system messages

mouseUpl nW ndow mouseDownl nW ndow openPi ct ur e, and
cl osePi ct ur e in Chapter 8, “System Messages.”

Picture

Play

CHAPTER 10

Commands

SYNTAX

EXAMPLES

DESCRIPTION

pl ay sound [tenpo tempo] [notes]
pl ay stop

Sound is an expression that yields the name of a digitized sound (boi ng,
f1ut e, and har psi chor d are included with HyperCard). Tempo is an
expression that yields the speed at which the sound plays, and notes is an
expression that yields a list of one or more notes representing the pitch at
which the sound plays and the duration of the notes. Digitized sounds are
of the Macintosh sound resource formats 1 and 2, which are described in
Inside Macintosh: Sound.

pl ay "boing" tenpo 200 "cd4e ¢ dq ¢ f eh" -- Happy Birthday
pl ay "harpsichord" "ch d e f g a b cow

The pl ay command makes the Macintosh computer play notes through its
speaker (or through the audio jack if it’s plugged in). You can write a song by
specifying a series of notes after the pl ay command. The pl ay st op form
stops the current sound immediately; otherwise, it plays until it's done

and stops by itself. In most cases, HyperCard continues to execute handlers
and perform other actions while a sound plays. In the event of a low-memory
situation, such as when playing a large sound while a large Home stack or
several other stacks are in use and HyperCard is set to the default memory
allocations, HyperCard may suspend other actions until the sound is finished
playing. Increasing HyperCard’s memory allocation should alleviate this
problem.

Digitized sounds are of the Macintosh sound resource formats 1 and 2, which
are described in Inside Macintosh: Sound. The resources must exist in a stack in
the hierarchy or in HyperCard application. If the sound can’t be found or can’t
be loaded into memory, t he r esul t gets set to " Coul dn' t | oad sound".

If the sound isn’t played because the volume is set to 0 (in the Sound control

Play 243

SCRIPT

NOTES

244

CHAPTER 10

Commands

panel), HyperCard is running in the background, or an XCMD is using
HyperCard’s sound channel, t he result gets" Soundis of f".

The following example handler goes to each card in a stack and synchronizes
playing the specified notes with each card change:

on tour
repeat the nunber of cards
pl ay "harpsichord" tenmpo 200 "ce4 fe ae c5q ae4 cqg5"
go next card
wait until the sound is "done"
end repeat
end tour

Tempo is a number specifying the speed at which the group of notes is played
(100 is a medium tempo; higher numbers are faster). The sound and tempo are
specified once for each pl ay command.

The notes are specified in the following form:
noteName accidental octave duration

NoteName is the name of the note played (A through G); accidental is # or b,
specifying sharp or flat, respectively; octave is a number specifying the pitch of
the scale (4 is the “middle C” scale); and duration specifies the relative time
value of the note played:

w whole note s 16th note
h half note t 32nd note
q quarter note X 64th note
e eighth note

Play

CHAPTER 10

Commands

You can use a period (.) or numeral 3 following duration to specify a dotted or
triplet note, respectively.

Octave and duration may be changed for each note played; if they are not
changed, subsequent notes are in the same octave and have the same duration
as the previous note.

The 254-character limit on note strings that existed in earlier versions of
HyperCard no longer applies.

See also the sound function in Chapter 11, “Functions.”

Pop Card
SYNTAX
pop card [preposition [chunk of] container]
Preposition is i nt o, bef or e, or af t er ; chunk is a chunk expression, and
container is an expression that identifies a container.
EXAMPLE
pop card into field 3 of card \Werel been
DESCRIPTION

The pop car d command retrieves the identification (full ID and stack
pathname) of a card previously saved with the push car d command. If you
don’t provide a destination for the identification, you go directly to the card
whose address is popped.

Pop Card 245

SCRIPT

NOTES

Print

CHAPTER 10

Commands

The following example handler pushes whatever card you're on, goes
to another stack, gets the value of a field property, then returns to the
original card:

on get TheFont

gl obal nySt ack, t heFont

push card

go nyStack

put textFont of field 1 into theFont

pop card -- goes to the card formerly pushed
end get TheFont

After the card has been popped, its identification is removed from the memory
stack—it can’t be popped again. If a container is given, however, the card’s
identification is put into the container, but you don’t go anywhere.

See also the push command, later in this chapter.

SYNTAX

246

print fileName W th application
print field

print expression

print button

FileName is an expression that yields the name of any document on your
Macintosh computer, and application is an expression that yields the name of
the application to which it belongs (or with which it is compatible). Field is an
expression that yields any field descriptor. Expression is an arbitrary expression
or container.

Print

EXAMPLES

DESCRIPTION

SCRIPT

CHAPTER 10

Commands

print "neno" with "MacWite"

print field 1 with field "Progrant

print "HD: MY DOCS:letter” with "HD: Applications: MacWite"
print bkgnd field 1

The pri nt command prints the specified file, field, or expression.

The pri nt fileName Wi t h application form of the pri nt command suspends
HyperCard, launches the named application, opens the named document,
prints the document, then resumes running HyperCard. The specified
application must support printing.

The pri nt field form of the pri nt command prints the specified field using
the current font, size, style, and line height of that field.

The pri nt expression form prints any arbitrary HyperTalk expression. Expres-
sions are printed using global print properties, such as pri nt Text Font .

The following example handler queries the user for the name of a document to
print and an application with which to print it:

on nmouseUp
ask "Print what docunent?" with enpty
if It is not enpty then
put It into doc
ask "Use what application?" with enpty
if It is not enpty then print doc with It
end if
end nouseUp

Print 247

NOTES

Print Card

CHAPTER 10

Commands

If the document or application you specify isn’t at the top level of the file
hierarchy (the “disk” level), then the path to it must be specified on the
appropriate Search Path card of the Home stack. Alternatively, you can specify
the full pathname with the pri nt command.

Error messages go into the container t he resul t of the source program when
the pri nt command fails.

Don’t use the pri nt command while a print job started with the open
printing command is active.

See also the pri nt car d command described in this chapter.

SYNTAX

EXAMPLES

248

print card [from pointl to point2]
print marked cards

print all cards

print number cards

Card is an expression that yields a card descriptor or the word car d, which
refers to the current card.

Point1 is an expression that yields two comma-separated numbers representing
the upper-left corner of a rectangular region you want to print on the specified
card. Point2 is an expression that yields two comma-separated numbers
representing the lower-right corner of a rectangular region you want to print
on the specified card. Number is an expression that yields an integer or the
word al | .

print card fromO0, 123 to 345,512
print last card

print card id 3011

print all cards

Print Card

CHAPTER 10

Commands

print marked cards
print howvany cards -- howMany contains an integer
print card

DESCRIPTION

The pri nt car d command makes HyperCard print the specified card. It
differs from the Print Card command (Command-P) in the File menu in that
the File menu command prints at full size, while print card prints at the size
specified in the Print Stack dialog box. The pri nt number car ds form prints
the number of cards specified by number, beginning with the current card. The
print marked cards form prints a group of marked cards. The pri nt card
form makes HyperCard go to the specified card, print it, and return to the
current card.

SCRIPT
The following example handler queries the user for a number of cards to print
whenever Print Card is chosen from the File menu:
on doMenu var
if var is "print card" then
ask "Print how many cards?" with one
open printing
if It is a nunber then print It cards
close printing
el se pass doMenu -- make sure other menu choices
-- continue to work
end doMenu
NOTES

You don’t need to use the open pri nti ng command before using the pri nt
car d command. If nothing is printing, the pri nt car d command prints the
specified card or cards immediately; if an open pri nti ng command is in
effect, no cards are printed until a page is full (depending on how many cards
per page are specified in the printing dialog box) or the cl ose printing
command is given.

Print Card 249

Push

CHAPTER 10

Commands

Chapter 5, “Referring to Objects, Menus, and Windows,” defines card descrip-
tors. See also the mar ked property in Chapter 12, “Properties,” and the cl ose
printing,mark,open printing,andopen report printingcommands

described earlier in this chapter.

SYNTAX

EXAMPLES

DESCRIPTION

SCRIPT

250

push card

push card [of stack stackName]

push background [of stack stackName]
push stack

Card is an expression that yields the descriptor of any card. StackName is the
name of an open stack.

push recent card
push first card
push card

The push command saves the identification of the specified card or stack
in a LIFO (last-in, first-out) memory stack (an area of memory, not a
HyperCard stack).

The following example handler saves the current card, goes to a random card,
then returns to the original card:

on nonSense

push card -- save current card
go any card
pop card -- restore current card

end nonSense

Push

NOTES

Put

CHAPTER 10

Commands

The card identification can be retrieved later with the pop car d command
(usually so that you can go directly back to the pushed card). The card
identification that’s saved is the full card ID and stack pathname. HyperCard
holds the IDs of up to 20 cards.

Card descriptors are described in Chapter 5, “Referring to Objects, Menus,
and Windows.”

See also the pop car d command, earlier in this chapter.

SYNTAX

put expression [preposition [chunk of] container]
put itemName preposition [menultem of] menu -
[with nmenuMsg message]

Expression is an expression that yields a text string or number; preposition is
i nt o, bef ore, orafter;chunkis a chunk expression; and container is an
expression that identifies a container.

ItemName is an expression that yields a single menu item name or a list of
comma-separated or return-delimited names to be added to the specified
menu. Menultem is an expression that yields the word menul t emfollowed
by either the name or number (integer or ordinal number) of a standard
HyperCard menu item or a user-defined menu item in the specified menu.
Menu is an expression that yields the word menu followed by either the name
or number (integer or ordinal number) of a standard HyperCard menu or a
user-defined menu in the menu bar. Message is an expression that yields a
single message or a list of comma-separated or return-delimited menu
messages to be sent when a specified menu item is chosen. The menu messages
in the list correspond one to one for each menu item.

Put 251

CHAPTER 10

Commands

EXAMPLES
put "Hello" into field 1
put "go " before field "WereTo"
put enpty into It
put It -- puts contents of It into Mg
put "Toni into first word of field "Nane"
put "." after first character of last word of field 3
put fld 2 + fld 3 into fld 4 -- adds nunbers in fields
put the date into varNane
put "Paths" after menultem "Preferences” of nmenu "Home"
put "Paths" after first menultem of nenu "Hone" with =
menuMsg "go card 4"
put "Vanill a, Chocol ate, Strawberry” into nmenu -
"Flavors" with menuMsg "put Yunmy, put Tastie, put -
Ber r yGood"

DESCRIPTION

The first form of the put command causes HyperCard to evaluate expression
and copy the result into container. You use the second form of the put
command to add menu items to an existing menu. Optionally, you can specify
a message to be sent when the menu item it belongs to is chosen.

User-defined items with the same name as standard HyperCard menu items
inherit the standard behavior of the HyperCard menu item. For example, if you
put an item called Background into a menu called Special, choosing it has the
same effect as the standard Background menu item from the Edit menu unless
you assigh a custom menu message or intercept the doMenu message.

HyperCard does not automatically check, uncheck, enable, or disable user-
defined menu items as it does for its own standard menu items. It is your
responsibility to make sure user-defined menu items act according to the
standard Macintosh user interface. See the commands and properties listed
in the notes section for more information about controlling the behavior of
menu items.

252 Put

SCRIPT

NOTES

CHAPTER 10

Commands

The following example handler initializes three global variables when the stack
it’s in is opened:

on openSt ack
gl obal varl,var2,var3
put O into varl
put enpty into var2
put enpty into var3
end openSt ack

If you don’t specify the destination container, the value is copied into the
Message box. (HyperCard shows the Message box if it’s hidden.) If you specify
a container that HyperCard doesn’t recognize, it creates a new local variable of
that name and puts the value into the variable.

For the put expression form, using i nt o replaces the contents of the container,
bef or e places the source value at the beginning of the previous contents, and
af t er appends the source value to the end of the previous contents.

You can use the put command to put text into buttons. The lines of the text of a
pop-up button become the menu items of the pop-up menu that appears when
the user clicks the button. Here’s an example:

set style of button 1 to popup
put nenu font into button 1

If expression is a container holding an arithmetic expression, the expression is
not evaluated but is copied literally into the destination. Use the val ue
function with the container name to have HyperCard evaluate its contents.

You can delete the contents of a container by putting the constant enpt y or
into it (but this doesn’t delete the container). You can specify a chunk expres-
sion to insert, replace, or delete a portion of the contents.

Always use the form put itemName bef or e |af t er menultem of menu to add
a menu item to a menu that already has menu items in it. If you use the form
put menultem i nt o menu, you replace the contents of the menu, deleting any
other menu items already in the menu.

Put 253

Read

CHAPTER 10

Commands

Because menus are like containers, you can get a list of the current menu items
in a menu by using the term menu as an expression. For example, the following
statement puts a return-delimited list of all the menu items in the Home menu
into card field “MenultemList”:

put nmenu "Hone" into card field "MenultenList"”
You can get a specified menu item name with a statement like
put nenultem 3 of nmenu "Hone"

The maximum number of menu items in a menu is 64.

See also the checkMar k, commandChar, enabl ed, menuMessage, nane, and
t ext St yl e properties in Chapter 12, “Properties.” See also the cr eat e nmenu,
del et e, di sabl e, and enabl e commands in this chapter.

SYNTAX

254

read fromfile fileName [at [-]start]
for numberOfChars| unti | char| constant

FileName is an expression yielding the name of any file on your Macintosh; start
is an integer expression identifying the position in the file where reading starts:
a positive number indicates the character offset from the beginning of the file,
and a negative number indicates the character offset from the end of the file.

NumberOfChars is an integer expression for the total number of characters to
be read.

Char is an expression identifying the last ASCII character to be read (upper-
and lowercase are distinguished).

Constant is one of the following: end, eof , f or nfFeed, quot e, r et ur n, space,
ortab.

Read

EXAMPLES

DESCRIPTION

SCRIPT

NOTE

CHAPTER 10

Commands

read fromfile "inport" at 4 for 20

read fromfile "inport" until tab

read fromfile "File Nanes" until return -- reads one |line

read fromfile "nyFile" at -20 until eof -- starts reading
-- at 20 characters fromthe end of file

The r ead command reads from the specified file, which must be opened
already with the open f i | e command, into the local variable | t . Reading
starts either at the position specified or, if no start is specified, from the
character following the last point read with a previously executed r ead
command. Reading continues until the specified character or constant is
reached or until the specified number of characters has been read.

The following example handler opens a file, reads to the end of the file while
placing its contents into a global variable, and closes the file:

on nmouseUp
gl obal fil eNane, textHol der
open file fileNane
read fromfile fileName until eof
put It into textHol der
close file fileNane
end nouseUp

If you specify more than one character with theread until form, HyperCard
stops reading when it finds the first character in the file.

Read 255

CHAPTER 10

Commands

Tab characters

HyperCard reads tab characters from a file into | t . When
text containing tabs is put into a field, the tabs are
displayed as spaces. The tabs are not removed when the
text is altered; however, if null characters (ASCII 0) are
read in, HyperCard changes them to spaces (ASCII 32). O

Use the cl ose fi | e command to close files explicitly after you use them.
HyperCard automatically closes all open files when an exi t t o Hyper Card
statement is executed, when you press Command-period, or when you quit
HyperCard.

You must provide the full pathname of the file if it’s not at the same directory
level as HyperCard. (See “Identifying a Stack” in Chapter 5 for an explanation
of pathnames.)

If an error is generated while using the r ead command, an error dialog
appears. See also the cl ose file,open file,andwite commandsin
this chapter, and the r esul t function in Chapter 11, “Functions.”

Reply
SYNTAX

reply expression [wWith keyword aeKeyword]

reply error expression

Expression yields a HyperTalk statement. AeKeyword is an Apple event keyword.
EXAMPLES

reply "Hello there, nice to hear from you"
reply error “Error in the renote stack”

256 Reply

DESCRIPTION

SCRIPT

NOTES

CHAPTER 10

Commands

You use the r epl y command to answer an incoming Apple event. If you don’t
specify a keyword for the reply parameter, then the parameter becomes the
direct parameter of the reply.

You can use the form r epl y expression only to reply to a send command from
another running copy of HyperCard. This form sets t he resul t in the
sending program to expression, where expression is any string or container.

You use thereply error expression form to reply to any Apple event. This
form signals an error to the sending program.

The following script handles Apple events of class' W LD and type 'def n' by
searching for a string in a background field named “Glossary Entry” and
returning the contents of a background field named “Definition.”

on appl eEvent eventd ass, eventlD, sender
if eventClass is "WLD"'" and eventID is "defn"
request appl eEvent data
find it infield "Aossary Entry"
if the result is enpty -- find is successful
then reply field "Definition"
else reply error "Not found”
el se pass appl eEvent
end appl eEvent

Therepl y command setst he result toNo current Apple event when
there is no current Apple event to handle.

Reply 257

Request

CHAPTER 10

Commands

SYNTAX

EXAMPLES

DESCRIPTION

258

request expression from program

request expression of | from programid programID

request expression of |fromthis program

request appl eEvent data with keyword aeKeyword

request appl eEvent datalcl ass|id|sender|return id|sender id

Expression is an expression that can be evaluated by the target program.
Program yields a valid program pathname in this form: zone:targetComputer:
targetProgram, where zone is a set of Macintosh computers on a local

network, targetComputer is the name of the target computer, and targetProgram
is the name of the target program. ProgramID is an application’s signature
(4-character string). AeKeyword is an Apple event keyword.

request "the nunber of cards" from -

program " KZone: PMac: Hyper Car d"
request "the nane of this stack" of program "Hyper Card"
request "{target}" from program "MW Shel | "

The r equest command sends an “evaluate expression” Apple event from
HyperCard to another application running remotely or on the same machine.
You can use this command to send an expression to any program that under-
stands the standard ' eval ' Apple event. If the target program is another
copy of HyperCard, the expression you use as your request can be a built-in
HyperTalk function or property (such ast he ti me or t he | ong nane of

t hi s st ack) or a user-defined function call (such as day()). When the target
program executes the statement, the result of the request (the value of the
expression) goes into the local variable | t .

Therequest appl eEvent data wi th keywor d form puts the parameter
or attribute with the specified keyword into the local variable | t . For example,

Request

SCRIPT

NOTES

CHAPTER 10

Commands

you can obtain a parameter of keyword er r s, the standard Apple event
keyword for an error string, as follows:

request appl eEvent data with keyword "errs”
put it into errorString

If there is no attribute or parameter with the keyword you specify, HyperCard
sets the result to Not f ound.

If you don’t supply a keyword, HyperCard assumes you're requesting the
direct object of the Apple event, which is defined by the Apple event manager
as the parameter with keyword " - - - - " . The other r equest appl eEvent
forms support special cases for important attributes of Apple events.

The following handler shows how the r equest command can get information
from another HyperCard program:

on get StackName -- Card handl er in source stack
request "the I ong nane of this stack"
from program Hi | daPat h
if the result is enpty
then answer It
el se answer the result
end get St ackNane

The parameter zone can be omitted from the program pathname when the
target computer is in the same zone as the source computer.

The signature of an application program is a four-character field stored in its
signature resource, which the application assigns to the creator field of its
documents. For example, HyperCard’s signatureis* W LD' .

When the reply to the ' eval ' Apple event sent by HyperCard doesn’t contain
a direct parameter, the r equest command puts enpt y into the local variable
| t.If the Apple event server encounters an error when evaluating the expres-
sion and returns an error message in the reply event, the r equest command

Request 259

CHAPTER 10

Commands

puts that message into t he resul t. The following error messages go into
t he result when ther equest command fails:

Condition

Error while handling a ' i sc'
"eval ' event

Information returned is not recognized
by HyperCard as text

No attribute or parameter with the
specified keyword

System software prior to version 7.0

Target program didn’t handle event

Target program returned error number
in reply, or AESend returned some
other error

Target program returned error string
in reply

Target program timed out

User canceled “Link to program” dialog

See also the send keyword.

Reset Menubar

the result contents

Can’t take the value of that
expression

Unknown data type
Not found

Not supported by this version of
the system

Not handled by target program

Got error <errorNum> when
sending Apple event

<errorString>

Timeout

Cancel

SYNTAX

DESCRIPTION

260

reset menubar

Thereset menubar command reinstates the default HyperCard menus and
removes any custom menus created with the cr eat € command and custom
menu items put into standard HyperCard menus with the put command.

Reset Menubar

NOTES

Reset Paint

CHAPTER 10

Commands

If you are creating a stack to be used by others, use this command with some
restraint, because it removes all custom menus and menu items, not just those
you created for your stack.

When your stack is closed, remove any custom menus or menu items you
created by deleting them. Use a cl oseSt ack, suspend, or suspendSt ack
system message handler to remove your custom menus when your stack is
closed or is no longer the current stack, and an openSt ack, r esune, or

r esuneSt ack system message handler to reinstate your custom menus when
your stack is opened or resumed.

See also the cr eat @ menu and put commands, earlier in this chapter, and
Chapter 8, “System Messages.”

SYNTAX

DESCRIPTION

reset paint

Thereset pai nt command reinstates the default values of all the painting
properties. The painting properties and their default values are

brush 8 pattern 12
centered fal se pol ySi des 4
filled fal se textAlign left
grid fal se t ext Font geneva
IineSize 1 t ext Hei ght 16

mul tiple fal se text Si ze 12

mul ti Space 1 textStyle plain

Reset Paint 261

CHAPTER 10

Commands

NOTE
The painting properties are described in Chapter 12, “Properties.”
Reset Printing
SYNTAX
reset printing
DESCRIPTION
Thereset printing command reinstates the default values of all the
printing properties. The printing properties and their default values are
pri nt Mar gi ns 0,0,0,0
print Text Align I eft
pri nt Text Font CGeneva
pri nt Text Hei ght 13
print Text Si ze 10
printText Styl e Pl ain
NOTE
The printing properties are described in Chapter 12, “Properties.”
ReturnInField
SYNTAX

returnlnField

262 Reset Printing

CHAPTER 10

Commands

DESCRIPTION
The r et ur nl nFi el d command enters a return character into a field that is
open for text editing.

NOTES
The r et ur nl nFi el d message, which invokes the r et ur nl nFi el d command
if it reaches HyperCard, is normally generated by pressing the Return key on
the keyboard, but you can also send it from the Message box or execute it as a
line in a script.
See also the r et ur nl nFi el d system message in Table 8-3.

ReturnKey

SYNTAX
ret ur nkey

DESCRIPTION
The r et ur nKey command sends a statement typed into the Message box to
the current card.

NOTES

The r et ur nKey message, which invokes the r et ur nKey command if it reaches
HyperCard, is normally generated by pressing the Return key on the keyboard,
but you can also send it from the Message box or execute it as a line in a script.

See also the r et ur nKey system message in Table 8-3.

ReturnKey 263

CHAPTER 10

Commands

Save

SYNTAX
save stack stackName as [stack] fileName
save [this] stack as [stack] fileName
StackName is an expression that yields a valid stack name. FileName is an
expression that yields a valid Macintosh filename.

EXAMPLE
save stack "Pottery" as "NewPottery"

DESCRIPTION
The save command saves a copy of the specified stack with the given filename.
The stack is saved without a dialog box. Both stackName and fileName must be
enclosed in quotation marks.

NOTE
If the save command produces an error, the error is stored in the HyperCard
functiont he result.

Select

SYNTAX

264

sel ect
sel ect
sel ect
sel ect
sel ect
sel ect

Save

object

[preposition] chunk of field

[preposition] text of field

l'i ne number [to number] of field
l'i ne number of button

enpty

EXAMPLES

DESCRIPTION

CHAPTER 10

Commands

Object is an expression that yields the descriptor of a button or field, or e, or
t ar get ; preposition is bef or e or af t er ; chunk is a chunk expression; field is
the descriptor of a field; number is an expression that evaluates to an integer;
and button is the descriptor of a pop-up button.

(Button and field descriptors and the special descriptor e are explained in
Chapter 5, “Referring to Objects, Menus, and Windows.” The special descriptor
t ar get is explained in Chapter 4, “Handling Messages.”)

sel ect button 1

sel ect before char 1 of field 2

select after text of field 2

select char 1 to 5 of card field "name
select line 1 to 2 of field 1

select Iine 4 of button "My Pop-up"

The sel ect command creates a selection or highlights lines in a list field or
pop-up button. The sel ect object form chooses the appropriate tool and
selects the object specified as though you had chosen the tool and clicked the
object manually with the mouse. The forms specifying a field select text in

the specified field and open the field for editing, unless the field is a list field.
Bef or e and af t er can be used to place the insertion point relative to the
specified text or chunk of text. Using a chunk expression without a preposition
selects the entire chunk, highlighting the characters in the chunk.

If the specified field is a list field (that is, its aut 0Sel ect and | ockText
properties are both t r ue), you can use the sel ect | i ne form to select one

or more whole lines, which then appear highlighted. You can also specify a
pop-up button with the sel ect | i ne form to select one line from its contents,
which then appears within the button rectangle.

The sel ect enpt y form deselects highlighted text or removes the insertion
point from a non-list field. It does not affect highlighted text in a list field or
pop-up button.

Select 265

CHAPTER 10

Commands

NOTES

For button families, the sel ect edBut t on function returns the descriptor of
the button that is currently highlighted—selected by the user from the choices
the button family represents. To set the sel ect edBut t on in a family from a
script, setits hi | i t e property totrue.

You can select only the parts on the current card, so using sel ect button 1
of next card won’t work. You do not get an error message when you try to
do this.

See also the sel ect edBut t on, sel ect edChunk, sel ect edFi el d,
sel ect edLi ne, and sel ect edText functions in Chapter 11, “Functions.”

Set

SYNTAX
set [the] property [of element] to wvalue

Property is a characteristic of a HyperCard object, menu, menu item, window,
or chunk of a field. Element is an expression that yields the descriptor of an
object, menu, menu item, window, or chunk of a field. Value is an expression
that yields a valid setting for the particular property.

EXAMPLES
set nane of field 1 to "Soccer"
set location of button "newButton" to the nouselLoc
set the visible of field 1 to "false" -- hide the field
set userlLevel to 5 -- scripting
set the cndChar of nenultem "Hone Cards" of =
menu "Home" to 5
set loc of wi ndow "ask" to 10, 10
set the textStyle of word 1 to 2 of field "Nane" to bold

266 Set

DESCRIPTION

SCRIPT

NOTES

CHAPTER 10

Commands

The set command changes the state of a specified property. If the element
to which the property belongs is not specified, the property must be a global

property.
Some properties cannot be changed with the set command. These exceptions
are pointed out in the property descriptions in Chapter 12, “Properties.”

The following example handler automatically draws a circle on the
current card:

on nouseUp
choose oval tool
set linesize to 2
set centered to true
set dragspeed to 75 -- speed of expansion
drag from 155,70 to 285, 200
choose browse tool
end nouseUp

The properties of objects depend on the type of object. Generally, they are the
characteristics shown in the Info dialog boxes under the Objects menu. All of
the HyperCard properties are described in detail in Chapter 12, “Properties.”

Among the commands that set properties are: di sabl e, enabl e, hi de, mark,
reset menubar,reset printing,show and unmark, which are described
in this chapter.

Set 267

Show

CHAPTER 10

Commands

SYNTAX

268

show backgr ound picture

show card picture

show groups

show menuBar

show object [at point]

show pi cture of background

show pi cture of card

show titl ebar

show wi ndow stackName [at point]
show wi ndow windowName [at point]

Object yields one of the following objects:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

nmessage [box] ornmessage [w ndow] orw ndow "message"
pattern wi ndoworw ndow "patterns" (thePatterns palette)
t ool w ndoworw ndow "t ool s" (the Tools palette)

wi ndow "navi gator" (the Navigator palette)

message wat cher orw ndow "nessage wat cher"

vari abl e wat cher orwi ndow "vari abl e wat cher™

card wi ndow

Point is an expression yielding two integers separated by commas representing
the horizontal and vertical pixel offsets, respectively, on the screen. Card yields
the descriptor of a card in the current stack. Background yields the descriptor of
a background in the current stack. WindowName is the name of a window
created with the pi ct ur e command or a custom external window. StackName
is the name of an open stack.

Show

EXAMPLES

DESCRIPTION

SCRIPT

NOTES

CHAPTER 10

Commands

show nsg at 50, 300

show t ool wi ndow

show field "Nanes" at 1,1
show groups

show Message Wt cher

The showcommand displays a specified window or object at a specified
location on the screen. If positioning offsets aren’t given, the window or object
is displayed at its previous location.

The pi ct ur e form of the showcommand displays a graphic bitmap on the
card or background that has been hidden with the hi de command. The show
gr oups form of the showcommand makes a gray 2-pixel underline below
group-style text. The show gr oups command affects all group-style text in all
fields globally.

The show ti t| ebar form of the showcommand shows the stack window
title bar, if it was hidden. If it wasn’t hidden, it has no effect.

The following example handler displays the Tools palette, the Patterns palette,
and the Message box at their default locations when HyperCard first starts
running:

on startUp
show t ool w ndow
show pattern w ndow
show nsg

end startUp

The showcommand sets the vi si bl e and, optionally, | ocat i on properties of
the window or object.

Show 269

CHAPTER 10

Commands

If the menu bar is hidden and the screen is locked, show nenubar has no effect.
See the | ock and unl ock commands in this chapter and the | ockScr een
property in Chapter 12, “Properties.”

On Macintosh Plus and Macintosh SE screens, visible horizontal offsets range
from 0 to 511, and visible vertical offsets range from 0 to 341. Members of the
modular Macintosh family have variable visible offsets depending on the
monitor currently in use.

Message can be abbreviated nsg. Backgr ound can be abbreviated bkgnd or
bg. But t on can be abbreviated bt n. Fi el d can be abbreviated f | d. Card can
be abbreviated cd.

For buttons and fields of the current card, point specifies the distance from the
top-left corner of the card window to the center of the button or field.

Card wi ndowrefers to the current card window; for it and all stack windows,
point specifies the distance from the top-left corner of the screen to the top-left
corner of the card window, disregarding the title bar at the top of the window.
For the other windows, point specifies the distance from the top-left corner of
the card window to the top-left corner of the other window, disregarding the
drag bar at the top of the window.

The default location for the Message Watcher window is the lower-left corner
of the screen. The default location for the Variable Watcher is the lower-right
corner of the screen.

The menu bar always shows at the top of the screen.

You can use the showand hi de commands with the Navigator window only
after it has been invoked with the pal et t e command.

Valid window names for the showcommand are any of the windows returned
by the wi ndows function.

When you change a card window’s | ocat i on property with the show card
wi ndow at location form, the system message moveW ndowis sent. The
moveW ndowmessage is also sent when you drag the window to a new
location or zoom it in or out with the zoom box, causing the | ocat i on property
to change.

See also the hi de, pal ett e, and set commands in this chapter; the show
system message in Table 8-3; the Wi ndows function in Chapter 11, “Functions”;
and the | ocat i on and vi si bl e properties in Chapter 12, “Properties.”

270 Show

Show Cards

CHAPTER 10

Commands

SYNTAX

EXAMPLES

DESCRIPTION

SCRIPT

show [number] cards
show all cards
show nmar ked cards

Number is an expression yielding an integer.

show al |l cards

show ten cards

show 26 cards

show nmar ked cards

show howivany cards -- howiMany contains an integer
show car ds

The show car ds command displays the specified cards in the current stack in
turn, beginning with the next card or, for the show mar ked car ds form, the
first marked card. If no parameter is used, show car ds displays all cards in
the stack continuously.

The following example handler “prewarms” the stack when you open it, so
that going to cards in the stack subsequently will be faster, by caching the cards
in RAM:

on openSt ack
set |l ockScreen to true
show al |l cards
set lockScreen to fal se
end openSt ack

Show Cards 271

CHAPTER 10

Commands

NOTES
The show al | car ds form shows all cards in the stack. HyperCard doesn’t
send the openCar d system message when a card is displayed by show car ds,
nor do visual effects occur. After the cards are shown, the last one shown (where
you began in the case of show al | car ds) is the current card.
See also the mar ked property in Chapter 12, “Properties.”

Sort

SYNTAX

272

sort [sortDirection] [sortStyle] by sortKey
sort [this] stack [sortDirection] [sortStyle] by sortKey
sort [marked] cards [of this stack] [sortDirection] -
[sortStyle] by sortKey
sort background [sortDirection] [sortStyle] by sortKey
sort [marked] cards of background [sortDirection] -
[sortStyle] by sortKey
sort [lines|itens of] container [sortDirection] -
[sortStyle] [by sortKey]

Container is a field expression, variable, or the variable each.

SortDirection can be either ascendi ng or descendi ng; the default value is
ascendi ng.

SortStyle can be t ext , nuneri c, dat eTi me, ori nt er nati onal ; the default
ist ext.

SortKey is any expression.

Background is an expression that yields a background descriptor.

Sort

EXAMPLES

DESCRIPTION

CHAPTER 10

Commands

sort lines of field 1 by Iast word of each

sort itens of field 5 descending nuneric by word 2 of each
sort nunmeric by second word of field 1

sort descending text by last word of field "Names"
sort cards of this stack by field "Nanes"

sort marked cards descending nunmeric by bg field 2
sort marked cards of background "Notes" by bg field 2
sort this background by field 1

sort lines of field 3 ascending

sort itens of field 3 dateTine

sort field 3

sort it numeric

The sort command can sort and order

= the lines or items in a container; if you do not specify | i nes ori t ens when

sorting a container, the defaultis | i nes (if you choose i t ens, remember

that HyperCard recognizes an item by its comma delimiter)

= all the cards or marked cards in a single background or a stack

You can customize the sort command by

= setting sortDirection to ascendi ng or descendi ng; it is ascendi ng
by default

= setting sortStyle tot ext, numeri c, dat eTi me, ori nt er nati onal ; the

default is t ext

= setting sortKey to any expression; for example, you could sort the lines in a
field by the last word in each line by setting sortKey to

the | ast word of each

Sort

273

SCRIPT

NOTE

Start Using

CHAPTER 10

Commands

The following example handler shuffles the cards in a stack randomly when
the user goes to it from another stack:

on openSt ack
sort nuneric by randonm(the nunber of cards)
end openSt ack

The i nt er nati onal sort style assures correct sorting of non-English text
containing diacritical marks and special characters, according to the interna-
tional resources in your System file, your version of HyperCard, the Home
stack, and the current stack.

The dat eTi me style sorts the stack using one of the forms of date or time
(shown with the conver t command, in this chapter), with earliest placed first
in the ascending direction. The dat eTi me style also works correctly with
non-English forms of date and time that have been modified by international
resources in the System file.

See also the mar ked property in Chapter 12, “Properties,” and the mar k
command in this chapter.

SYNTAX

EXAMPLE

274

start using stack stackName

StackName is an expression that yields a stack name.

start using stack "HD80: nyStack"

Start Using

DESCRIPTION

SCRIPT

NOTE

CHAPTER 10

Commands

Thestart usi ng command inserts the specified stack between the current
stack and the Home stack in the message-passing hierarchy. Each successive
stack that is added to the message-passing hierarchy is inserted just after the
current stack. If a stack that is already in use is “used” again, its previous
place in the message-passing hierarchy changes to the place just after the
current stack.

Thestart usi ng command allows you to use the stack script and resources
of any other HyperCard stack, not just the Home stack. Once the st ar t

usi ng statement is executed, the handlers in the script of the specified stack
and the XCMDs and other resources in its resource fork are available for use.

To change the message-passing hierarchy when opening a stack, simply place a
start usi ng statement in the openSt ack handler:

on openSt ack
start using stack
end openSt ack

nmy St ack: Scri pt St ack”

To remove the stack from the hierarchy when closing a stack, place a st op
usi ng statement in the cl oseSt ack handler:

on cl oseStack
stop using stack "nyStack: Scri pt St ack”
end cl oseSt ack

See also the description of the message-passing hierarchy in Chapter 4,
“Handling Messages,” and the next command, st op usi ng.

Start Using 275

CHAPTER 10

Commands

Stop Using
SYNTAX
stop using stack stackName
StackName is an expression that yields a stack name.
EXAMPLE
stop using stack "HDBO: mySt ack"
DESCRIPTION
The st op usi ng command removes the specified stack from the message-
passing hierarchy.
SCRIPT
To remove the stack from the message-passing hierarchy when closing a stack,
place a st op usi ng statement in the cl oseSt ack handler.
on cl oseStack
stop using stack "nyStack: Scri pt St ack”
end cl oseSt ack
NOTE
See also the description of the message-passing hierarchy in Chapter 4,
“Handling Messages,” and the previous command, st art usi ng.
276 Stop Using

CHAPTER 10

Commands

Subtract
SYNTAX
subtract number from [chunk of] container
Number is an expression that yields a number. Chunk is an expression that
yields a chunk of a container. Container is an expression that identifies a
container, such as a field, the Message box, the selection, or a variable.
EXAMPLES
subtract 2 fromlt
subtract field 1 fromfield 2
DESCRIPTION
The subt r act command subtracts the value of number from the value of
[chunk of] container, leaving the result in [chunk of] container. The value
previously in container must be a number; it is replaced with the new value.
TabKey
SYNTAX
t abKey
DESCRIPTION

The t abKey command opens the first unlocked field on the current back-
ground or card (placing the text insertion point in the field) and selecting its
entire contents. If a field is already open, t abKey closes it and opens the next
field, selecting its contents.

Subtract 277

SCRIPT

NOTES

Type

CHAPTER 10

Commands

The following example handler sets the insertion point in the first field so that
the user can type something when the card is opened:

on openCard
t abKey
end openCard

The t abKey system message, which invokes the t abKey command if it reaches
HyperCard, is normally generated by pressing the Tab key on the keyboard.
But you can also send it from the Message box or execute it as a line in a script.

The t abKey command opens fields in the following order: from the lowest
number to the highest, through the background fields first, then through the
card fields.

See also the t abKey system message in Table 8-3.

SYNTAX

EXAMPLES

278

type text [wi th comandKey]

Text is an expression that yields a text string.

ConmandKey can be abbreviated cndKey.

type "Now is the tine for all good persons."
type "p" with commandKey -- print card

Type

DESCRIPTION

CHAPTER 10

Commands

The t ype command enters the value of fext at the text insertion point, as
though you had typed it manually. If the wi t h commandKey form is used,
no text appears at the insertion point; rather, the action defined for the
Command-key combination is carried out.

SCRIPT
The following example handler chooses the Browse tool, clicks the center of the
specified field, and types a literal string:
on aut oType
choose browse tool
click at the loc of field "whereToType"
type "Automatic witing apppears before your eyes..."
end autoType
NOTES
The text insertion point is placed by clicking an unlocked field with the Browse
tool or by sending the t abKey message. Manipulating the text insertion point
is described in the HyperCard Reference.
Paint text can be typed at the text insertion point on a card or background with
the Paint Text tool selected.
Unlock
SYNTAX

unl ock screen with [visual [effect]] effectName [speed] -
[to image]
unl ock nessages| error dial ogs|recent

EffectName is an expression that yields any of the effect names described under
the vi sual command later in this chapter. Speed is one of the following: f ast,
very fast,slowslowy very sloworvery slow y.Imageisone of the
following: bl ack, card, gray, grey, i nverse,or whi te.

Unlock 279

EXAMPLES

DESCRIPTION

NOTE

280

CHAPTER 10

Commands

unl ock screen with dissolve to bl ack
unl ock error dial ogs
unl ock recent

The unl ock command can be used for four different unrelated purposes.
Using the unl ock command, you can reset HyperCard to

update the screen by setting the | ockScr een global property to f al se. In
addition, you can specify a single visual transition to occur when the screen
is updated by using the vi sual effect option.

send system messages such as openCar d, cl oseCar d, and so on, by setting
the | ockMessages property to f al se.

display error dialogs in response to errors in executing scripts by setting the
| ockError Di al ogs property to f al se.

record miniature representations of each card on the Recent card by setting
the | ockRecent global property to f al se.

Visual effects can’t be compounded using unl ock screen, as they can be
using the vi sual command.

See also the vi sual and | ock commands in this chapter and the
| ockErrorDi al ogs,| ockMessages, | ockRecent,and | ockScr een
properties in Chapter 12, “Properties.”

Unlock

CHAPTER 10

Commands

Unmark
SYNTAX
unmar k card
unmar k cards where condition
unmark all cards
unmark cards by finding [international] text [in field]
unmark cards by finding chars [international] text [in field]
unmark cards by finding string [international] text [in field]
unmark cards by finding whole [international] text [in field]
unmark cards by finding word [international] text [in field]
Card is an expression that yields a card descriptor. Condition is an expression
that yields the criteria on which you want to base the unmarking of cards. Text
is an expression that yields any text. Field is an expression that yields a field
descriptor.
EXAMPLES
unmark the next card
unmark cards where "W be shaking" is in field 2
unmark all cards
unmark card by finding word "fire" in bkgnd field 3
DESCRIPTION

The unmar k command sets the mar ked property for the specified card or cards
to f al se. The mar ked property of a card can also be changed with the Card
Marked option in the Card Info dialog box. By default, the mar ked property of
acardisfal se.

The by fi ndi ng form of the mar k command uses char s, wor d, whol e, and
st ri ng to define the search criteria the same way the f i nd command does.
See the description of the f i nd command for information about how to use
these forms.

Unmark 281

CHAPTER 10

Commands

The unmar k command can be used with the mar k command in searches where
you want to find and mark cards containing particular information while
excluding other unnecessary information. See the description and script
example used for the mar k command, which is described earlier in this chapter.

NOTE
See also the mar ked property in Chapter 12, “Properties,” and the mar k
command, earlier in this chapter.

Visual

SYNTAX

282

visual [effect] effectName [

EffectName is one of the following;:

barn door close | open
checkerboard

di ssol ve

iris close | open
plain

push left | right

push up | down

scroll left | right

Speed is one of the following:

f ast very fast
sl ow | y] very slowly]
Visual

speed] [to image]

scroll up | down

shrink to top | center | bottom
stretch fromtop | center | bottom

venetian blinds

wi pe left | right
Wi pe up | down
zoom cl ose | open

zoomin | out

CHAPTER 10

Commands

Image is one of the following;:

bl ack i nverse
card white
gray

EXAMPLES
vi sual effect barn door open
vi sual dissolve slowy to white

DESCRIPTION

The vi sual command specifies a visual transition for HyperCard to use the
next time it opens a card, as the current card is closed. The default pl ai n
visual effect causes all of the current image to be replaced immediately by the
image of the next card. If you use the t 0 image form, the visual effect occurs as
a transition from the current card to a completely white, gray, or black screen
image, to the inverted image of the next card, or to the image of the next card;
to card is the default.

SCRIPT

The following example handler stacks two visual effects, which occur in
succession, so that the transition appears as a fade to black, then to the
next card:

on fadeQut
vi sual effect dissolve to black
vi sual effect dissolve to card
go next card

end fadeCQut

Visual 283

NOTES

Wait

CHAPTER 10

Commands

Visual effects don’t happen when you use the arrow keys or the show car ds
command to change cards; they occur only when go is executed, so they must
be set up in a handler that also contains a go command. If a go command is not
executed, visual effects set up in the handler are canceled when the handler
finishes executing.

You can stack up several visual effects that will occur one after the other when
you go to the next card.

See also the unl ock command, earlier in this chapter.

SYNTAX

EXAMPLES

DESCRIPTION

284

wait [for] time [seconds|ticks]
wait while | until condition

Time is an expression that yields an integer, and condition is an expression that
yieldstrue or f al se.

wait 60 seconds
wait until the nouse is down

The wai t command causes HyperCard to pause before executing the rest of
the handler, either for a specific length of time, until a specified condition
becomes t r ue, or while a specified condition remains t r ue.

If seconds is not specified for time, HyperCard uses t i cks (Y60 second).

Wait

SCRIPT

Write

CHAPTER 10

Commands

The following example handler allows time to view each card:

on slideshow
repeat the nunber of cards
vi sual effect dissolve slowy
go next card
wait 2 seconds
end repeat
end slideshow

SYNTAX

EXAMPLES

wite text to file fileName [at [-]start| end| eof]
Text is an expression that yields text. FileName is an expression that yields
a filename.

Start is an integer expression identifying the position in the file where reading
starts. A positive number indicates the character offset from the beginning of
the file; a negative number specifies a character offset from the end of the file.

wite field "address" to file "nyDisk:nyFile"
wite "first line" &return & "second line" to file =
"twol i ner"

wite soneStuff to file "nyFile" at -15

Write 285

DESCRIPTION

SCRIPT

NOTES

286

CHAPTER 10

Commands

The wr i t e command causes HyperCard to copy the specified text to the
specified disk file.

You can choose to specify the starting point at which to write the text. A
negative number indicates the starting point to be a number of characters from
the end of the file. If you specify either of the constants end and eof as the
place to start, HyperCard appends the new text to the end of the file.

If you don’t specify a starting point, the first wr i t € command executed after
opening a file replaces the previous contents of a file. HyperCard does not ask
if you want to write over the existing file.

For the wr i t € command to work, you must have already opened the file with
the open fil e command, and you should close it, when writing is completed,
with the cl ose fil e command.

The following example handler opens a file specified in a global variable,
writes the entire contents of the specified field to the file starting at character 5,
then closes the file:

on witeFile
gl obal fil enane
open file filenane
write background field 1 to file fil enane
close file fil enane
end witeFile

If a file is open for writing and you write to a file at a certain offset or a
specified position, like eof or end, then HyperCard will not replace the file
with the new text.

HyperCard replaces the previous contents of a file when it is opened and then
written to sequentially, using wr i t € commands that do not specify the offset
at which to write into the file. If any one of them does specify the offset, the file
will contain all of the newly written data but will also include any of the
preexisting text that was not specifically overwritten.

Write

CHAPTER 10

Commands

You must provide the full pathname of the file if it’s not at the same directory
level as HyperCard. (See “Identifying a Stack” in Chapter 5 for an explanation
of pathnames.)

If the file is locked or its disk is full, HyperCard displays an error dialog

box and closes the file. HyperCard automatically closes all open files when
anexit to Hyper Car d statement is executed, when you press Command-
period, or when you quit HyperCard.

See also thecl ose fil e, open file,andread commands in this chapter.

Write 287

CHAPTEHR 11

Functions

This chapter describes HyperTalk’s built-in functions.

A function is a named value that is calculated by HyperCard when the state-
ment it is in executes. The value of a function changes according to conditions of
the system or according to values of parameters that you pass to the function
when you use it. When HyperCard reads a function name in a line of HyperTalk,
it places the function’s current value—its result—in that location before
completing other actions.

Function Calls

To make a function call, that is, to use it in a HyperTalk statement, you must
either use the word t he before the function name or append parentheses after
it. If a single parameter is passed to a function, the parameter can be enclosed
in the parentheses or can follow the word of . (When of is used in this way

to indicate the function call, the word t he preceding the function name is
optional.) If more than one parameter is passed to a function, all parameters
must be enclosed in the parentheses and separated from each other by commas.
Here are some examples of function calls:

put the tinme into nsg

put tinme() into background field "Tine"

put the length of nyVariable into card field "howLong"
put average(total 1,total _2,total _3) into Projection
get the clickChunk

You can define your own functions in HyperTalk using the function handler
structure described in Chapter 9.

Function Calls 289

CHAPTER 11

Functions

User-defined functions override

built-in ones with the same name

If you define your own function having the same name
as a built-in one, yours overrides the built-in one if the
function call is made with the parentheses syntax
(unless the function call is made farther along the
hierarchy than the handler’s script). O

You can call the built-in functions of HyperCard directly and bypass any user-
defined functions by using the word t he before the function name. You can
also use of , rather than using the parentheses syntax; however, functions
having more than one parameter always require parentheses.

Syntax Description Notation

290

The syntax descriptions use the following typographic conventions. Words or
phrasesint hi s font are HyperTalk language elements or are those that you
type to the computer literally, exactly as shown. Words in italics describe
general elements, not specific names—you must substitute the actual instances.
Brackets ([]) enclose optional elements that may be included if you need
them. (Don’t type the brackets.)

It doesn’t matter whether you use uppercase or lowercase letters; names that
are formed from two words are shown in lowercase letters with a capital in the
middle (I i keThi s) merely to make them more readable.

The terms factor and expression are defined in Chapter 7, “Expressions.” Briefly,
a factor can be a constant, literal, function, property, number, or container, and
an expression can be a single factor or a complex expression built with factors

and operators. Also, a factor can be an expression within parentheses.

The term yields indicates a specific kind of value, such as a number or a text
string, that must result from evaluation of an expression when a restriction
applies (for example, the factor or expression used with the abs function must
yield a number). However, any HyperTalk value can be treated as a text string.

Syntax Description Notation

CHAPTER 11

Functions

Function Descriptions

The rest of this chapter describes the functions supported by HyperCard 2.2.

Abs
SYNTAX
the abs of factor
abs (expression)
Factor and expression yield numbers.
EXAMPLE
put abs(a-b) into field "theOfset"
DESCRIPTION
The abs function returns the absolute value (makes the sign positive) of the
number passed to it.
Annuity
SYNTAX

annui ty(rate, periods)

Rate and periods are expressions that yield numbers.

Function Descriptions 291

CHAPTER 11

Functions

EXAMPLES
put nyPaynment*annuity(.015,12) into presentVal ue
put nyPaynent *annui ty(. 015, 12) *conpound(. 015, 12) -

into futureVal ue

DESCRIPTION
The annui t y function is used to compute the present or future value of an
ordinary annuity. Rate is the interest rate per period, and periods is the number
of periods over which the value is calculated. The formula for annui ty is
annui ty(rate, periods) = (1-(l+rate)-periods) /| rate
The annui t y function is more accurate than computing the formula above
using basic arithmetic operations and exponentiation, especially when rate
is small.

NOTE
See also the conpound function, later in this chapter.

Atan

SYNTAX
the atan of factor
at an(expression)
Factor and expression yield numbers.

EXAMPLE

292

put atan(1.0) into field "arcTan" -- yields 0.785398

Atan

DESCRIPTION

CHAPTER 11

Functions

The at an function returns the trigonometric arc tangent (inverse tangent) of
the number passed to it: that is, the angle whose tangent is equal to the given
value. The result is expressed in radians.

Radians can be converted to degrees by multiplying by 180 and dividing the
result by the value of the constant pi .

SCRIPT
The following example handler converts a value in radians to degrees and puts
the result into the Message box:
on radi ansToDegr ees var
put round((atan(var)*180)/pi) into nsg
end radi ansToDegr ees
Average
SYNTAX
aver age(list)
List is a sequence of comma-separated expressions that yield numbers, or it is a
single container that contains such a sequence.
EXAMPLE
put average(1,2,3) into field "avg"
DESCRIPTION

The aver age function returns the average of the numbers passed to it.

Average 293

CHAPTER 11

Functions

SCRIPT
The following example handler displays the average of a list of numbers
contained in one line of a field:
on avgSuppl yPrice
put "12.95,10.50, 14. 75, 15.00,9.95" into line 3 of =
field "suppliers”
answer "Average w dget cost:" && average (line 3 of -
field "suppliers")
end avgSuppl yPri ce
CharToNum
SYNTAX
t he char ToNum of factor
char ToNun(expression)
Factor and expression yield a character.
EXAMPLE
put the charToNum of "a" into It -- yields 97
DESCRIPTION
The char ToNumfunction returns an unsigned integer representing the ASCII
equivalent value of the character passed to it.
NOTES

If more than one character is passed, char ToNumreturns the ASCII value of
the first character. If factor is a literal, it must appear within quotation marks.

See also the nuniToChar function, later in this chapter.

294 CharToNum

CHAPTER 11

Functions

ClickChunk

SYNTAX
t he clickChunk
cli ckChunk()

EXAMPLES

put the clickChunk into card field "ExpressMyd i ck"
get the clickChunk

DESCRIPTION

The cl i ckChunk function returns a chunk expression referring to the text
clicked in a field and is typically something likechar 1 to 3 of bkgnd
field 3.

d i ckChunk refers to the single word clicked, with the definition of a word
being any characters delimited by white space (commas, tabs, spaces, returns,
and so on). If the location clicked has the style gr oup, then the largest contig-
uous run of text that has the gr oup style is returned, thus allowing ranges or
phrases rather than just single words to be referred to. G oup is a possible
value of the t ext St yl e property.

SCRIPT
Because chunks of text also have properties, you could use the cl i ckChunk
function to examine the t ext st yl e property of a chunk of text in a field and
then take the appropriate action based on that style of text. For example, you
might have an application that provides definitions for any boldface words
when one of the words is clicked.

The following handler placed in a script of a locked field examines the style of
a chunk of text clicked in that field and, if that text is boldface, calls up another
field containing definitions:

on nouseUp
if the textStyle of the clickChunk is bold
then show card field "definitions"

end nouseUp

ClickChunk 295

CHAPTER 11

Functions

NOTE
See also the cl i ckLi ne, cl i ckLoc, and cl i ckText functions in this chapter
and the t ext St yl e property in Chapter 12, “Properties.”
ClickH
SYNTAX
the clickH
clickH()
EXAMPLE
put the clickH into card field "horizontal Ofset”
DESCRIPTION
The cl i ckHfunction returns an integer that represents the number of hori-
zontal pixels from the left side of the card window to the place where the
mouse was last clicked.
NOTE
See also the cl i ckV function in this chapter.
ClickLine
SYNTAX

296

the clickLi ne
cli ckLi ne()

ClickH

CHAPTER 11

Functions

EXAMPLES
put the clickLine into card field "Myd i ck"
get the clickLine
DESCRIPTION
The cl i ckLi ne function returns the specification of the line (based on actual
return characters, not display lines) that was clicked. A typical resultis| i ne 5
of cardfield2.Onesentence or line of text may not fit in the width of a
field and have to wrap onto subsequent lines on the display. It may appear as
though more than one line is in the field, but if the lines are not delimited with
return characters, cl i ckLi ne returns an expression likel i ne 1 of card
fiel d 5 when a user clicks the text in that field. If you want cl i ckLi ne to
return a unique line number for each line that is displayed within a field, be
sure to end each line in the field with a return character.
NOTE
See also the cl i ckChunk, cl i ckLoc,and cl i ckText functions in this chapter.
ClickLoc
SYNTAX
the clickLoc
clickLoc()
EXAMPLE
put the clickLoc into card field "npostRecentd i ck"
DESCRIPTION

The cl i ckLoc function returns the point on the screen where the user most
recently clicked before the handler started executing. The location is deter-
mined at the time the message is first sent—the mouse could be elsewhere by

ClickLoc 297

CHAPTER 11

Functions

the time the message is received. The location point is returned as two integers
separated by a comma, representing horizontal and vertical pixel offsets from
the top-left corner of the card.

SCRIPT
The following example handler, when it is in the script of a locked field, selects
a word in the field when the user clicks the word:
on nmouseUp
set locktext of me to false -- unlock the |ocked field
-- next two lines double-click the |ocation
click at the clickLoc
click at the clickLoc
put "You clicked the word:" && the sel ection
set lockText of me to true -- nust lock it again
end nouseUp
ClickText
SYNTAX
the clickText
clickText ()
EXAMPLES
put the clickText into card field "ExpressMyC i ck"
get the clickText
DESCRIPTION

298

Qi ckText returns the text of a single word clicked, with the definition of a
word being any characters delimited by white space (commas, tabs, spaces,
returns, and so on). If the location clicked has the style gr oup, then the largest

ClickText

CHAPTER 11

Functions

contiguous run of text that has the gr oup style is returned, thus allowing
ranges or phrases rather than just single words to be referred to and analyzed.
G oup is a possible value of the t ext St yl e property.

SCRIPT
The cl i ckText function can be used to implement glossary lookup or provide
other hypertext-type functions with something like the following handler,
which should be placed in the script of the field being clicked:
on nouseUp
get the clickText -- nust be done before | eaving card
| ock screen
go stack "d ossary"
find it in field "Wrds" -- is it a glossary entry?
if the result = "Not found" then go back
el se unlock screen with dissolve -- display glossary
-- entry
end nouseUp
NOTE
See also the ¢l i ckChunk, cl i ckLoc, and cl i ckLi ne functions in this
chapter and the t ext St yl e property in Chapter 12, “Properties.”
ClickV
SYNTAX
the clickV
clickVv()
EXAMPLE

put the clickVinto card field "vertical Offset”

Clickv 299

CHAPTER 11

Functions

DESCRIPTION
The cl i ckV function returns an integer that represents the number of vertical
pixels from the top of the card window to the place where the mouse was
last clicked.
NOTE
See also the cl i ckHfunction in this chapter.
CommandKey
SYNTAX
t he conmandKey
commandKey ()
EXAMPLE
if the commandKey is up then put "Ww' into nsg box
DESCRIPTION
The commandKey function returns the constant up if the Command key is not
pressed or down if it is pressed.
NOTES
The commandKey function name can be abbreviated cndKey.
See also the opt i onKey and shi f t Key functions, later in this chapter.
300 CommandKey

Compound

CHAPTER 11

Functions

SYNTAX

EXAMPLES

DESCRIPTION

SCRIPT

conpound(rate, periods)

Rate and periods are expressions that yield numbers.

put futureVal ue/ conpound(. 10, 12) into presentVal ue
put presentVal ue*conpound(. 10, 12) into futureVal ue

The conmpound function is used to compute the present or future value of a
compound interest-bearing account. Rate represents the interest rate per
period, and periods is the number of periods over which the value is calculated.
The formula for conpound is

compound(rate, periods) = (1 + rate) periods

The conpound function is more accurate than computing the formula expres-
sion above using standard arithmetic operations and exponentiation, especially
when rate is small.

The following example handler calculates the value in one year of an account
earning 7Y% percent interest compounded monthly:

on cal clnterest
ask "Enter the begi nning balance:" with enpty
set nunberFormat to ".00" -- dollars and cents fornat
put "Value in 1 year $" & it * conpound(.075/12,12)
end cal cl nt erest

Compound 301

CHAPTER 11

Functions

NOTE
See also the annui t y function, earlier in this chapter.
Cos
SYNTAX
the cos of factor
cos(expression)
Factor and expression yield numbers.
EXAMPLE
put the cos of 2 -- puts -.416147 into the Message box
DESCRIPTION
The cos function returns the cosine of the angle that is passed to it. The angle
must be expressed in radians.
NOTE
Radians can be converted to degrees by multiplying by 180 and dividing the
result by the value of the constant pi .
Date
SYNTAX

302

t he [adjective] date
dat e()

Adjective is | ong, short, or abbr evi at ed (or abbr ev or abbr); the default
adjective is short.

Cos

EXAMPLE

DESCRIPTION

SCRIPT

NOTES

CHAPTER 11

Functions

put last word of the I ong date into background field "Year"

The dat e function returns a string representing the current date set in your
Macintosh. There are three forms of the dat e function. Here are examples
of the format used by each:

the short date 7/ 20/ 93
the | ong date Tuesday, Cctober 7, 1989
the abbrev date Tue, Cct 20, 1992

The following example handler puts the current date into a field when another
field (whose script contains the handler) is changed:

on closeField
put the long date into field "l ast Update"
end cl oseField

The format of the date is initially specified by the international resources in the
System file. These resources can and are altered for the purpose of customi-
zation or localization, so that a French system, for example, can display dates
using French names for months and days of the week in the standard French
formats.

Therefore, though the dat e function always returns the same basic data—the
current date—the format of the data is not fixed. This issue is important for
anyone who wants to build Stackware that works anywhere without
modification.

You cannot assume that the long date always returns a date in this format:
<day of week>, <month> <day>, <year>. If your stack is used on a Swedish
system, a script that assumes that item 1 of the long date is the day of the week
will not work since the Swedish format is not delimited by commas and has
this format: <day of week> < day> <month> <year>.

Date 303

Destination

CHAPTER 11

Functions

Make sure you convert and store all dates in the invariant dat el t emformat
before doing calculations to prevent problems that are due to different local
date formats. (See the convert command in Chapter 10.)

SYNTAX

EXAMPLE

DESCRIPTION

304

the destination
destination()

on cl oseSt ack
gl obal stacksl nMySuite
if the destination is in stackslnMySuite then
-- don't cleanup
el se
-- cleanup: renove stack in use, restore nenubar
end if
pass cl oseSt ack
end cl oseSt ack

Returns the name of the destination stack when HyperCard is in the process of
going to another stack. The destination is available to handlers for cl oseCar d,
cl oseBackground, cl oseSt ack, and suspendSt ack. If HyperCard is not
going to another stack, this function returns the pathname of the current stack.

Destination

CHAPTER 11

Functions

DiskSpace

SYNTAX

t he di skSpace
di skSpace()

EXAMPLE
i f the di skSpace < 100000 t hen answer -
"Your disk is getting full."
DESCRIPTION
The di skSpace function returns an integer representing the number of bytes
of free space on the disk that contains the current stack.
SCRIPT

The following function handler is used by the second handler (for the
wri t eFi | e message) to ensure that there is enough space on a disk
to write to a file on that disk:

function therel sRoom size
return (the di skSpace > size)
end therel sRoom

on witeFile
gl obal var -- the text to be saved
put "M/Fil ename" into fil eNane
i f therelsRoon(length of var) then
open file fil eName
wite var to file fil eNane
close file fileNane
el se answer "Can't wite that file; the disk is full."
end witeFile

DiskSpace 305

CHAPTER 11

Functions

Exp
SYNTAX
the exp of factor
exp(expression)
Factor and expression yield numbers.
EXAMPLE
put the exp of 2 -- puts 7.389056 into the Message box
DESCRIPTION
The exp function returns the mathematical exponential of its argument
(the constant e, which equals 2.7182818, raised to the power specified by
the argument).
Expl
SYNTAX
the expl of factor
expl(expression)
Factor and expression yield numbers.
EXAMPLE
put the expl of 2 -- puts 6.389056 into the Message box
306 Exp

CHAPTER 11

Functions

DESCRIPTION

The expl function returns 1 less than the mathematical exponential of its
argument (1 less than the result of the constant e raised to the power specified
by the argument). That is, it computes

exp(number) - 1

Exp2
SYNTAX
the exp2 of factor
exp2(expression)
Factor and expression yield numbers.
EXAMPLE
put the exp2 of 16 -- puts 65536 into the Message box
DESCRIPTION
The exp2 function returns the value of 2 raised to the power specified by
the argument.
FoundChunk
SYNTAX

t he foundChunk
f oundChunk()

Exp2 307

CHAPTER 11

Functions

EXAMPLE
put the foundChunk
DESCRIPTION
The f oundChunk function returns a chunk expression describing the location
of the text found in a field with the f i nd command. For example, if field 1
contained Now is the time, the commands (placed inside a handler)
find " Now'
put the foundChunk
would putchar 1 to 3 of bkgnd field 1 intothe Message box.
NOTE
See also the f i nd command in Chapter 10.
FoundField
SYNTAX
the foundField
f oundFi el d()
EXAMPLE
put the foundField
DESCRIPTION

308

The f oundFi el d function returns the descriptor of the field in which the
text was found with the f i nd command. The result is in a form such as
card field 1.

FoundField

CHAPTER 11

Functions

SCRIPT
The following handler uses f oundFi el d to put the field descriptor of a field
containing the specified word in the Message box:
on getField thewrd
I ock screen
push card
find theWrd
if the result is "not found" then
put "It's not here"
el se
put the nunber of this card into cardNum
put "Your word was found in" && the foundField && -
"of card nunber" && cardNum
end if
pop card
unl ock screen
end getField
To make the script work, put it in the stack or background script, then enter
get Fi el d followed by the word you want to find in the Message box.
FoundLine
SYNTAX
the foundLine
foundLi ne()
EXAMPLE

put the foundLine

FoundLine 309

CHAPTER 11

Functions

DESCRIPTION
The f oundLi ne function returns a chunk expression describing the line in
which the beginning of the text was found with the f i nd command. The result
isinaformsuchasline 1 of card field 2.

FoundText

SYNTAX
the foundText
foundText ()

EXAMPLE
put the foundText

DESCRIPTION
The f oundText function returns the characters that are enclosed in the box
after the f i nd command has executed successfully; for example, the commands
find "Hyper"
put the foundText
would put Hyper Car d in the Message box if it were the word containing the
matching string.

HeapSpace

SYNTAX

t he heapSpace

310 FoundText

EXAMPLE

DESCRIPTION

SCRIPT

Length

CHAPTER 11

Functions

put the heapSpace into card field "Heap O Fun"

The heapSpace function returns an integer representing the remaining
number of bytes of heap space currently available to HyperCard. The
amount of heap space determines performance-related issues, such as
whether the user can use the Paint tools, or whether HyperCard can open
a stack in a new window.

The following handler ensures that there is enough memory available for
HyperCard to open a palette:

on openPal ette
get the heapSpace
if it is < 100 then
answer "Not enough nenory to open this palette.”
end if
end openPal ette

SYNTAX

the length of factor
| engt h(expression)

Factor and expression yield text strings.

Length

311

CHAPTER 11

Functions

EXAMPLES
put length("tail") into It -- yields 4
if the length of word n of field 5 > 25
then add 1 to fogl ndex
DESCRIPTION
The | engt h function returns the number of characters (including spaces, tabs,
and return characters) in the text string passed to it.
NOTE
If expression is a literal, it must appear within quotation marks. The | engt h
function is identical in effect to the following form of the nunber function:
the nunber of characters in factor
Ln
SYNTAX
the In of factor
I n(expression)
Factor and expression yield numbers.
EXAMPLE
put the I'n of 10 -- puts 2.302585 into Message box
DESCRIPTION

The | n function returns the base-e (natural) logarithm of the number passed
to it.

312 Ln

CHAPTER 11

Functions

Ln1
SYNTAX
the I nl of factor
I n1(expression)
Factor and expression yield numbers.
EXAMPLE
put the Inl of 10 -- puts 2.397895 into Message box
DESCRIPTION
The | n1 function returns the base-e (natural) logarithm of the sum of 1 plus the
number passed to it. That is, it computes
| n(1+ number)
If number is small, | n1 of number is more accurate than | n(1+number) .
Log2
SYNTAX
the 1092 of factor
| 0g2(expression)
Factor and expression yield numbers.
EXAMPLE
put the log2 of 10 -- puts 3.321928 into the Message box
DESCRIPTION

The | 092 function returns the base-2 logarithm of the number passed to it.

Lnl 313

CHAPTER 11

Functions
Max
SYNTAX
max (list)
List is a sequence of comma-separated expressions that yield numbers, or it is a
single container that contains such a sequence.
EXAMPLE
put max(5,10,7.3) -- puts 10 into the Message box
DESCRIPTION
The max function returns the highest-value number from a list of numbers
passed to it. If the source of the list is a container with more than one line in it,
only the first line is used.
SCRIPT

314

The following example handler displays the highest number in a list contained
in a variable:

on hi ghSt ock
put "12.50,10,7.95,14.76,13.70" into stockPrices
answer "The highest price for the nonth is:" =
&& max(stockPrices)

end hi ghStock

Max

CHAPTER 11

Functions
Menus
SYNTAX
the menus
menus()
EXAMPLES
put the nmenus into card field 2
put nenus() into MyVar -- MyVar is a variable
DESCRIPTION
The menus function returns a return-delimited list of all the menus currently in
the HyperCard menu bar, including the Apple menu and any custom menus.
In System 7, the list includes system menus.
NOTE
See also the cr eat e menu command in Chapter 10.
Min
SYNTAX
mi n(list)
List is a sequence of comma-separated expressions that yield numbers, or it is a
single container that contains such a sequence.
EXAMPLE

put mn(5,10,7.3) -- puts 5 into the Message box

Menus 315

CHAPTER 11

Functions

DESCRIPTION
The mi n function returns the lowest-value number from a list of numbers
passed to it. If the source of the list is a container with more than one line in it,
only the first line is used.
SCRIPT
The following example handler displays the lowest number in a list contained
in a variable:
on | owSt ock
put "12.50,10,7.95,14.76,13.70" into stockPrices
put "The |lowest price for the nonth is:" =
&& m n(stockPrices)
end | owSt ock
Mouse
SYNTAX
t he nouse
mouse()
EXAMPLE
if the nouse is up then put "Press the nouse button”
DESCRIPTION

The mouse function returns the constant up if the mouse button is not pressed,
down if it is pressed.

316 Mouse

CHAPTER 11

Functions

SCRIPT
The following example handler determines whether the user has single-clicked
or double-clicked the button whose script contains the handler:
on nouseUp
put the ticks into start
repeat until the ticks-start > 4 -- click speed
if the nouse is "down" then
go last card -- put your double-click action here
exit mouseUp
end if
end repeat
go next card -- put your single-click action here
end nouseUp
MouseClick
SYNTAX
t he moused i ck
nmoused i ck()
EXAMPLE
if the nousedick then put the nmouselLoc
DESCRIPTION

The noused i ck function determines if the mouse button is clicked. If no click
is sensed, t he nmoused i ck immediately returns the constant f al se. The
moused i ck function returns the constant t r ue when the mouse button is
clicked. The noused i ck function does not return t r ue more than one time
for a given mouse click.

MouseClick 317

CHAPTER 11

Functions

SCRIPT
The following example handler demonstrates operation of the moused i ck
function by informing the user whether or not it sensed a click during its
execution:
on nouseUp
put "Click or don't click..."
wait 5 seconds
if the nouseCdick then
put "You clicked."
el se
put "You didn't click."
end if
end nouseUp
MouseH
SYNTAX
t he nouseH
mouseH()
EXAMPLE
if the nouseH > 319 then put "Stop"
DESCRIPTION

The mouseH function returns an integer representing the number of horizontal
pixels from the left side of the card to the current location of the pointer.

318 MouseH

CHAPTER 11

Functions

MouseLoc

SYNTAX
the nouseloc
nmouselLoc()

EXAMPLE
show button "ever Ready" at the npuselLoc

DESCRIPTION
The mouseLoc function returns the point on the screen where the pointer is
currently located. This point is returned as two integers separated by a comma,
representing horizontal and vertical pixel offsets from the top-left corner of
the card.

SCRIPT

The following example handler, in a button script, allows the user to drag the
button around the screen:

on nouseDown
repeat until the nouse is up
set the loc of me to the nouselLoc
end repeat
end nouseDown

MouselLoc 319

CHAPTER 11

Functions

MouseV
SYNTAX
the nouseV
mouseV()
EXAMPLE
if the nouseV > 199 then put "Stop"
DESCRIPTION
The mouseV function returns an integer representing the number of vertical
pixels from the top of the card to the current location of the pointer.
Number
SYNTAX

320

[the] nunber of objects

[the] nunber of chunks in expression

[the] number of backgrounds [in this stack]
[the] nunber of cards in background

[the] nunmber of cards [in this stack]

[the] number of marked cards

[the] nunber of menus

[the] nunmber of nmenultens of menu

[the] number of [card|background] parts
[the] nunber of w ndows

Objects is [background] buttons,[card] fiel ds,backgrounds,cards,
or parts. Chunksis charact ers (or chars),words,itens,orlines,and
expression yields a container or text string. Background is an expression that yields
the descriptor of a background in the current stack. Menu is an expression that
yields a menu descriptor.

MouseV

EXAMPLES

DESCRIPTION

SCRIPT

NOTES

CHAPTER 11

Functions

put the nunber of buttons into It

put nunber of itens of Iine 1 of field 2 into |istSize
put the nunber of chars in nsg into line 3 of field 2

i f nunber of chars in nyVar > 10 then put "Big" into nsg
get the nunber of cards of bkgnd 3

The nurber function returns the number of buttons, fields, or parts on the
current card or on its background, the number of backgrounds or cards in

the current stack, the number of chunks of a specified kind in a designated
container or text string, the number of cards that are associated with a specified
background, the number of marked cards in the current stack, the number

of menus in the menu bar, the number of menu items in a specified menu, or
the number of windows currently available to HyperCard.

The following example handler uses the nunber function to delete all the card
fields on a card, regardless of how many there are:

on del et eFi el ds
repeat with whichField = the nunber of card fields -
down to 1
-- you nust count down like this, not up
delete card field whichField
end repeat
end del et eFi el ds

If backgr ounds is not specified with but t ons, the number of card buttons is
returned; if car d is not specified with f i el ds, the number of background
fields is returned; if backgr ounds is not specified with par t s, the number of
card parts is returned. If the nunber function is used with a chunk name, it
returns the number of chunks of that kind within the designated container or
other factor yielding a text string.

Number 321

CHAPTER 11

Functions

The factor can be a chunk expression, so you can get the number of chunks of
one kind within another chunk:

the nunber of chars in first word of field 1

You can also use the syntax that uses parentheses with the nunber function—
for example:

nunber (car ds)
nunber (nenus)
nunber (bkgnds)
nunber (fi el ds)

Backgrounds can be specified with the abbreviation bkgnds or bgs.

See also the nunber and mar ked properties in Chapter 12, and Chapter 5,
“Referring to Objects, Menus, and Windows.”

NumToChar

SYNTAX
the nunifoChar of factor
numToChar (expression)

Factor and expression yield positive integers.

EXAMPLE
put nuniToChar (67) into word 4 of line 9 of field =
"ASCI| Chart" -- yields C

DESCRIPTION

The nuniToChar function returns the character whose ASCII equivalent value
is that of the integer passed to it.

322 NumToChar

CHAPTER 11

Functions

SCRIPT

The following example handler turns all of the lowercase letters in a field into
uppercase letters:

on upper Case
put card field 4 into tenp
-- variables are faster than fields
repeat with count = 1 to the length of tenp
get character count of tenp
if charToNumof It > 96 and -
char ToNum of It < 123 then
put numroChar (char ToNun{1t)-32) into =
character count of tenp
end if
end repeat
put tenp into card field 4
end upper Case

NOTE
See also the char ToNumfunction, earlier in this chapter.

Offset

SYNTAX
of f set (stringl, string2)

String1 and string2 are both expressions yielding text strings.

EXAMPLES
put offset("hay",field 1) into the Message box
of fset("a","abc") -- typed in nsg, returns 1

Offset 323

CHAPTER 11

Functions

DESCRIPTION
The of f set f unction returns the number of characters from the beginning of
the string2 string to the character at which string1 begins. If stringl doesn’t
appear within string2, 0 is returned.
SCRIPT
The following function handler finds every occurrence of a string within a
container, and it replaces every occurrence with a second string:
function searchAndRepl ace cont ai ner, ori gi nal , repl acenent
put length of original - 1 into theEnd
repeat until original is not in container
-- loop until all are replaced
put offset(original,container) into start
-- set start to location of origina
put replacenent into char start to -
start + theEnd of container
end repeat
return container
end sear chAndRepl ace
NOTE
The parameters passed to the of f set f unction can both be arithmetic or
logical (as well as text) expressions; after evaluation, the results are treated
as strings.
OptionKey
SYNTAX

t he opti onKey
opti onKey()

324 OptionKey

CHAPTER 11

Functions

EXAMPLE
if the optionKey is down then choose button tool
DESCRIPTION
The opt i onKey function returns the constant up if the Option key is not
pressed, down if it is pressed.
NOTE
See also the commandKey and shi f t Key functions in this chapter.
Param
SYNTAX
the param of factor
par an(expression)
Factor and expression yield integers.
EXAMPLE
if param(1l) is enpty then answer-
"The first parameter is null.”
DESCRIPTION

The par amfunction returns a parameter value from the parameter list
passed to the currently executing handler. The parameter returned is the
nth parameter, where 7 is the integer derived from factor or expression. The
value of par an(0) is the message name.

Param

325

CHAPTER 11

Functions

SCRIPT

The following example handler sums the numeric arguments passed to it,
regardless of how many there are:

on addUp -- adds a variable nunber of argunents
put 0 into total
repeat with i =1 to the paramCount
add param(i) to total
end repeat
put total
end addUp

NOTE

See also the par anCount and par ans functions, in this chapter, and the
discussion of parameter passing in Chapter 4, “Handling Messages.”

ParamCount

SYNTAX

t he par antCount
par anCount ()

EXAMPLE

if the paranCount < 3 then =
put "I need at |east three argunents."”

DESCRIPTION

The par anmCount function returns the number of parameters passed to the
currently executing handler.

326 ParamCount

CHAPTER 11

Functions

SCRIPT
The following example handler draws an oval differently depending on the
number of parameters passed to it:
on drawOval
if the paranCount is 2 then set lineSize to paran(2)
choose oval tool
drag from 30,30 to 30 + paran(1l),30 + paran(l)
choose browse tool
reset paint
end drawOval
NOTE
See also the par amand par ans functions, in this chapter, and the discussion of
parameter passing in Chapter 4, “Handling Messages.”
Params
SYNTAX
t he parans
par ans()
EXAMPLE
put the parans into field "nmessageRecei ved"
DESCRIPTION

The par ams function returns the entire parameter list, including the message
name, passed to the currently executing handler.

Params 327

CHAPTER 11

Functions

SCRIPT
The following example handler is useful primarily for debugging, to see if the
parameters passed to a handler are correct:
on nyMessage
put the parans
-- rest of nyMessage handl er goes here
end nyMessage
NOTE
See also the par amand par anCount functions, in this chapter, and the
discussion of parameter passing in Chapter 4, “Handling Messages.”
Programs
SYNTAX
t he prograns
prograns()
EXAMPLES
answer the prograns
put prograns() into field id 4
DESCRIPTION
The pr ogr ams function produces a return-delimited list of all the System 7-
friendly processes currently running on your machine.
NOTE

See also the answer command in Chapter 10 and the discussion of Apple
events in Chapter 1.

328 Programs

CHAPTER 11

Functions

Random
SYNTAX
the random of factor
r andomn(expression)
Factor and expression yield positive integers.
EXAMPLE
set the loc of button "junpy" to randon(320), randonm(200)
DESCRIPTION
The r andomfunction returns a random integer between 1 and the integer
derived from factor or expression, inclusive. Randomsupports integers up
to 231-2.
SCRIPT

The following example handler draws 10 unique random numbers between 1
and 100:

on nouseUp
put enpty into randonii st
put the itemDelimter into delim
repeat until the nunber of items in randonlist is 10
get random of 100
if (delim&it&delin) is not in (delim& andonlist) then
put it & delimafter randonii st
end if
end repeat
-- get rid of extra itemdelimter
del ete | ast char of randonii st
put randonii st
end nouseUp

Random 329

CHAPTER 11

Functions
Result
SYNTAX
the result
result()
EXAMPLE
if the result is not enpty then answer "Try again."
DESCRIPTION
Ther esul t function returns an explanatory text string if an immediately
preceding cl ose fil e, convert,create stack,find,go,inport
pai nt,export paint,open file,picture,read,or save command was
unsuccessful. The r esul t function returns empty if the command executed
successfully. The value of t he resul t can also be set by ar et ur n statement
in a message handler or by an external command. The value of t he resul t
is reset by execution of another command and at the end of the handler.
SCRIPT

330

The following example handler searches for a string and displays either the
string or the error message if it doesn’t find the string:

on doMenu var

if var is "Find..." then
gl obal findMe
r epeat

ask "Find what string:" with findMe
if It is not enpty then find It
el se exit doMenu -- cancel clicked
if the result is not enpty then
put the result into findMe -- display error
next repeat

Result

CHAPTER 11

Functions

el se
put It into findMe -- display string
exit repeat
end if
end repeat
el se pass doMenu
end doMenu

NOTES

It is safer to depend on the empty result of a successful execution than on the
particular value of some error message, because those values could be different
in future versions of HyperCard.

If any of the commands listed in the r esul t function description are sent from
the Message box and generate an error, HyperCard displays the text of t he
resul t function in a dialog box. For example, if you sent a go command using
the wi t hout di al og form from the Message box and used the name of a
stack that doesn’t exist, a dialog box containing “No such stack” is displayed
after the command is sent. The same command sent in a handler would put the
error message into t he resul t but would not display a dialog box. If you
want a dialog box displayed, you could include an answer statement in your
handler that displays t he resul t —for example:

on nouseUp
go stack quote& clickText "e without dialog
put the result into goError
if goError is not enpty
then answer goError with "OK"
end nouseUp

Chapter 9 discusses the r et ur n statement. Appendix A contains information
about external commands.

Result 331

CHAPTER 11

Functions

Round
SYNTAX
the round of factor
r ound(expression)
Factor and expression yield numbers.
EXAMPLE
put round(resultVariable) into field 1
DESCRIPTION
The r ound function returns the source number rounded off to the
nearest integer.
Any odd integer plus exactly 0.5 rounds up; any even integer (or 0) plus exactly
0.5 rounds down. If the source number is negative, HyperCard internally
removes the negative sign, rounds its absolute value, then puts the negative
sign back on.
SCRIPT

332

The following function handler rounds off an amount to the nearest dollar:

function roundToDol | ar anobunt
set nunberFormat to ".00" -- sets dollar format
return round(anmount)

end roundToDol | ar

Round

CHAPTER 11

Functions

ScreenRect
SYNTAX
the screenRect
screenRect ()
EXAMPLE
put the screenRect into nenulLoc
DESCRIPTION
The scr eenRect function returns the rectangle of the screen in which
HyperCard’s menu bar is displayed; the value returned is four integers,
separated by commas, representing the pixel offsets of the left, top, right,
and bottom edges, respectively, from the top-left corner of the screen.
Seconds
SYNTAX
the seconds
seconds()
EXAMPLE
put (the seconds-startTime) into runTine
DESCRIPTION

The seconds function returns an integer showing the number of seconds
between midnight, January 1, 1904, and the current time set in your Macintosh.
The seconds function can be abbreviated secs.

ScreenRect 333

CHAPTER 11

Functions

SCRIPT

The following example handler counts the number of seconds the user holds
down the mouse button:

on nouseDown
put the long tine into now -- what tine is it now?
convert now to seconds
wait while the nouse is down
-- wait until nouse is rel eased
put the seconds-now into nsg
-- how many seconds have el apsed?
end nouseDown

NOTE

”

See also the convert command in Chapter 10, “Commands.

SelectedButton

SYNTAX
the sel ectedButton of family
sel ect edBut t on(family)

Family specifies a card or background button family.

EXAMPLES

put the selectedButton of card famly 1
get the selectedButton of famly 4 of card 4

334 SelectedButton

CHAPTER 11

Functions

DESCRIPTION
The sel ect edBut t on function returns the descriptor of the currently high-
lighted button in the specified card or background button family, such as
card button 3.If nobutton in the family is highlighted, sel ect edBut t on
returns empty.

NOTE
To change the value returned by sel ect edBut t on for a family, set the
hi | i t e property of one of the buttons. The sel ect command has a different
effect: sel ect button 1 chooses the Button tool and selects the specified
button for editing.

SelectedChunk

SYNTAX
the sel ect edChunk
sel ect edChunk()

EXAMPLES
get sel ect edChunk()
put the sel ect edChunk

DESCRIPTION

The sel ect edChunk function returns a chunk expression describing the
location of the selected text or the insertion point in a card or background field.
For selected text, it is in the form of first character selected to last character
selected of the field containing the selected text: for example, char 7 to 15
of card field 3.

SelectedChunk 335

NOTES

CHAPTER 11

Functions

If no text is selected but the insertion point is in a field, sel ect edChunk
returns the number of the character on either side of the insertion point in
reverse order with the highest number first. For example, if the insertion point
is located between characters 9 and 10 in card field 2, sel ect edChunk returns
char 10 to 9 of card field 2.If nothing is selected and the insertion
point is not in a field, it returns enpt y.

If you use the sel ect edChunk() form, be sure to leave the parentheses
empty or you will get an error message.

Changing the highlight state of a button (clicking a button with autoHi l i te
set tot r ue) deselects the text and causes the sel ect edChunk function to
return empty. Many other actions, such as clicking the card, clicking a locked
field, or running an i dl e message handler that periodically changes some
part of the display, also deselect the text, so you should put the result of

sel ect edChunk into a container before any other action takes place.

You can put the sel ect edChunk result into the Message box or other container
from a script, but you get an empty result if you make a sel ect edChunk
function call from the Message box. This is the correct result of the call, since
typing in the Message box and pressing the Return key or Enter key deselects
any selected text.

You can get and set the text properties t ext Font , t ext Si ze, and t ext Styl e
of the sel ect edChunk function. See Chapter 12, “Properties,” for more
information about the text properties.

SelectedField

SYNTAX

336

the sel ectedField
sel ect edFi el d()

SelectedField

EXAMPLES

DESCRIPTION

NOTES

SelectedLine

CHAPTER 11

Functions

get sel ectedFiel d()
put the selectedField

The sel ect edFi el d function returns the descriptor of the field containing the
selected text or the insertion point. If the selection or insertion point is in the
Message box, sel ect edFi el d returns the string message box.

Changing the highlight state of a button (clicking a button withautoHi l'i te
set tot r ue) deselects the text and causes the sel ect edFi el d function to
return empty. Many other actions, such as clicking the card or clicking a locked
field, also deselect the text, so you should put the result of sel ect edFi el d
into a container before any other action takes place.

You can put the sel ect edFi el d result into the Message box or other
container from a script, but you get an empty result if you make a

sel ect edFi el d function call from the Message box. This is the correct
result of the call, since typing in the Message box and pressing the Return
key or Enter key deselects any selected field.

The sel ect edFi el d function does not apply to list fields.

SYNTAX

the sel ectedLi ne [of button| field]
sel ect edLi ne([button| field])

Button is a pop-up style button descriptor, and field is a field descriptor.

SelectedLine 337

EXAMPLES

DESCRIPTION

NOTES

338

CHAPTER 11

Functions

get sel ectedLi ne()
put the selectedLine of card field 3
put word 2 of (selectedLine(btn 1))

For pop-up buttons, the sel ect edLi ne function returns a chunk expression
describing the currently selected line of the button’s contents as a string in
the form

|'i ne number of card|bkgnd button number

For fields specified explicitly, the sel ect edLi ne function returns a chunk
expression describing the line containing the selected text or insertion point
in the form

| i ne number to number of card| bkgnd field number

If no field or button is specified, the sel ect edLi ne function returns a chunk
expression describing the line of a field or the Message box that contains the
current selection or insertion point. The expression is of the form

I i ne number of card|bkgnd field number

Lines in fields are defined as ending with the return character, and because text
can wrap in fields, there may be several lines of text on the screen between
return characters. For example, | i ne 8 always specifies the text between the
seventh and eighth return characters.

The sel ect edLi ne function can also be spelled sel ect edLi nes.

For fields other than list fields, many actions, such as clicking a button or other
field, deselect the text, so you should put the result of sel ect edLi ne into a
container before any other action takes place. In contrast, list fields retain their
sel ect edLi ne value until the user changes it specifically.

SelectedLine

CHAPTER 11

Functions

If no lines are selected in an explicitly specified field, sel ect edLi ne returns
empty. If no field or button is specified with the function call, and there is no
current selection or insertion point, sel ect edLi ne returns empty.

SCRIPT
The following handler belongs in a list field (aut oHi | i t e, | ockText , and
dont Wap aretrue; mul ti pl eLi nes in this field should be f al se). Each line
in the list field contains a glossary term. Each term corresponds to a card in the
glossary stack, and the terms can be located by card number in the stack (that
is, the term in line 2 of the field corresponds to card 2 of the glossary stack).
on nouseUp
put the selectedLine of me into selline
put word 2 of sellLine into whichEntry
select Iine O of me -- desel ect
go card whichEntry of stack "d ossary” in a new w ndow
end nouseUp
SelectedLoc
SYNTAX
the sel ectedLoc
sel ect edLoc()
EXAMPLES

get sel ectedLoc()
put the sel ectedLoc

SelectedLoc 339

DESCRIPTION

Selected Text

CHAPTER 11

Functions

The sel ect edLoc function returns a point at which the selected text
begins. The sel ect edLoc function returns the point as two comma-
separated integers that represent the offset from the top-left corner of
the card to the bottom (baseline) left of the selected text.

The value returned by the sel ect edLoc function is the same as the
value returned by the TEGet Poi nt routine, which is described in Inside
Macintosh: Text.

SYNTAX

EXAMPLES

DESCRIPTION

340

the sel ectedText [of button| field]
sel ect edText ([button| field])

Button is a pop-up style button descriptor, and field is a field descriptor.

get sel ectedText(card field 1)
put the sel ect edText
get the sel ectedText of button "My Pop-Up Button”

The sel ect edText function returns the currently selected text in a field or
pop-up button specified with the function call. If no field or button is specified,
sel ect edText returns the text of the current selection in a nonlist field or the
Message box. If there is no text selected, sel ect edText returns empty.

SelectedText

NOTES

ShiftKey

CHAPTER 11

Functions

When no field or button is specified, sel ect edText returns the same result as
the selectionorthe value of the sel ectedChunk.

For fields other than list fields, many actions, such as clicking a button or other
field, deselect the text, so you should put the result of sel ect edLi ne into a
container before any other action takes place. In contrast, list fields retain their
sel ect edLi ne value until the user changes it specifically.

You can put the sel ect edText result into the Message box or other container
from a script, but you get an empty result if you make a sel ect edText
function call from the Message box. This is the correct result of the call, since
typing in the Message box and pressing the Return key or Enter key deselects
any selected text.

SYNTAX

EXAMPLE

DESCRIPTION

t he shiftKey
shi ft Key()

if the shiftKey is down then put -
nuniroChar (char ToNun({nsg) - 32) into nsg

The shi f t Key function returns the constant up if the Shift key is not pressed,
down if it is pressed.

ShiftKey 341

SCRIPT

NOTE

342

CHAPTER 11

Functions

The following handlers in the script of a field enable the user to change
uppercase characters to lowercase and vice versa. The user selects a chunk of
text (not including any Return characters) and presses Enter. If the Shift key is
down, the script changes the case of the characters.

on enterlnField
if the shiftKey is down then
t oggl eCaps the sel ect edChunk, t he sel ect edText
end if
pass enterlnField
end enterinField

on toggl eCaps theChunk, t heText
if theChunk is enpty or =
(word 2 of theChunk > word 4 of theChunk)
then exit toggl eCaps
repeat with i = 1 to | ength(theText)
put swapcase(char i of theText) into -
char i of theText
end repeat
do "put" && quote & theText & quote =
&& "into" && theChunk
end toggl eCaps

function swapcase theChar
get char ToNun(t heChar)
if it 265 and it < 90 then return numlfoChar (it +32)
if it 297 and it < 122 then return numloChar (it - 32)
return theChar

end swapCase

See also the commandKey and opt i onKey functions earlier in this chapter.

Shiftkey

CHAPTER 11

Functions

Sin
SYNTAX
the sin of factor
si n(expression)
Factor and expression yield numbers.
EXAMPLE
put the sin of 2 -- puts 0.909297 into the Message box
DESCRIPTION
The si n function returns the sine of the angle that is passed to it. The angle
must be expressed in radians.
NOTE
Radians can be converted to degrees by multiplying by 180 and dividing the
result by the value of the constant pi .
Sound
SYNTAX
the sound
sound()
EXAMPLE

wait until the sound is "done"

Sin 343

DESCRIPTION

SCRIPT

NOTES

344

CHAPTER 11

Functions

The sound function returns the name of the sound resource currently playing
(such as " boi ng") or the string " done" if no sound is currently playing. The
sound function enables you to synchronize sounds with other actions, because
in most cases scripts continue to run while sounds play. In the event of a
low-memory situation, such as when playing a large sound while a large Home
stack or several other stacks are in use and HyperCard is set to the default
memory allocations, HyperCard may suspend other actions until the sound is
finished playing. Increasing HyperCard’s memory allocation should alleviate
this problem.

The following example handler repeats a series of visual effects until a tune
specified by the pl ay command finishes:

on boogi e
pl ay "harpsichord" tenmpo 200 -
"ce ggq fe ee de ce gq fe ee ce gq fe ee ce"
repeat until the sound is "done"
vi sual effect dissolve to black
vi sual effect zoom open to white
vi sual effect barn door close to card
go this card
end repeat
end boogi e

The " done" string is returned as a literal; it’s not a HyperTalk constant like
uportrue.

See also the pl ay command in Chapter 10.

Sound

CHAPTER 11

Functions

Sqrt
SYNTAX
the sqrt of factor
sqr t (expression)
Factor and expression yield numbers.
EXAMPLE
put the sqrt of nsg
-- converts the nunber in nsg to its square root
DESCRIPTION
The sqrt function returns the square root of the positive number passed to it.
If you pass a negative number, you get the result -NAN(001) , which means
“not a number.”
Stacks
SYNTAX
the stacks
stacks()
EXAMPLE
put the stacks into card field 2
DESCRIPTION

The st acks function returns a return-delimited list of the pathnames of all the
currently open stacks. The stack returned in the first line is the active stack.

Sqgrt 345

StackSpace

CHAPTER 11

Functions

SYNTAX

t he stackSpace
st ackspace()

EXAMPLE
put the stackSpace into howMich
DESCRIPTION
The st ackSpace function returns an integer that represents the space
remaining on the Macintosh operating system stack. Stack in this case
refers to an internal data structure rather than a HyperCard stack.
Sum
SYNTAX
sum(list)
List is a sequence of comma-separated expressions that yield numbers, or itis a
single container that contains such a sequence.
EXAMPLE
get sum (1,2, 3,4)
DESCRIPTION
The sumfunction returns the sum of a list of numbers passed to it. If the source
of the list is a container with more than one line in it, only the first line is used.
346 StackSpace

CHAPTER 11

Functions

SystemVersion

SYNTAX
t he systenVersion
syst enVer si on()

EXAMPLE
put the systenVersion

DESCRIPTION
The syst emVer si on function returns a decimal string that represents the
running version of system software.
You might use this function to determine if a particular HyperCard command
or handler will run correctly under that version of the software.

SCRIPT
The following code makes sure that the machine that HyperCard is running on
is using System 7; if not, HyperCard posts an appropriate message:
if the systenVersion < 7
then answer "This stack requires System 7." with "Quit"
doMenu "quit Hypercard"

Tan

SYNTAX

the tan of factor
t an(expression)

Factor and expression yield numbers.

SystemVersion 347

CHAPTER 11

Functions

EXAMPLE
put the tan of 2 -- puts -2.18504 into the Message box
DESCRIPTION
The t an function returns the tangent of the angle that is passed to it. The angle
must be expressed in radians.
NOTE
Radians can be converted to degrees by multiplying by 180 and dividing the
result by the value of the constant pi .
Target
SYNTAX
the target
EXAMPLE
if the target is "card id 2875" then pass nmouseUp
DESCRIPTION

The t ar get function returns a string indicating the original recipient of the
message. The string returned is one of the following:

stack "mname"

bkgnd of card "name"|i d number
card "name" | i d number

bkgnd field "name"|id number
card field "name"|id number
bkgnd button "name"|i d number
card button "name"|id number

348 Target

CHAPTER 11

Functions

For example, the t ar get function enables you to tell, in a mouseUp handler in
a background, whether

= the mouse was clicked over a field or button (which either would have had
no mouseUp handler or would have passed the message on explicitly): t he
t ar get would return the button or field name, if it has one, or ID number
if not

= the mouse was clicked outside the area of all buttons and fields: t he
t ar get would return the card name, if it has one, or ID number if not

= the message was sent directly to the background with the send command:
t he target would return the background name, if it has one, or ID
number if not

You canuse t he target in place of an object descriptor to determine any of
the target’s properties:

get the short nanme of the target

NOTES
The send command resets the value of the target to the value of the object the
message is being sent to.
If the target is a button or field, the expression t ar get (without t he) evaluates
to the contents of the button or field.

Ticks

SYNTAX
the ticks
ticks()

EXAMPLE

put the ticks into clock

Ticks 349

CHAPTER 11

Functions

DESCRIPTION

The ti cks f unction returns an integer representing the number of ticks
(Y60 second) since the Macintosh was turned on or restarted.

SCRIPT

The following example handler measures how long it takes to go to the Help
stack and find the word t i cks:

on nouseUp
put the ticks into startTicks
go "HyperCard Hel p"
find "ticks"
put (the ticks - startTicks) into howLong
answer "It took" && howLong div 60-
&& "second(s) to find Help."
end nouseUp

Time

SYNTAX
t he [adjective] time
time()

Adjective can be | ong, shor t, or abbr evi at ed (or abbr ev, or abbr).

EXAMPLE
put the tinme into the Message box

350 Time

CHAPTER 11

Functions

DESCRIPTION
The t i me function returns the time as a text string. The shor t and
abbr evi at ed forms are the same, returning the hour and minutes,
such as 8: 55 AM The | ong t i e form returns seconds as well, such as
8:55:23 AM

SCRIPT
The following example records the time at which a field is updated:
on cl oseField

put return & the tine after card field "updateList”

end closeField

NOTES
An adjective can’t be used to modify the form of the t i me function that uses
parentheses.
The time string returned by the t i me function can be in either 24- or 12-hour
format depending on the time format set in the Date and Time control panel.
The time format can also be altered in the international resources of the System
file. If you are going to perform calculations on the time, you should first
convert it to the invariant seconds format. See the convert command in
Chapter 10.

Tool

SYNTAX
the tool
tool ()

EXAMPLE

if the tool is "field tool" then choose browse too

Tool 351

CHAPTER 11

Functions

DESCRIPTION
The t ool function returns the name of the currently chosen tool. Possible
values returned by the t ool function are
browse t ool oval tool
brush t ool pencil tool
bucket tool pol ygon t ool
button tool rectangl e tool
curve tool regul ar pol ygon t ool
eraser tool round rect tool
field tool sel ect tool
| asso tool spray tool
l'ine tool text tool
SCRIPT
The following example handler chooses the proper tool to manipulate a button
or field when you move the pointer over either object:
on mouseWthin -- in card, background, or stack script
if "button" is in the target and the optionKey is down
then choose button tool
else if "field" is in the target and -
the optionkKey is down
then choose field tool
end nouseWthin
NOTE

See also the choose command in Chapter 10.

352 Tool

CHAPTER 11

Functions

Trunc
SYNTAX
the trunc of factor
t r unc(expression)
Factor and expression yield numbers.
EXAMPLE
put the trunc of soneNunber into nsg
DESCRIPTION
The t r unc function returns the integer part of the number passed to it. Any
fractional part is disregarded, regardless of sign.
SCRIPT

The following example handler draws rectangles in increasing sizes, using
the t r unc function to ensure that the computed values used with the dr ag
command are integers:

on nouseUp
push card
doMenu "New Card"
reset paint
choose rectangl e tool
put 50 into |eft
put 150 into right
put 50 into top
put 150 into bottom

Trunc 353

CHAPTER 11

Functions

repeat 5 -- the drag conmand only takes integers
drag fromleft,top to right, bottom
put trunc(left/1.2) into left
put trunc(right/1.2) into right
put trunc(top/1.2) into top
put trunc(bottoni1l.2) into bottom

end repeat

choose browse tool

end nouseUp

Value
SYNTAX
the val ue of factor
val ue(expression)
Factor and expression yield any values.
EXAMPLE
put the value of field "forrmula" into field "result”
DESCRIPTION

The val ue function evaluates the string derived from factor or expression as an
expression. Note that multitoken literal expressions evaluate to themselves:

put value ("HyperCard 2.2") -- returns HyperCard 2.2

354 Value

CHAPTER 11

Functions

SCRIPT
The following example handler demonstrates the val ue function by forcing a
second level of evaluation of a variable:
on nouseUp
put "3 + 4" into expression
put expression -- yields "3 + 4"
wait 2 seconds
put val ue of expression -- yields 7
end nouseUp
Windows
SYNTAX
the wi ndows
wi ndows()
EXAMPLES
put the windows into it -- puts the w ndows val ue
-- into the variable It
wi ndows()
put the windows into card field 1
DESCRIPTION
The wi ndows function returns a return-delimited list containing the names of
all of the windows currently available to HyperCard and the current stack. The
order of the window names corresponds to the front-to-back ordering of the
windows. The windows include built-in palettes (Tool and Pattern), FatBits,
the Message box, open card windows, and external windows (for example,
Message Watcher, Navigator palette, Scroll window, Variable Watcher).
NOTE

The windows returned in the list may not currently be visible.

Windows 355

CHAPTEHR 12

Properties

This chapter describes HyperCard properties. Properties are the defining
characteristics of objects, other elements such as menus and windows,
and the HyperCard environment.

Object properties determine how objects look and act. Global properties control
aspects of the overall HyperCard environment. Painting properties control
aspects of the HyperCard painting environment, which is invoked when you
choose a Paint tool. Window properties determine how card windows, the
Message box, the Tools and Patterns palettes, and external windows are
displayed. Menu, menu bar, and menu item properties control aspects of
HyperCard menus. There are also a few properties that apply to the Message
Watcher or the Variable Watcher.

This chapter includes a set of tables that list the HyperCard properties by
category. Button properties, field properties, window properties, and so on are
each listed in a separate table. The tables are followed by complete descriptions
of all the properties in alphabetical order.

Retrieving and Setting Properties

HyperTalk lets you retrieve most properties by using the property name as a
function in a script or the Message box. You must precede the property name
with the word t he or follow it with of if it’s an object or window property.
You can’t use parentheses after the property name, as you do with built-in
functions. The following example retrieves the | ocat i on property of button 1
and puts it into the Message box:

put the loc of button 1 into nsg

Retrieving and Setting Properties 357

CHAPTER 12

Properties

You set properties with the set command:
set loc of button 1 to 100, 100

Some properties can’t be set, although other actions affect them. For example,
the size of a stack is read-only, but it can be changed by compacting it and by
adding objects.

You can get the value of most properties with the get command:

get the property of object

Most of the examples in this chapter do not include the syntax for the get
property command, because it is faster to put a property directly into a

container or variable (rather than using the get command and then the
put command).

Object Properties

You can see the value of many object properties by looking at an object’s
Info dialog box, an example of which is shown in Figure 12-1. (You bring
up an object’s Info dialog box by choosing the appropriate command from
the Objects menu.)

Figure 12-1 An object’s Info dialog box

Card Info

P veicome 0. |

Card number: 1 out of 9
Card 1D: 3916

Contains 0 card fields.
Contains 13 card buttons.

[Jcard Marked
[JDon't Search Card

(] can't Delete Card

358 Retrieving and Setting Properties

CHAPTER 12

Properties

You can also set many properties for the current object from the Info dialog
boxes. To set the properties of any object in the current stack, you use the set
command, either in a script or in the Message box.

Different HyperCard objects have different properties. For example, fields have
a property determining their text style, but cards do not.

Stack Properties

Stack properties pertain to any stack on any disk or file server currently
accessible to your Macintosh. A stack is specified as explained in Chapter 5,
“Referring to Objects, Menus, and Windows.” Settable properties of the current
stack can be manipulated from a script or through the Stack Info dialog box
invoked from the Objects menu.

The stack properties are listed in Table 12-1. More detailed information about
each property is given later in this chapter.

Table 12-1 Stack properties

Stack property name Description

cant Abort Controls whether or not the user can use
Command-period to stop execution of scripts.

cantDel ete Controls whether or not the user can delete the
specified stack.

cant Modi fy Controls whether or not the stack can be changed
in any way.

cant Peek Controls whether or not the user can look at button
or field scripts with Command-Option.

freeSi ze Determines the amount of free space of the
specified stack in bytes.

name Determines or changes the name of the specified
stack, which is its Macintosh filename.

report Tenpl at es Determines the report-printing templates of
the stack.

scri pt Retrieves or replaces the script of the
specified stack.

continued

Retrieving and Setting Properties 359

360

CHAPTER 12

Properties

Table 12-1 Stack properties (continued)

Stack property name Description

scri ptingLanguage Determines or changes the scripting language of
the stack.

si ze Determines the size of the specified stack in bytes.

version Determines the versions of HyperCard that created

and modified the specified stack.

Background Properties

Background properties pertain to any background in the current stack. The
background is specified as explained in Chapter 5, “Referring to Objects,
Menus, and Windows.” Background properties can be manipulated from a
script or from the Message box. Properties of the current background can also
be manipulated through the Bkgnd Info dialog box invoked from the Objects
menu, or in the script editor window in the case of scri pt i ngLanguage.

The background properties are listed in Table 12-2. More detailed information
about each property is given later in this chapter.

Table 12-2 Background properties

Background

property name Description

cant Del ete Controls whether or not the user can delete the
specified background.

dont Sear ch Determines whether or not the fields in a specified
background are searched with the f i nd command.

ID Determines the permanent ID number of any
background in the current stack.

name Determines or changes the name of the specified
background.

nunber Determines the number of any background in the

current stack.

continued

Retrieving and Setting Properties

CHAPTER 12

Properties

Table 12-2 Background properties (continued)

Background
property name Description
scri pt Retrieves or replaces the script of the specified

background.

scri ptingLanguage Determines or changes the scripting language of
the specified background.

showPi ct Determines whether or not the picture of the
specified background in shown.

Card Properties

Card properties pertain to any card in the current stack. The card is specified as
explained in Chapter 5, “Referring to Objects, Menus, and Windows.” You can
manipulate card properties from a script, in the Message box, or through the
Card Info dialog box invoked from the Objects menu, or in the script editor
window in the case of scri pti ngLanguage.

The card properties are listed in Table 12-3. More detailed information about
each property is given later in this chapter.

Table 12-3 Card properties

Card property name Description

cant Del ete Controls whether or not the user can delete the
specified card.

dont Sear ch Determines whether or not the fields in a specified
card are searched with the f i nd command.

I D Determines the permanent ID number of any card
in the current stack.

mar ked Determines or changes whether a specified card
is marked.

name Determines or changes the name of the

specified card.

continued

Retrieving and Setting Properties 361

362

CHAPTER 12

Properties

Table 12-3 Card properties (continued)

Card property name Description

nunber Determines the number of any card in the
current stack.

owner Returns the name of the background shared by
this card.

rect[angl e] Determines or changes the size of the rectangle
occupied by the specified card. See also Table 12-6.

script Retrieves or replaces the script of the specified card.

scri ptingLanguage Determines or changes the scripting language of
the specified card.

showPi ct Determines whether or not the picture of the

specified card is shown.

Field Properties

Field properties pertain to any card field or background field in the current
stack. The field is specified as explained in Chapter 5, “Referring to Objects,
Menus, and Windows.” You can manipulate field properties from a script
or from the Message box, or through the Field Info dialog box invoked
from the Objects menu, or in the script editor window in the case of

scri pti ngLanguage. (You must have the Field tool chosen and a specific
card or background field selected or have the insertion point in a field to
activate the Field Info dialog box.)

The field properties are listed in Table 12-4. More detailed information about
each property is given later in this chapter.

Retrieving and Setting Properties

CHAPTER 12

Properties

Table 12-4 Field properties

Field
property name

aut 0Sel ect

aut oTab

dont Sear ch

dont W ap

fi xedLi neHei ght

I D

| ocation

| ockText

mul ti pl eLi nes

nane

nunber

part Nunber

Description

Enables a field to behave as a list when its
dont W ap and | ockText property are alsot r ue.

Determines or changes whether or not the specified
nonscrolling field sends the t abKey message to the
current card.

Determines or changes whether or not the specified
field is searched with the f i nd command.

Determines or changes whether or not text at the
edge of the specified field automatically wraps
around to the next line.

Determines or changes whether or not the lines in
the specified field have a fixed line height.

Determines the permanent ID number of the
specified field.

Determines or changes the location of the
specified field.

Determines or changes whether editing of text
within the specified field in the current stack is
allowed or prevented.

Determines or changes whether or not the user can
select multiple lines in a list field.

Determines or changes the name of the
specified field.

Determines the number of the specified field.

Determines or changes the number that represents
the ordering of the buttons and fields within

their enclosing card or background. Setting this
property can have the effect of either bringing the
field closer or moving it farther (behind) other
buttons and fields.

continued

Retrieving and Setting Properties 363

364

CHAPTER 12

Properties

Table 12-4 Field properties (continued)

Field
property name

rect[angl e]

script

scri pti ngLanguage

scrol |

shar edText

showLi nes

style

text Align

t ext Font

t ext Hei ght

text Si ze

textStyle

vi si bl e

wi deMar gi ns

Description

Determines or changes the location and size of the
rectangle occupied by the specified field. See also
Table 12-6.

Retrieves or replaces the script of the specified field.

Determines or changes the scripting language of
the specified field.

Determines or changes how much material is
hidden above the top of the specified scrolling
field’s rectangle.

Determines or changes whether the text in the
specified background field appears on each card of
that background.

Determines or changes whether the text baselines
in the specified field appear or are invisible.

Determines or changes the style of the specified
field in the current stack.

Determines or changes the way lines of text are
aligned in the specified field.

Determines or changes the font in which text in the
specified field appears.

Determines or changes the space between baselines
of text in the specified field.

Determines or changes the type size in which text
in the specified field appears.

Determines or changes the style in which text in the
specified field appears.

Determines or changes whether the specified field
is shown or hidden. The default value of the visible
property istrue.

Determines or changes whether some extra space is
included at the left and right sides of each line in
the specified field (to make the text easier to read).

Retrieving and Setting Properties

CHAPTER 12

Properties

Button Properties

Button properties pertain to any card button or background button in the
current stack. The button is specified as explained in Chapter 5, “Referring to
Objects, Menus, and Windows.”

You can manipulate the properties of any button in the current stack from

a script or from the Message box. Additionally, you can manipulate the
properties of a button on the current card or background through the Button
Info dialog box invoked from the Objects menu, or in the script editor window
in the case of scri pti ngLanguage. (You must have the Button tool and

a specific card or background button selected to activate the Button Info
dialog box.)

The button properties are listed in Table 12-5. More detailed information about
each property is given later in this chapter.

Table 12-5 Button properties

Button

property name Description

autoHilite Determines or changes whether the specified
button highlights when that button is pressed.

enabl ed Determines or changes whether the specified
button appears and behaves in an enabled or
disabled state.

fam |y Groups two or more buttons together into a family
specified by the numbers 1 to 15, inclusive.

hilite Determines or changes whether the specified
button is highlighted (displayed in inverse video).

i con Determines or changes the icon for the specified
button in the current stack.

ID Determines the permanent ID number of the
specified button.

| oc[ation] Determines or changes the location of the
specified button.

name Determines or changes the name of the
specified button.

continued

Retrieving and Setting Properties 365

366

CHAPTER 12

Properties

Table 12-5 Button properties (continued)

Button
property name

nunber

part Nurber

rect[angl e]

script

scri pti ngLanguage

sharedHi lite

showName

style

text Al'i gn

t ext Font

t ext Hei ght

text Si ze

textStyle

Description

Determines the number of the specified button.

Determines or changes the number that represents
the ordering of the buttons and fields within their
enclosing card or background.

Determines or changes the location and size of the
rectangle occupied by the specified button. See also
Table 12-6.

Retrieves or replaces the script of the
specified button.

Determines or changes the scripting language of
the specified field.

Determines or changes whether the specified
background button is displayed highlighted on
all cards of that background.

Determines or changes whether the name of the
specified button (if it has one) is displayed in its
rectangle on the screen.

Determines or changes the style of the specified
button in the current stack.

Determines or changes the way lines of text are
aligned in the specified button.

Determines or changes the font in which text in the
specified button appears.

Determines or changes the space between baselines
of text in the specified button.

Determines or changes the type size in which text
in the specified button appears.

Determines or changes the style in which text in the
specified button appears.

continued

Retrieving and Setting Properties

CHAPTER 12

Properties

Table 12-5 Button properties (continued)

Button

property name Description

titlewdth Determines or changes the width of the area in
which a pop-up button’s name appears.

visible Determines or changes whether the specified

button is shown or hidden. The default value of the
visible property ist r ue.

Rectangle Properties

The properties described in this section pertain to the screen rectangles of the
menu bar, buttons and fields, the Tools and Patterns palettes (called windows in
scripts), the Scroll window, the FatBits window, card windows, stack windows,
the Message box, and external windows (if the XCMD that created the window
supports control of rectangle properties).

Ther ect angl e property itself also applies to buttons, fields, windows, and
the menu bar. The r ect angl e property is two points, the top-left and bottom-
right corners of an object’s rectangle. The points are represented as four
integers separated by commas: left (item 1), top (item 2), right (item 3), bottom
(item 4). The rectangle properties affect these four items, one at a time or two at
a time.

The rectangle properties are listed in Table 12-6. More detailed information
about each property is given later in this chapter.

Table 12-6 Rectangle properties

Rectangle

property name Description

bot t om Determines or changes the value of item 4 of the
r ect angl e property when applied to the specified
object or window.

bot t onRi ght Determines or changes items 3 and 4 of the value of the

r ect angl e property when applied to the specified
object or window.

continued

Retrieving and Setting Properties 367

368

CHAPTER 12

Properties

Table 12-6 Rectangle properties (continued)

Rectangle
property name Description

hei ght Determines or changes the vertical distance in pixels
occupied by the rectangle of the specified button or field.

left Determines or changes the value of item 1 of the
r ect angl e property when applied to the specified
object or window.

right Determines or changes the value of item 3 of the
r ect angl e property when applied to the specified
object or window.

top Determines or changes the value of item 2 of the
rect angl e property when applied to the specified
object or window.

toplLeft Determines or changes items 1 and 2 of the value of the
r ect angl e property when applied to the specified object
or window.

wi dt h Determines or changes the horizontal distance in pixels
occupied by the rectangle of the specified button or field.

Environmental Properties

Some of the global properties, such as the user Level property, can be set

on the User Preferences card of the Home stack; others, such as the

| ockMessages property, can be retrieved and set only through HyperTalk.
(However, the User Preferences card uses HyperTalk to set properties, and it
could be extended to set any of the others.) The window properties, which
pertain to the Message box and the tear-off palettes, can be set by clicking and
dragging the windows themselves, as well as through HyperTalk. Painting
properties, which pertain to the painting environment, can be controlled with
the menus and palettes that appear when a Paint tool is selected, as well as
through HyperTalk.

Retrieving and Setting Properties

CHAPTER 12

Properties

Global Properties

You use global properties to choose how particular aspects of the HyperCard
environment perform. You set global properties from any script or from the
Message box, and their settings pertain to all objects—if you set user Level to
3, for example, it remains 3 until you reset it (although a protected stack might
impose some other user level while you are in that stack).

All of the printing properties, such as pr i nt Mar gi ns, can be restored simul-
taneously to their default values with ther eset pri nti ng command,
described in Chapter 10, “Commands.”

The global properties are listed in Table 12-7. More detailed information about
each property is given later in this chapter.

Table 12-7 Global properties

Global property name Description

address Determines where your HyperCard application
is running. If you're connected to a network,
this property returns a string in the form
“zone:Macintosh:program.” If you're not on a
network, or on a network with just one AppleTalk
zone, HyperCard substitutes an asterisk (*) for the
network name.

bl i ndTypi ng Determines or changes whether you can type
messages into the Message box and send them
(execute them) without having the Message
box visible.

cursor Changes the image that appears at the pointer
location on the screen.

debugger Determines or changes the name of the current
HyperTalk debugger. Custom debuggers can be
created as XCMDs and called with HyperTalk.

di al i ngTi me Determines how long HyperCard waits before
closing the serial connection to a modem after
dialing. Time units for this property are in ticks
(1/e0th of a second) with the default time set to
180 ticks (3 seconds).

continued

Retrieving and Setting Properties 369

370

CHAPTER 12

Properties

Table 12-7 Global properties (continued)

Global property name

di al i ngVol unme

dr agSpeed

edi t Bkgnd

envi r onment

I D

itenDelimter

| anguage

| ockError Di al ogs

| ockMessages

| ockRecent

| ockScr een

Description

Determines or changes the volume of the touch
tones generated through the Macintosh speaker
by the di al command.

Determines or changes how many pixels per
second the pointer moves when manipulated
by all subsequent dr ag commands.

Determines or changes where any painting or
creating of buttons or fields happens—on the
current card or on its background.

Determines the environment of the currently
running HyperCard application; returns

devel opnent if it is the fully enabled development
version, and pl ayer if the HyperCard Player

is running.

Determines the permanent signature of HyperCard,
"WLD .

Determines what delimiter is used to separate a list
of items. HyperCard resets the delimiter to its
default, the comma, when the computer is idle.

Determines or changes the language dialect in
which HyperTalk scripts are written and displayed.

Determines or changes whether HyperCard
displays an error dialog. This property is set
tof al se atidle time, so it has no effect if you
enter it through the Message box.

Determines or changes whether HyperCard sends
system messages such as openCar d, cl oseCard,
and so on.

Determines or changes whether HyperCard adds
miniature representations to the Recent card.

Determines or changes whether HyperCard
updates the screen when you go to another card.

continued

Retrieving and Setting Properties

CHAPTER 12

Properties

Table 12-7

Global properties (continued)

Global property name

| ongW ndowTi t | es

nmessageWat cher

nunber For mat

power Keys

print Margi ns

print Text Align

pri nt Text Font

pri nt Text Hei ght

print Text Si ze

printTextStyle

scriptEditor

scri pti ngLanguage

scri pt Text Font

script Text Si ze

Description

Determines or changes whether HyperCard
displays the long name of a stack in its title bar.

Determines or changes the name of the current
message watcher. A custom message watcher can
be created as an XCMD and called with HyperTalk.

Determines or changes the precision with which
the results of mathematical operations are
displayed in fields and the Message box.

Determines or changes whether keyboard shortcuts
for painting actions are available.

Specifies the page margins to use when printing
reports and expressions.

Specifies the text alignment to use in the header of a
print report and when printing variables.

Specifies the text font to use in the header of a print
report and when printing variables.

Specifies the line height to use in the header of a
print report and when printing variables.

Specifies the text size to use in the header of a print
report and when printing variables.

Specifies the text style to use in the header of a
print report and when printing variables.

Determines or changes the current script editor
to use. A custom script editor can be created as
an XCMD and called with HyperTalk.

Determines or changes the scripting language of
the Message box.

Determines or changes which font to use in the
script editor.

Determines or changes which font size to use in the
script editor.

continued

Retrieving and Setting Properties 371

372

CHAPTER 12

Properties

Table 12-7 Global properties (continued)

Global property name Description

st acksl nUse Determines which stacks are currently in the
message-passing hierarchy.

suspended Determines whether HyperCard is currently
running in the background under MultiFinder
or System 7.

t ext Arrows Alters the function of the Right Arrow, Left Arrow,
Up Arrow, and Down Arrow keys.

traceDel ay Determines the time between execution of
statements while tracing.

user Level Sets or retrieves the value of the current HyperCard
user level.

user Modi fy Determines or changes whether or not a user can

type into fields or use Paint tools in a stack that
has been write-protected.

vari abl eWat cher Determines or changes the name of the current
variable watcher. Custom variable watchers can be
created as XCMDs and called with HyperTalk.

version Determines the version number of the HyperCard
application currently running or the versions of
HyperCard that created and modified a specified
stack.

Painting Properties

Painting properties are aspects of the painting environment invoked when you
choose a Paint tool from the Tools palette. Most of these properties are usually
manipulated from the Options and Patterns menus that appear when a Paint
tool is selected. The text attributes pertain to Paint text; they are usually
manipulated from the dialog box that appears when you double-click the Paint
Text tool in the Tools palette or when you choose Text Style from the Edit
menu. Changes to the settings made from HyperTalk are reflected on their
respective palettes and menus.

All of the painting properties can be restored to their default values simulta-
neously with ther eset pai nt command, described in Chapter 10, “Commands.”

Retrieving and Setting Properties

CHAPTER 12

Properties

The painting properties are listed in Table 12-8. More detailed information
about each property is given later in this chapter.

Table 12-8

Painting properties

Painting
property name

brush

cent er ed
filled
grid

li neSi ze

mul tiple

mul ti Space

pattern

pol ySi des

text Al'i gn

t ext Font

t ext Hei ght

text Si ze

textStyle

Retrieving and Setting Properties

Description

Determines or changes the current brush shape used by the
Brush tool.

Determines or changes the Draw Centered setting.
Determines or changes the Draw Filled setting.
Determines or changes the painting Grid setting.

Determines or changes the thickness of the lines drawn by
the line and shape tools.

Determines or changes the Draw Multiple setting.

Determines or changes the amount of space left between
edges of the multiple images drawn by the shape tools when
the mul ti pl e propertyistrue.

Determines or changes the current pattern used to fill
shapes and to paint with the Brush tool.

Determines or changes the number of sides of the polygon
created by the Regular Polygon tool.

Determines or changes the way characters are aligned
around the insertion point as you type them with the
Paint Text tool.

Determine or changes the font in which Paint text appears.

Determines or changes the space between baselines of
Paint text.

Determines or changes the font size in which Paint text
appears on the screen.

Determines or changes the style in which Paint text appears.

373

374

CHAPTER 12

Properties

Window Properties

Window properties let you find out about and change the way that the
Message box, Tools palette, Patterns palette, card window, Scroll window,
Navigator window, Message Watcher window, Variable Watcher window, stack
window, and external windows are displayed. The window names these
properties apply to are

card w ndow ndow " Navi gat or"

message [box]
message [w ndow

ndow "patterns"
ndow " Scrol | "

nsg ndow stackName
pattern w ndow ndow "t ool s"

t ool w ndow ndow "Vari abl e Wat cher"”

£ £ £ 2 £ £ =

wi ndow " Message Watcher" ndow windowName

Message can be abbreviated nsg.

The properties that apply only to the Message Watcher and Variable Watcher
are listed in Table 12-11.

The window properties are listed in Table 12-9. If the property only applies to a
specific window, it is called out in the description column. More detailed
information about each property is given later in this chapter.

Table 12-9 Window properties

Window

property name Description

ID Determines the permanent ID number of a window
in the current stack.

| oc[ation] Determines or changes the location at which the
window is displayed.

name Determines the name of the specified window.

nunber Determines the ordinal position in the window layers

of any window on your screen.

continued

Retrieving and Setting Properties

CHAPTER 12

Properties

Table 12-9 Window properties (continued)

Window

property name Description

owner of window Returns the name of the entity that created the
window; this could be HyperCard or the name of
an XCMD like Picture, etc.
Window is an expression yielding a valid window
identifier including either the name, ID, or layer
number of the window.

rect[angl e] Determines or changes the size of card and stack
window rectangles. See also Table 12-6.

scroll Determines or changes the scroll of the specified card
picture in the card window or picture in the specified
picture window.

visible Determines or changes whether a window is shown
or hidden on the screen.

zooned Determines or changes whether a window is set to its

maximum size and centered on the screen, as when
the user clicks its zoom box.

Menu, Menu Bar, and Menu Item Properties

The menu item properties described in this section pertain to any specified
menu item created with the put command. You can manipulate the properties
of menu items from a script or from the Message box.

You can use the del et e, di sabl e, and enabl e commands to delete, disable,
or enable the Tools, Patterns, Font, and Apple menus, but you cannot alter the
contents of those menus with any other HyperTalk commands. You can also
enable and disable those menus with the enabl ed property. However, you
cannot manipulate the menu items of these menus.

Since there is only one menu bar per computer screen, this HyperCard object
does not follow the HyperCard object identifier convention where objects can
be specified by name, number, and ID. However, HyperTalk now supports
both the vi si bl e and r ect angl e properties for the menu bar. Of these
properties, Vi si bl e is the only one that is modifiable. The r ect angl e proper-
ties are useful only for determining the size of the menu bar.

Retrieving and Setting Properties 375

376

CHAPTER 12

Properties

The menu, menu bar, and menu item properties are listed in Table 12-10. More
detailed information about each property is given later in this chapter.

Table 12-10 Menu, menu bar, and menu item properties

Menu property name Description

checkMar k Determines or changes the current checked value of a
specified menu item; a Boolean value.

conmmandChar Determines or changes the current character to be
used with the Command key as a keyboard shortcut
for a specified menu item. The conmandChar
property can be abbreviated cndChar .

enabl ed Determines or changes the enabled or disabled state
of a specified menu or menu item; a Boolean value.

mar kChar Determines or changes the current character that
indicates a specified menu item is checked.

menuMessage Determines or changes the current message to be sent
when a specified menu item is chosen.

[english] nane Determines and changes the language for the
specified menu or menu item name. The adjective
engl i sh lets you code tests for the names of menus
and menu items. This is a read-only property for the
Tools, Patterns, Font, and Apple menus.

textStyle Determines or changes the text style of the specified
menu item.

Message Watcher and Variable Watcher Properties

The Message Watcher and Variable Watcher properties described in this
chapter pertain to the built-in Message Watcher or Variable Watcher external
windows. You can manipulate their properties from a script or from the
Message box. You can also manipulate some Variable Watcher properties with
the mouse.

The Message Watcher and Variable Watcher properties are listed in Table 12-11.
More detailed information about each property is given later in this chapter.

Retrieving and Setting Properties

CHAPTER 12

Properties

Table 12-11 Message Watcher and Variable Watcher properties

Property name Description

hBar Loc Determines or changes the position of the horizontal bar in
the Variable Watcher window.

hi del dl e Determines or changes whether the “Hide idle” checkbox is
checked in the Message Watcher window.

hi deUnused Determines or changes whether the “Hide unused
messages” checkbox is checked in the Message Watcher
window.

rect Determines or changes the size of the Variable Watcher
window. Read-only property for the Message Watcher
window.

vBar Loc Determines or changes the position of the vertical bar in the

Variable Watcher window.

HyperCard Property Descriptions

The rest of this chapter contains all of the HyperCard properties in alphabetical
order for easy reference. The first line of each description tells which objects
(stack, background, card, field, button, rectangle) or elements (menu item,
Message Watcher, or Variable Watcher) or environment (global, window, or
painting) the property applies to.

Some of the syntax statements and examples in this chapter use the soft return
(=) character to continue long statements onto the next line. The soft return

is used here because of the line-length limitations of the page format used in
this chapter.

HyperCard Property Descriptions 377

Address

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

378

Global environment

put the address [of Hyper Card]
get address [of Hyper Card]

answer the address
put the address into HCPat hnane

You use the addr ess property to ascertain the path of the currently executing
HyperCard program. It returns the program path of your copy of HyperCard
in the format “zone:Mac:HyperCard.” For instance, if you're running
HyperCard on a computer named Quill on a network called HyperText, the
statement

put the address

yields

Hyper Text: Qui |l | : Hyper Card

If your computer is not on a network or the network only has one zone, the
addr ess property returns “*:MyMac:HyperCard”. If your computer is also not

named, it returns “*::HyperCard.” This property works only when you are
running under System 7.

The addr ess property is read-only, and it works only when HyperCard is
running under System 7.

Address

CHAPTER 12

Properties
AutoHilite
APPLIES TO
Buttons
SYNTAX
set [the] autoH lite of button to boolean
Button is an expression that yields a button descriptor. Boolean is an expression
that yields either t r ue or f al se.
EXAMPLE
set autoH lite of button 6 to true
DESCRIPTION
You use the aut oHi | i t e property to determine or change whether the
specified button highlights when that button is pressed.
NOTES

If a button is a member of a button family, then the press of the mouse button
in the button’s rectangle not only highlights that button and setsitshi l i t e
property to t r ue but also sets the hi | i t e property of the rest of the buttons in
the button family to f al se.

The effect is that the button is highlighted (displayed in inverse video) when
the user clicks it, thus giving visual feedback for the click action. If the button is
part of a button family, clicking one of the button rectangles unhighlights the
rest of the buttons in that family when the mouse button is released.

The default value of autoHi | i teisf al se.

The aut oHi | i t e property can be settot r ue or f al se from a script or by
clicking the Auto Hilite checkbox in the Button Info dialog box.

See also the hi | i t e and shar edHi | i t e properties, later in this chapter.

AutoHilite 379

CHAPTER 12

Properties
AutoSelect
APPLIES TO
Fields
SYNTAX
set [the] autoSelect of field to boolean
Field is an expression that yields a field descriptor. Boolean is an expression that
yields either t r ue or f al se.
EXAMPLE
set autoSelect of field "nyListField" to true
DESCRIPTION
You use the aut 0Sel ect property to determine or change whether the
specified field behaves as a list field.
NOTES

380

You can use the aut 0Sel ect property in conjunction with the | ockText and
dont W ap properties to make a field behave as a list. That is, if aut 0Sel ect ,
dont W ap, and | ockText aret r ue, when the user clicks on a line of text in
the field, the entire line is selected (and therefore appears highlighted). If the
mul ti pl eLi nes property is also t r ue, the user can select multiple lines

in the list field by holding down the Shift key while clicking or by dragging
the mouse.

You can determine which lines the user selects in a list field using the

sel ect edLi ne function. You can examine the contents of the lines the
user selects in a list field using the sel ect edText function. You can select
one or more lines in a list field from a script using the sel ect command.

The aut 0Sel ect property for a button or field canbe settot rue or f al se
from a script or by clicking the Auto Select checkbox in the Field Info dialog
box. When you set a field’s aut 0Sel ect property to t r ue, HyperCard auto-

AutoSelect

CHAPTER 12

Properties

matically sets the field’s dont W ap property to t r ue. When you set a field’s
dont W ap property to f al se, HyperCard automatically sets the field’s
aut oSel ect property tof al se.

See also the dont W ap, | ockText , and mul ti pl eLi nes properties, later in
this chapter.

AutoTab
APPLIES TO
Fields
SYNTAX
set [the] autoTab of field to boolean
Field is an expression that yields a nonscrolling background or card field
descriptor. Boolean is an expression that yields either t r ue or f al se.
EXAMPLE
set autoTab of field 6 to true
DESCRIPTION

You use the aut oTab property to determine or change whether the specified
nonscrolling field will send the t abKey message to the current card. When the
aut oTab property is t r ue, pressing Return with the insertion point in the last
line of that field moves the insertion point to the next field on that card.

The normal tabbing order for fields is as follows: if the field you are leaving is a
card field, the insertion point moves to the next higher-numbered card field or
the lowest-numbered background field if no higher-numbered card field exists;
if the field you are leaving is a background field, the insertion point moves to
the next higher-numbered background field or to the lowest-numbered card
field if no higher-numbered background field exists.

AutoTab 381

CHAPTER 12

Properties

NOTE
The aut oTab property can be changed from a script or by clicking the “Auto
tab” checkbox in the Field Info dialog box.
BlindTyping
APPLIES TO
Global environment
SYNTAX
set blindTyping to boolean
Boolean is an expression that yields either t r ue or f al se.
EXAMPLES
set blindTyping to true
set blindTyping to fal se
put the blindTyping -- puts current value into nessage box
DESCRIPTION
You use the bl i ndTypi ng property to determine or change whether you can
type messages into the Message box and send them (execute them) without
having the Message box visible. Blind typing is available only if the user level
is set to 5 (Scripting) and is usually set with a checkbox on the User Preferences
card of the Home stack.
NOTES

The bl i ndTypi ng property is set to the value saved on the User Preferences
card of the standard Home stack by a st ar t up handler in that stack.

If you try to type into the Message box when it’s hidden and bl i ndTypi ng is
f al se, HyperCard makes the computer beep.

382 BlindTyping

CHAPTER 12

Properties

Bottom

APPLIES TO

Buttons, fields, windows

SYNTAX
set [the] bottom of object to number
Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

nmessage [box] ornmessage [w ndow] orw ndow "nmessage"”
pattern wi ndoworw ndow "patterns" (thePatterns palette)
t ool w ndoworwi ndow "t ool s" (the Tools palette)

wi ndow "navi gator" (the Navigator palette)

scroll w ndoworw ndow "scrol | "

wi ndow " Fat bi ts"

message wat cher orw ndow "nessage wat cher”

vari abl e wat cher orwi ndow "vari abl e wat cher”

card wi ndow

Wi ndowstackName

menubar

wi ndow " Fat bi ts"

Wi ndowstackName

scroll w ndow or w ndow "scroll"

Number is an expression that yields an integer representing the vertical offset in
pixels from the top of the card window to the bottom of the specified object.
When the specified object is a card window, the offset measures from the top of
the screen. StackName is an expression that yields the name of an open stack.

Bottom 383

CHAPTER 12

Properties

EXAMPLES
set bottom of button "Mver" to 64
put bottom of card button 4
put the bottom of this card w ndow
set bottom of nessage box to 350
DESCRIPTION
You use the bot t omproperty to determine or change the value of item 4 of the
r ect angl e property (left, top, right, bottom) when applied to the specified
object or window.
NOTES
Message can be abbreviated nsg.
See also the r ect angl e property, later in this chapter.
BottomRight
APPLIES TO
Buttons, fields, windows
SYNTAX

set [the] bottonRi ght of object to point
Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

message [box] ornmessage [w ndow] orw ndow "nmessage"”
pattern w ndoworw ndow "patterns” (thePatterns palette)

384 BottomRight

CHAPTER 12

Properties

tool w ndoworw ndow "t ool s" (the Tools palette)
wi ndow "navi gator" (the Navigator palette)
message wat cher orw ndow "nessage wat cher™
vari abl e wat cher orwi ndow "vari abl e wat cher™
card w ndow

Wi ndowstackName

scroll wi ndow or wi ndow "scrol "

wi ndow " Fat bi ts"

menubar

Point is an expression that yields a list of two integers separated by a comma.
Point represents the horizontal and vertical offsets, respectively, in pixels from
the top-left corner of the card to the bottom-right corner of the specified object.
StackName is an expression that yields the name of an open stack.

EXAMPLES
set bottonRi ght of bkgnd button id 23 to 64, 100
put bottonRi ght of button "Mover"
put the bottonRi ght of w ndow "Tool s"
set bottonRi ght of message box to 250, 30

DESCRIPTION
You use the bot t onRi ght property to determine or change the value of items
3 and 4 of the r ect angl e property (left, top, right, bottom) when applied to
the specified object or window. The bot t onRi ght property can be abbreviated
bot Ri ght .

NOTES

Message can be abbreviated nsg.

See also the r ect angl e property, later in this chapter.

BottomRight 385

CHAPTER 12

Properties

Brush
APPLIES TO
Painting environment
SYNTAX
set [the] brush to number
Number is an expression that yields one of the numbers for the brush shapes
shown in Figure 12-2.
EXAMPLE
set brush to 5
DESCRIPTION

386

You use the br ush property to determine or to change the current brush shape
used by the Brush tool. It’s normally manipulated from the Brush Shape dialog
box (shown in Figure 12-2) invoked by choosing Brush Shape from the Options
menu or by double-clicking the Brush tool.

The value of the br ush property can be any integer from 1 to 32, each repre-
senting a brush shape from the Brush Shape dialog box. If you set the value of
br ush to a number lower than 1 or higher than 32, it automatically reverts to 1
or 32, respectively. The default br ush setting is 7.

Brush

CHAPTER 12

Properties

Figure 12-2

CantAbort

Brush Shape dialog box and property values

Brush
1 5 9 13 17 21 25 29
2 6 10 14 18 22 26 30
3 7 11 15 19 23 27 31
[|] s b | — : S
4 8 12 16 20 24 28 32
[] [] .

APPLIES TO

SYNTAX

Stacks

set cant Abort of stack stackName to boolean

StackName is an expression that yields a stack name. Boolean is an expression

that yields either t r ue or f al se.

CantAbort

387

CHAPTER 12

Properties

EXAMPLES
set cantAbort of this stack to true
set cant Abort of stack "Shoes and socks" to false
DESCRIPTION
The cant Abor t property pertains to any stack accessible to your Macintosh. It
controls whether or not you can use Command-period to stop execution of a
script. This property checks or unchecks the Can’t Abort option in the Protect
Stack dialog box.
NOTE
The cant Abor t property should be used with caution.
CantDelete
APPLIES TO
Backgrounds, cards, stacks
SYNTAX
set cantDel ete of object to boolean
Object is an expression that yields a valid background, card, or stack descriptor.
Boolean is an expression that yields either t r ue or f al se.
EXAMPLES

set cantDelete of first card to true
set cantDelete of this bkgnd to true
set cantDelete of this stack to fal se

388 CantDelete

CHAPTER 12

Properties

DESCRIPTION

The cant Del et e property pertains to any background, card, or stack accessible
to your Macintosh. It controls whether or not the user can delete the specified
object. The default value of cant Del et e is f al se.

For backgrounds and cards, this property checks or unchecks the Can’t Delete
option in the object Info dialog box of the specified object.

For stacks, this property checks or unchecks the Can’t Delete Stack option in
the Protect Stack dialog box. When the cant Del et e property for a stack is set
tot r ue, the Delete Stack command in the File menu is unavailable. (If the user
has checked Can’t Delete Stack, however, and a script sets cant Modi fy to
true and then f al se, Can’t Delete Stack is left checked.)

NOTE
The cant Del et e property of a stack is automatically set when the user sets
the cant Modi fy property.

CantModify

APPLIES TO
Stacks

SYNTAX
set cant Modi fy of stack t o boolean
Stack is an expression that yields a valid stack descriptor. Boolean is an
expression that yields either t r ue or f al se.

EXAMPLE

set cantMdify of this stack to true

CantModify 389

DESCRIPTION

NOTES

CantPeek

CHAPTER 12

Properties

The cant Modi f y property controls whether or not the stack can be changed in
any way. This property checks or unchecks the Can’t Modify Stack option and
the Can’t Delete Stack option in the Protect Stack dialog box. When the

cant Modi fy property for a stack is set to t r ue, the Compact Stack command
in the File menu is unavailable. (If the user has checked Can’t Delete Stack,
however, and a script sets cant Modi f y tot r ue and then f al se, Can’t Delete
Stack is left checked.)

When you set cant Modi fy for a stack from a script, you override whatever
the user last set manually in the Protect Stack dialog box. This works in reverse
as well. The user can override the script by resetting the value in the Protect
Stack dialog box. Setting cant Modi fy to f al se does not, however, override
protection provided by media that are write-protected in other ways.

See also the cant Del et e and user Modi f y properties in this chapter.

APPLIES TO

SYNTAX

EXAMPLES

390

Stacks

set cant Peek of stack stackName t o boolean

StackName is an expression that yields a stack name. Boolean is an expression
that yields either t rue or f al se.

set cantPeek of this stack to true
set cant Peek of stack "TreeFrogs" to fal se

CantPeek

DESCRIPTION

CHAPTER 12

Properties

The cant Peek property pertains to any stack accessible to your Macintosh. It
controls whether or not you can view button outlines by pressing Command-
Option, view field outlines by pressing Shift-Command-Option, or pop open
scripts by clicking the mouse button while peeking. This property also checks
or unchecks the Can’t Peek option in the Protect Stack dialog box.

Centered
APPLIES TO
Painting environment
SYNTAX
set [the] centered to boolean
Boolean is an expression that yields either t r ue or f al se.
EXAMPLES
set centered to true
set centered to false
DESCRIPTION
You use the cent er ed property to determine or to change the Draw Centered
setting. When cent er ed is set to t r ue, shapes are drawn from the center
rather than the corner. The default value of the cent er ed property is f al se.
NOTE

You can also set the cent er ed property by choosing Draw Centered on the
Options menu.

Centered 391

CheckMark

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

392

Menu items

set [the] checkMark of menultem of menu to boolean

Menultem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a menu descriptor. Boolean is an
expression that yields either t r ue or f al se.

set checkMark of nenultem "Get Back" of nenu -
"Direction"” to fal se

put the checkMark of menultem "Get Back" of menu -
"Direction"

if the checkMark of nmenultem " Get Back" of =

menu "Direction" is true then

di sabl e nenultem "Get Back" of nenu "Direction”
end if

You use the checkMar k property to set or determine whether the checkmark
character for a menu item is currently displayed. When the checkMar k
property is set to t r ue, a checkmark character appears to the left of the
menu item.

HyperCard does not automatically check or uncheck custom menu items each
time a menu item is chosen, as it does for its own standard menus. Once an
added menu item with a checkmark is chosen, the checkmark remains next to
the menu item regardless of whether it is chosen again. You need to create
handlers to keep track of the checked and unchecked menu items.

CheckMark

CHAPTER 12

Properties

If you try to set or determine the checkMar k property for a menu item that
does not exist, HyperCard displays a “No such menu item” dialog box.

NOTE
See also the cr eat e menu and put commands in Chapter 10, “Commands,”
and the mar kChar property in this chapter.
CommandChar
APPLIES TO
Menu items
SYNTAX
set [the] conmmandChar of menultem of menu to char
Menultem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a descriptor menu. Char is the
character you want to use in combination with the Command key as the
keyboard equivalent of the specified menu item.
EXAMPLES
set the commandChar of menultem "Get Back" of nenu -
"Direction" to "D
put the conmandChar of nenultem "Get Back" of nenu -
"Direction”
DESCRIPTION

You use the conmandChar property to set or determine the character to be
used in combination with the Command key as the keyboard equivalent
for a specified menu item. The character is displayed to the right side of the
specified menu item along with the Command key symbol, 35.

CommandChar 393

CHAPTER 12

Properties

Menu items usually send messages when invoked. The menu item message
is specified with the menuMessage property, which is described later in
this chapter.

CommandChar can be abbreviated cndChar .

NOTES
If you try to set or determine the comrandChar property for a menul t emthat
does not exist, HyperCard displays a “No such menu item” dialog box.
Command-key equivalents do not work for menu items that have been deleted
or disabled. However, with HyperCard’s standard menu items, you can still
send a doMenu command to invoke a menu item action even when the menu
item has been deleted.
See also the menuMessage property later in this chapter and the cr eat e
menu and put commands in Chapter 10, “Commands.”

Cursor

APPLIES TO
Global environment

SYNTAX
set cursor to cursorType
CursorType yields one of the cursor names or numbers listed in the description.

EXAMPLES

394

set cursor to 4
set cursor to plus

Cursor

CHAPTER 12

Properties

DESCRIPTION

The cur sor property determines the image that appears at the pointer
location on the screen. The cursor setting is the ID number or name of a
Macintosh ' CURS' resource, which must be available in the HyperCard file
itself or in the current stack file.' CURS' resources can be installed, removed,
and created with a Macintosh resource editor.

HyperCard resets the cursor to the one for the current tool at idle, when no
other action is happening. Each available cursor has a name, and some of them
also have a number:

Number Name

1 I-beam

2 Cross

3 plus

4 watch
hand
arrow
busy

none

SCRIPT
The following handler spins the busy cursor two full revolutions. The busy
cursor looks like a beach ball. Each time it is set, it turns 45° clockwise:
on spi nMe
repeat 16 tines
set the cursor to busy
wait 4 ticks
end repeat
end spi nMe
NOTE

You can’t get the cur sor property or use it as a function; you can only set it.

Cursor 395

Debugger

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

396

Global environment

set [the] debugger to debuggerName

DebuggerName is an expression that yields the name of the HyperCard
debugger or a custom XCMD debugger.

set the debugger to "ScriptEditor"
set the debugger to "MyDebugger"”
put the debugger

You use the debugger property to set or determine the current debugger to
use when debugging HyperTalk scripts. The default HyperTalk debugger is a
built-in XCMD named Scri pt Edi t or.

If you set a name for the debugger that HyperCard can’t find, it uses the
built-in HyperTalk debugger.

See the description of the HyperTalk debugger in Chapter 3, and see
Appendix A, “External Commands and Functions,” for more information
about custom debuggers.

Debugger

CHAPTER 12

Properties

DialingTime

APPLIES TO
Global environment
SYNTAX
set [the] dialingTine to numberOfTicks
NumberOfTicks is a positive integer representing ticks, or sixtieths of a second;
the default value is 180 (3 seconds).
EXAMPLE
set the dialingTine to 300 -- wait 5 seconds
DESCRIPTION
This property is used to designate how long HyperCard waits before closing
the serial connection to the modem after dialing.
NOTE

See also the di al command in Chapter 10, “Commands.”

DialingTime 397

CHAPTER 12

Properties

DialingVolume

APPLIES TO
Global environment
SYNTAX
set [the] dialingVolume to volume
Volume is an integer from 0 to 7, inclusive; the default value is 7.
EXAMPLE
if the dialingVolune is 7 -- too |oud
then set the dialingVolune to 4
DESCRIPTION
This property is used to control the volume of the touch tones generated
through the Macintosh speaker by the di al command.
DontSearch
APPLIES TO
Backgrounds, cards, fields
SYNTAX
set [the] dont Search of object to boolean
Object is an expression that yields any valid background, card, or field
descriptor. Boolean is an expression that yields either t r ue or f al se.
398 DialingVolume

CHAPTER 12

Properties

EXAMPLES
set dont Search of bkgnd 4 to true
put the dontSearch of bkgnd 3 into nsg
if the short nane of bkgnd field 2 of this cd is "Secrets"”

then set dont Search of bkgnd field 2 to true

DESCRIPTION
You use the dont Sear ch property to set or determine whether or not the
fi nd command searches the specified background, card, or field in the current
stack. When the dont Sear ch property of an object is set to t r ue, the f i nd
command doesn’t search that object. The default value for the dont Sear ch
property is f al se.
When the dont Sear ch property of a background is set to t r ue, the f i nd
command ignores all card or background fields on all of the cards of the
specified background.

NOTE
You can set the dont Sear ch property from a script or by clicking the Don’t
Search checkbox in the object’s Info dialog box.

DontWrap

APPLIES TO
Fields

SYNTAX

set [the] dontWap of field to boolean

Field is an expression that yields any valid field descriptor. Boolean is an
expression that yields either t r ue or f al se.

DontWrap 399

CHAPTER 12

Properties

EXAMPLE
set the dontWap of bkgnd fld 4 to true

DESCRIPTION
You use the dont W ap property to determine or change the dont W ap value
for a field in the current stack. When the dont W ap property of a field is set to
t r ue, the text in the specified field does not wrap around to the next line at the
boundary of the field. The default value for the dont W ap property is f al se
(wrap at the boundary of the field).

NOTES
You can also set the dont W ap property by clicking the Don’t Wrap checkbox
in the Field Info dialog box. When you set a field’s aut 0Sel ect property to
t r ue, HyperCard automatically sets dont W ap to t r ue. When you set a field’s
dont W ap property to f al se, HyperCard automatically sets aut 0Sel ect
tofal se.

DragSpeed

APPLIES TO
Global environment

SYNTAX
set dragSpeed to number
Number is an expression that yields a positive integer; 1 is the slowest
possible speed.

EXAMPLE
set dragSpeed to 120

400 DragSpeed

DESCRIPTION

SCRIPT

CHAPTER 12

Properties

The dr agSpeed property determines how many pixels per second the pointer
moves when manipulated by all subsequent dr ag commands.

The following handler, placed in a button’s script, creates a new card to draw
on, sets a slow dr agSpeed value, and slowly draws a diamond shape. It then
fills the diamond with a pattern, waits a short time, deletes the card, and sends
you back to the card where you started. You can change the dr agSpeed
property to drag faster by increasing the dr agSpeed value, or slower by
decreasing the value.

on nouseUp
push card
doMenu "New Card"
set dragSpeed to 60
choose |ine tool
drag from 100,50 to 50, 100
drag from 50,100 to 100, 150
drag from 100,50 to 150, 100
drag from 100, 150 to 150, 100
choose bucket tool
set pattern to 10
click at 100, 100
reset paint
wait 25 ticks
doMenu "Del ete Card"
choose browse tool
pop card
end nouseUp

Dr agSpeed affects all of the Paint tools except the Bucket and Text tools. At

idle time, HyperCard resets the dr agSpeed property to 0. In this case, a value
of 0 represents the fastest possible speed.

DragSpeed 401

CHAPTER 12

Properties

EditBkgnd

APPLIES TO
Global environment

SYNTAX
set editBkgnd to boolean
Boolean is an expression that yields either t r ue or f al se.

EXAMPLES
set editBkgnd to true
set editBkgnd to fal se

DESCRIPTION
The edi t Bkgnd property determines where any painting or creating of
buttons or fields happens—on the current card (f al se) or on its back-
ground (t r ue) . It's usually set with the Edit menu and is available only
when the user level is Painting (3) or higher. The default setting is f al se
(editing on the card).

Enabled

APPLIES TO
Menus, menu items, and buttons

402 EditBkgnd

SYNTAX

EXAMPLES

DESCRIPTION

NOTES

CHAPTER 12

Properties

set [the] enabl ed of [menultem of] menu to boolean
set [the] enabl ed of button to boolean

Menultem is an expression that yields the descriptor of a menu item that is in
the specified menu. Menu is an expression that yields a menu descriptor. Button
is an expression that yields a button descriptor. Boolean is either t r ue or f al se.

set the enabled of button "Go For It" to true

set enabled of nmenultem 4 of nmenu "Utilities" to fal se
the enabl ed of nenu "Hone"

the enabl ed of nmenultem "Repeat" of nmenu "Control"

put the enabled of the fifth nenu

You use the enabl ed property to set or determine the state (either enabled or
disabled) of a specified menu, menu item, or button. When you create any of
these, the default for the enabl ed property is t r ue and the menu, menu item,
or button appears in solid outline (active). If you set enabl ed to f al se, the
object is dimmed (disabled).

When the enabl ed of a button is f al se, it does not receive nbuseDown,
mouseSt i | | Down, nouseUp, or nouseDoubl eC i ck messages. However,
the button continues to receive houseEnt er, nouseWt hi n, and
nouseleave messages.

If you try to set or determine the enabl ed property for a menu, menu item, or
button that does not exist, HyperCard displays a dialog box informing you of
your error.

Command-key equivalents do not work on custom menu items that have
been disabled.

See also the menuMsg property in this chapter and the cr eat e nenu,
di sabl e, enabl e, and put commands in Chapter 10, “Commands.”

Enabled 403

CHAPTER 12

Properties

Environment

APPLIES TO
Global environment
SYNTAX
put [the] environnent
EXAMPLE
if the environment is "devel opment” then set userlLevel to 5
DESCRIPTION
The envi r onment property returns devel oprent if the currently running
version of HyperCard is the fully enabled development version, and pl ayer
if the HyperCard Player is running.
Family
APPLIES TO
Buttons
SYNTAX

set [the] fanily of buttonName to number
put [the] fam |y of buttonName

ButtonName is an expression that specifies either a background or card button
descriptor; if you don’t specify whether the owner of a family is a card or
background, the default owner is the card. Number is a positive integer between
1 and 15, inclusive, which represents the family number of a group of buttons;
the number 0 indicates that the specified button does not belong to a family.

404 Environment

EXAMPLES

SCRIPT

DESCRIPTION

NOTES

CHAPTER 12

Properties

set the family of button 6 to 7
set the famly of button "Home" to O --no famly

The following example handler sets up a family of radio buttons so they
automatically function properly, with only one highlighted at a time:

on setFamly

repeat withi =1to 5
set the famly of card button i to 2
end repeat

end setFamily

HyperCard uses the f ami | y property to group related buttons of a card or
background. This grouping provides a convenient means to make sure that
only one button of a group is highlighted at one time. When someone clicks
one of the buttons in a family, then that button’s hi | i t e property is set to
true and the hi | i t e property of any previously highlighted button in that
family is automatically set to f al se.

You can assign any number of buttons to a family and can have up to 15
families of buttons on any card or background. You can use the set command
to assign a button to a family from a script, or you can do it manually by using
the Family pop-up menu in each button’s Button Info dialog box.

Buttons can be members of either a family of background buttons or a family
of card buttons but cannot belong to both families. A group of card buttons of
family 6 are totally unrelated to the family 6 background buttons.

You can also use the Family pop-up menu in the Button Info dialog box to
assign a family to a button. When you assign a button to a family, HyperCard
sets its aut oHi | i t e property to t r ue. HyperCard preserves the state of the

Family 405

CHAPTER 12

Properties

aut oHi | i t e property of a button existing prior to assigning a family; if you
later select None in the Family pop-up menu, HyperCard restores the former
aut oHi | i t e state.

See also the sharedHi | i t e and aut oHi | i t e properties in this chapter.

Filled

APPLIES TO
Painting environment

SYNTAX
set [the] filled to boolean
Boolean is an expression that yields either t r ue or f al se.

EXAMPLES
set filled to true
set filled to false

DESCRIPTION
You use the fi | | ed property to determine or to change the Draw Filled
setting. When fi | | ed ist r ue, the current pattern on the Patterns palette
is used to fill shapes as they are drawn. The default value of the fi | | ed
property is f al se.

NOTE

You can also set the f i | | ed property by choosing Draw Filled from the
Options menu.

406 Filled

CHAPTER 12

Properties

FixedLineHeight

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTES

Fields

set [the] fixedLineHeight of field to boolean

Field is any expression that yields the descriptor of a field. Boolean is an
expression that yields either t r ue or f al se.

set the fixedLineHeight of field 6 to true
get fixedLi neHei ght of bkgnd field 3

i f fixedLineHeight of field 6 is false then
put "fixedLi neHei ght is fal se"
end if

You use the f i xedLi neHei ght property to determine or specify whether a
field has fixed line spacing when the text is of different sizes. If widely varying
sizes of text are going to be used in a field, the value of the f i xedLi neHei ght
property needs to be set to f al se. The default setting of f i xedLi neHei ght
isf al se.

You can also change the value of the f i xedLi neHei ght property by clicking
the Fixed Line Height checkbox in the Field Info dialog box.

The f i xedLi neHei ght property is t r ue for fields created with versions
of HyperCard earlier than 2.0. When the same stacks are converted to the
HyperCard 2.0 format, f i xedLi neHei ght remainstr ue.

FixedLineHeight 407

CHAPTER 12

Properties

The f i xedLi neHei ght property is set to t r ue when showLi nes is set to
true.Iffi xedLi neHei ght isset tof al se, showLi nes is also set to f al se.

See the t ext Si ze property, later in this chapter, for more information on how
to set different sizes of text in fields.

FreeSize

APPLIES TO
Stacks

SYNTAX
put [the] freeSize of stack stackName [into container]
StackName is an expression that yields any stack name currently available
to HyperCard, and container is any field, variable, the selection, or the
Message box.

EXAMPLE
put freeSize of stack "dogfeathers"” into field "Size"

DESCRIPTION
You use the f r eeSi ze property to determine the amount of free space of the
specified stack in bytes. (Free space changes in a stack each time you add or
delete an object.)

SCRIPT

408

The following handler compacts a stack based on a specified f r eeSi ze value:

on cl oseStack

if the freeSize of this stack > 24000
then doMenu " Conpact Stack”

end cl oseSt ack

FreeSize

CHAPTER 12

Properties

NOTE
The f r eeSi ze property can be changed only by choosing Compact Stack from
the File menu (or executing the HyperTalk command doMenu Conpact
St ack), which changes its value to 0, or by editing the stack.

Grid

APPLIES TO
Painting environment

SYNTAX
set [the] grid to boolean
Boolean is an expression that yields either t r ue or f al se.

EXAMPLES
set grid to true
set grid to fal se

DESCRIPTION
You use the gr i d property to determine or to change the painting grid setting.
When the value of gri d is t r ue, movement of the Rectangle, Round Rect,
Oval, and Polygon Paint tools is constrained to 8-pixel intervals. The default
value of the gri d property is f al se.

NOTE

You can set the gr i d property from a script or by choosing Grid from the
Options menu.

Grid 409

CHAPTER 12

Properties

HBarLoc

APPLIES TO
Variable watcher windows

SYNTAX
set [the] hBarLoc of wi ndow "Variable Watcher" to number
Number is an expression that yields a positive integer that represents the offset
in pixels from the bottom of the Variable Watcher window title bar to the
horizontal bar in the window.

EXAMPLES
set the hBarLoc of wi ndow "Variable Watcher" to 123
put the hBarLoc of w ndow "Variabl e Watcher"

DESCRIPTION
You use the hBar Loc property to determine or to change the current position
of the horizontal bar in the Variable Watcher window. The horizontal bar
determines how many of the variable name and value fields are visible in the
Variable Watcher window.

NOTES

410

The built-in Variable Watcher window is a HyperCard XCMD. It can
be replaced with a custom variable watcher XCMD by setting the
vari abl eWat cher property to the name of a variable watcher XCMD.

Custom variable watcher XCMDs can respond to or ignore the hBar Loc
property.

For more information about creating and calling a custom variable watcher
XCMD, see Appendix A, “External Commands and Functions.”

See also the description of the Variable Watcher in Chapter 3, “The Scripting
Environment,” and the r ect , var i abl eWat cher, and vBar Loc properties,
later in this chapter.

HBarLoc

CHAPTER 12

Properties

Height
APPLIES TO
Buttons, cards, fields, menu bar, windows
SYNTAX
set [the] height of object to number
put [the] height of object
Object is an expression that yields any valid button, card, field, or window
descriptor, or the word menubar.
Number is an expression that yields a positive integer. Number represents the
total number of pixels in the vertical height of the specified object.
EXAMPLES
set the height of bkgnd button 2 to 60
set the height of bkgnd field "phoneList" to 220
put the height of w ndow "Hone"
set the height of cd windowto height of cd w ndow div 2
DESCRIPTION
You use the hei ght property to determine or change the vertical distance in
pixels occupied by the rectangle of the specified button, field, or window. You
can change the height of a button, field, or window rectangle with the set
command.
When you set the height of a button, field, or window, its | ocat i on property
(center coordinate) remains the same.
NOTE

See also the r ect angl e property, later in this chapter.

Height 411

CHAPTER 12

Properties

Hideldle
APPLIES TO
Message watcher windows
SYNTAX
set [the] hideldle of w ndow messageWatcher t o boolean
MessageWatcher is an expression that yields the name of a message watcher
window. Boolean is an expression that yields either t r ue or f al se.
EXAMPLES
set the hideldl e of window "Message Watcher" to true
put hideldle of wi ndow "Message Watcher™
DESCRIPTION
You use the hi del dl e property to determine or change whether the “Hide
idle” checkbox is checked in a message watcher window.
The name of the message watcher window can be either the built-in
HyperCard Message Watcher, wi ndow " Message Wat cher ", or the name of
a custom message watcher window that supports a “Hide idle” checkbox.
NOTES

412

See also the description of the Message Watcher in Chapter 3, “The Scripting
Environment.” For more information about creating a custom message watcher
XCMD, see Appendix A, “External Commands and Functions.”

See also the hi deUnused and messageWat cher properties, later in
this chapter.

Hideldle

HideUnused

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

Message watcher windows

set [the] hideUnused of w ndow messageWindow t o boolean

MessageWindow is an expression that yields the name of a message watcher
window. Boolean is an expression that yields either t r ue or f al se.

set the hideUnused of wi ndow "Message Watcher" to true
put hi deUnused of wi ndow "Message Watcher™

You use the hi deUnused property to determine or change whether the “Hide
unused messages” checkbox is checked in a message watcher window.

The name of the message watcher window can be either the built-in
HyperCard Message Watcher, wi ndow " Message Wt cher", or the name
of a custom message watcher window that supports the “Hide unused
messages” checkbox.

See also the description of the Message Watcher in Chapter 3, “The Scripting
Environment.” For more information about creating a custom message watcher
XCMD, see Appendix A, “External Commands and Functions.”

See also the hi del dl e and messageWat cher properties in this chapter.

HideUnused 413

CHAPTER 12

Properties
Hilite
APPLIES TO
Buttons
SYNTAX
set [the] hilite of button to boolean
Button is an expression that yields a background button or card button
descriptor. Boolean is an expression that yields either t r ue or f al se.
EXAMPLES
set hilite of button "You're on" to true
put the hilite of bkgnd button 3
DESCRIPTION
You use the hi | i t e property to determine or to change whether the specified
button is highlighted (displayed in inverse video). The default value of the
hi | i t e property is f al se. To see what highlighting for the various button
styles looks like, see the HyperCard Reference.
NOTES

414

The hi | i t e property can be changed using the set command, either from a
script or from the Message box, or, if the aut oHi | i t e property ist r ue, by
pressing the button. In that case, for all styles of buttons except checkboxes and
radio buttons, the hi | i t € property becomes t r ue when you press the button,
and it becomes f al se when you release it.

For checkboxes and radio buttons with their aut oHi | i t e property set to
true, the hi | i t e property toggles to its opposite state when the button is
clicked and stays that way until it is clicked again. That is, when a checkbox
is highlighted, it appears with an “X” checkmark in its box; when it’s not
highlighted, the checkmark does not appear. If aut oHi | i t e ist r ue, an
unselected checkbox displays an “X” when you click it; if you click it again,

Hilite

CHAPTER 12

Properties

the “X” disappears. The appearance of the checkmark correlates to the state
of the button’s hi | i t @ property. The situation is similar for radio buttons,

except that the t r ue highlighted state is indicated by a solid dot inside the

button’s circle.

See also the description of theautoHi lite,fam | y,andsharedHilite
properties in this chapter.

Icon
APPLIES TO
Buttons
SYNTAX
set [the] icon of button to designator
Button is an expression that yields a background or card button descriptor.
Designator yields the ID number of an available icon resource or the name
of an icon (if it has one).
EXAMPLES
set icon of button "Instant” to 5005
set icon of button "Instant” to "DoGood"
put the icon of button "lnstant"
DESCRIPTION

You use the i con property to determine or to change the icon, if any, that is
displayed with the specified button. If a button has no icon, the i con property
is 0. An icon is identified by its ID number or by its name, if it has one.

Icons are small images that exist as Macintosh files and are editable with the
HyperCard icon editor. For an icon to be displayed on a button, its resource
must be available in the current stack, another stack in the hierarchy, or the
HyperCard application.

Icon 415

NOTES

ID

CHAPTER 12

Properties

The icon can also be changed by clicking the Icon button in the Button Info
dialog box, which brings up another dialog box that displays the available
icons graphically. When you click an icon in the icon display dialog box, the ID
and name are displayed in the upper-left corner. The icon name is displayed in
the dialog box only if the icon has a name.

If you use the put command with the i con property, you get the ID number of
the icon, not the name. You cannot retrieve an icon name for a button.

APPLIES TO

SYNTAX

EXAMPLES

416

Backgrounds, buttons, cards, fields, menus, windows, HyperCard

put [the] [adjective] 1D of object | windowName | HyperCard -
[nto container]

Adjective is one of the | ong, short, and abbr evi at ed modifiers as described
in the section “Object ID Numbers” in Chapter 5. Object is an expression

that yields any valid background, button, card, or field descriptor. WindowName
yields a valid window descriptor. A container is the selection, a field, a variable,
or the Message box.

put the 1D of HyperCard

put the long ID of bkgnd 3

if the ID of bkgnd 1 is 2282 then answer "Wl cone Hone"
put the short ID of card 35

put the id of field 1 into nsg

put the I D of bkgnd button 3 into field "Button |Ds"
put the short ID of card 35 after line 2 of field 2
put the id of w ndow "DogPicture"

CHAPTER 12

Properties

DESCRIPTION

You use the | D property to determine the permanent ID number of any
background, button, card, field, or window in the current stack.

You can also use the | D property to determine the application signature of
HyperCard. Unless the current stack is running under a stand-alone applica-
tion whose application signature has been modified, the | D property of
HyperCard will contain W LD.

You can’t use the set command to change the ID of any object.

SCRIPT

The following script uses the name and | D properties to produce a list of
button names and IDs. You need to create a field for the button name and
ID list.

on nouseUp
put enpty into field "MField"
repeat with nums = 1 to the nunber of buttons
put "Button nanme" && quote & short nanme of button -
nuns & quote && "has id nunmber" && id of button -
nuns & return after field "MField"
end repeat
end nouseUp

You can place the script in any button or field, then click the button or field

to get a list of all the buttons names and IDs on the current card. If you put

the script into the same field you want to put the list into, be sure to set

the | ockText property of that field to t r ue, so that the field receives the
nmouseUp message. Also, change all references to the field descriptor f i el d
"MFi el d" to match the descriptor for the field you created for the list. If the
field created for the list is the same field the script is in, you can use e in place
offield "MField".

NOTES

When HyperCard retrieves the ID of a window, field, or button, it ignores any
adjectives and always reports the ID as an unlabeled number. For instance, if

ID 417

CHAPTER 12

Properties
you execute the following command line from the Message Box, you will get a
number result like the one shown on the line following it:

put the long id of w ndow "Home"
10883218

If you ask for a long ID of a card, HyperCard returns a labeled response, as
shown in this example:

put the long id of cd 1
The response returned is
card id 3916 of stack "oh dear: Desktop Fol der: Hone"

You should also be aware that a window must already exist before you call for
its ID. Many windows go out of existence when you click their close boxes and
are created by XCMDs each time you call for them.

ItemDelimiter

APPLIES TO

Global environment

SYNTAX
the itenDelimter
set [the] itenmDeliniter to character
Character yields an ASCII character or a constant that represents an
ASCII character.
EXAMPLES

if the itenDelimter <> comm
then set the itenDelinmter to comma

set itemDelimter to "#"

418 ItemDelimiter

DESCRIPTION

SCRIPT

CHAPTER 12

Properties

You use the i t enDel i mi t er property to change the character that delimits
items in a list. The default value is commg, and, if changed, the value will revert
to conmra on idle.

Changing the item delimiter has no effect on comma-delimited HyperCard
structures such as dat el t ens, | ocati on,and r ect angl e.

The following card script’s function handler returns the pathname of the
current stack without the stack name (useful when you need to refer to
other files at the same level). You can call this function handler by typing
shor t Pat h() in the Message box and then pressing Return.

function shortPath -- Card handl er
-- Save old itemdelimter value for resetting later
put the itenmDelinmiter into oldDelimter
put the value of word 2 of the long nane -
of this stack into | ongNane
-- saves: Vol une: Stacks Fol der: This Stack
-- reset itemdelimter
set itenDelinmiter to colon
delete last item of | ongNane
-- "Vol une: St acks Fol der' goes in | ongName
-- Reset delinmter
set itemDelinmiter to oldDeliniter
return | ongNane & col on

end shortPath

The following part of a script is useful for retrieving the name of a program
from a colon-delimited list on machines running system software version 7.0
or later:

set the itemDelimiter to ":"
answer program "Sel ect a progrant
get the last itemof it

IltemDelimiter 419

Language

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLE

DESCRIPTION

NOTES

420

Global environment

set | anguage to languageName

LanguageName is a text string that yields Engl i sh or a language for which
there is a HyperTalk translator resource.

set | anguage to French

You use the | anguage property to choose a HyperTalk translator, which is
a code resource that translates between HyperTalk and a foreign-language
version of HyperTalk. If the language property is not Engl i sh, when the
user invokes the script editor to view a script, HyperCard translates it to the
specified language. When the user closes the script, HyperCard translates it
back to English HyperTalk before storing it with its object.

The | anguage property refers only to the HyperTalk scripting language; it has
no effect on scripts written in other scripting languages.

The languages available depend on the script translator resources available in
the current stack, another stack in the hierarchy, or the HyperCard application.
The default setting is Engl i sh, and it’s always available.

Language

Left

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

Buttons, fields, menu bar, windows

set [the] left of object to number
Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

nmessage [box] ornmessage [w ndow] orw ndow "message"
pattern wi ndoworw ndow "patterns" (thePatterns palette)
t ool w ndoworwi ndow "t ool s" (the Tools palette)

wi ndow "navi gat or" (the Navigator palette)

scroll w ndoworw ndow "scrol |"

wi ndow " Fat bi t s"

message wat cher orw ndow "nessage wat cher”

vari abl e wat cher orwi ndow "vari abl e wat cher”

card wi ndow

wi ndowstackName

Number yields an integer that is the horizontal offset in pixels from the left side
of the card to the left side of the object. When the object is the card window, the

offset is relative to the left side of the screen. StackName is an expression that

yields the name of an open stack.

set left of button 2 to 34
put left of button 2

put the left of card field 3
set left of tool wi ndow to 65

Left

421

CHAPTER 12

Properties

DESCRIPTION
You use the | ef t property to determine or change the value of item 1 of the
r ect angl e property (left, top, right, bottom) when applied to the specified
object or window. The | ef t property of an object can also be set to a value off
the screen. Setting the | ef t property of an object to a value off the screen
makes the object seem hidden.

NOTES
The | ef t of the menu bar is a read-only property.
Message can be abbreviated nsg.
See also the r ect angl e property, later in this chapter.

LineSize

APPLIES TO
Painting environment

SYNTAX
set [the] |ineSize to number
Number yields a positive integer that is the total number of pixels in a line’s
width. Itcanbe 1, 2, 3, 4, 6, or 8.

EXAMPLE
set lineSize to 8

DESCRIPTION

422

You use the | i neSi ze property to determine or to change the thickness of the
lines drawn by the Line and Shape tools. The default value of the | i neSi ze
property is 1. If you set the value of | i neSi ze to a number lower than 1 or
higher than 8§, it automatically reverts to 1 or 8, respectively.

LineSize

CHAPTER 12

Properties

NOTE
You can also set the | i neSi ze property by choosing Line Size from the
Options menu or double-clicking the Line tool.

Location

APPLIES TO
Buttons, fields, menu bar, windows

SYNTAX

set loc[ation] of object to point
Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

nmessage [box] ornmessage [w ndow] orw ndow "message"
pattern wi ndoworw ndow "patterns" (thePatterns palette)
tool w ndoworw ndow "t ool s" (the Tools palette)

wi ndow "navi gator" (the Navigator palette)

scroll w ndoworw ndow "scrol | "

wi ndow " Fat bi t s"

message wat cher orw ndow "nessage wat cher”

vari abl e wat cher orwi ndow "vari abl e wat cher"

card w ndow

Wi ndowstackName

windows created with the pi ct ur e command

Point is an expression that yields two integers separated by a comma.
StackName is an expression that yields the name of a stack in quotation marks.

Location 423

EXAMPLES

DESCRIPTION

NOTES

424

CHAPTER 12

Properties

set loc of tool w ndow to "100, 100"

put the loc of field 3

put the loc of pattern w ndow

set loc of nsg to 30,150

set the loc of card wi ndow to 48, 90

set the loc of wi ndow "Navigator” to "45, 60"
set the loc of scroll wi ndowto "165, 45"

The | ocat i on property sets or retrieves the location at which the window or
object is displayed.

The point represents the horizontal and vertical offsets, respectively, in pixels
from the top-left corner of the card to the center of a resizable window

(a button or field) or the top-left corner of a nonresizable window (Tools
palette, Patterns palette, Message box, Navigator palette, or Scroll window),
disregarding the drag bar at the top of the window. The value for point must be
within quotation marks for the Navigator palette.

The point for a card window represents the horizontal and vertical offsets,
respectively, in pixels from the top-left corner of the screen to the top-left
corner of the card window.

The point for windows created with the pi ct ur @ command represents the
horizontal and vertical offsets, respectively, in pixels from the top-left corner of
the current card window to the top-left corner of the picture window. The
value for point must be within quotation marks.

The | ocat i on of the menu bar is a read-only property.

If you always put the value of point within quotation marks, it works with
all of the HyperCard objects and elements for which you can set the location.
An example that places quoted values in variables is shown under the

mul t i Space property, later in this chapter.

If you want to move a card on the screen, you set the | ocat i on property for
the card window of the current stack, not the location of the card.

Location

CHAPTER 12

Properties

The number that represents the horizontal offset for the card window is shifted
to the closest multiple of 16 regardless of how you set it. For example, the
statement set the | oc of cd wi ndow to 50, 90 would result in the
card location of 48, 90. It would shift to the next 16 pixels when the horizontal
value of the | ocat i on property reached the halfway point to the next higher
or lower 16 pixels. For example, a horizontal value of 38 would shift the card
window left to a horizontal offset of 32.

When you move a card window with the | ocat i on property, the system
message MoveW ndowis sent. The moveW ndowmessage is also sent when you
drag the window to a new location, zoom it in or out with the zoom box,
causing the | ocat i on property to change, or show the card window at a new
location with the show command.

See also the r ect angl e property later in this chapter; the pal ett e, pi cture,
and showcommands in Chapter 10, “Commands”; and the noveW ndow
system message in Chapter 8, “System Messages.”

LockErrorDialogs

APPLIES TO

SYNTAX

EXAMPLE

DESCRIPTION

Global environment

set | ockErrorDial ogs to boolean

Boolean is an expression that yields either t r ue or f al se.

set |l ockErrorDialogs to true

You use the | ockEr r or Di al ogs property to prevent HyperCard from
displaying error dialogs when a script causes an error. This property is set to
f al se atidle time, so it has no effect if you enter it through the Message box.

LockErrorDialogs 425

NOTES

CHAPTER 12

Properties

When the | ockEr r or Di al ogs property is set to t r ue, HyperCard sends the
message er r or Di al og errorMessage to the current card instead of displaying
the error dialog.

Errors produced through the Message box still get dialogs, regardless of the
setting of | ockEr r or Di al ogs.

LockMessages

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

426

Global environment

set | ockMessages t o boolean

Boolean is an expression that yields either t r ue or f al se.

set | ockMessages to true
set | ockMessages to fal se

You use the | ockMessages property to prevent HyperCard from sending all
open, cl ose, suspend, and r esue system messages. The default setting is
f al se. HyperCard resets | ockMessages to f al se at idle time (in effect, at
the end of all pending handlers).

Setting the | ockMessages property to t r ue speeds up execution of scripts
in which you go to cards, and those in which you create and delete cards,
backgrounds, and stacks, because it prevents HyperCard from sending

LockMessages

LockRecent

CHAPTER 12

Properties

messages such as openCar d, cl oseCar d, and so on. The | ockMessages
property does not affect newand del et e system messages such as newCar d
and del et eFi el d. Setting the | ockMessages property tot r ue also
prevents execution of handlers invoked by system messages, which may be
used to set up an environment—hiding the Message box, and so on. It's
particularly useful when you want to go to a card to retrieve or write some
information, but you don’t want to stay there.

APPLIES TO

SYNTAX

EXAMPLE

DESCRIPTION

Global environment

set | ockRecent to boolean

Boolean is an expression that yields either t r ue or f al se.

set | ockRecent to true

You use the | ockRecent property to prevent HyperCard from adding
miniature representations to the Recent Cards dialog box. (The Recent
Cards dialog box is invoked by Command-R or by choosing Recent from
the Go menu.)

The default setting is f al se. HyperCard resets | ockRecent to f al se atidle
time (in effect, at the end of all pending handlers).

LockRecent 427

CHAPTER 12

Properties

NOTES
LockRecent issettotrue when the | ockScr een property is set tot r ue
regardless of the current setting of | ockRecent . Setting the | ockRecent
property to t r ue speeds up execution of scripts in which you go to cards.
See also the next property, | ockScr een.

LockScreen

APPLIES TO
Global environment

SYNTAX
set | ockScreen to boolean
Boolean is an expression that yields either t r ue or f al se.

EXAMPLE
set |ockScreen to true

DESCRIPTION
You use the | ockScr een property to prevent HyperCard from updating the
screen when you go to another card.
The default setting is f al se. HyperCard resets | ockScr een to f al se atidle
time (in effect, at the end of all pending handlers).

NOTES

428

Setting the | ockScr een property to t r ue enables you to open different cards
without displaying them on the screen, and it speeds up execution of scripts in
which you go to cards. For example, you can lock the screen, then go to another

LockScreen

CHAPTER 12

Properties

card to read information out of a field, then return to the first card without
having the second card appear to the user.

To ensure that the display is unlocked, each set | ockScreen to true
must be balanced with a set | ockScreen to fal se.

See also the | ock and unl ock commands in Chapter 10.

LockText
APPLIES TO
Fields
SYNTAX
set [the] |ockText of field to boolean
Field is an expression that yields any valid card field or background field
descriptor. Boolean is an expression that yields either t r ue or f al se.
EXAMPLES
set the lockText of field "d ossary" to true
set the lockText of field "d ossary" to fal se
DESCRIPTION

You use the | ockText property to prevent or allow editing of text within a
field in the current stack.

When the Browse tool is selected and the pointer is moved over an unlocked
field, the pointer changes to an I-beam; clicking then lets you edit the text in
the field. If the field is locked (I ockText ist r ue), the cursor doesn’t change,
and the text cannot be edited. A locked field also receives the messages
nmouseDown, nouseSt i | | Down, and nouseUp when you click it. The default
value of | ockText isfal se.

LockText 429

NOTES

CHAPTER 12

Properties

You can also change this property by clicking the Lock Text checkbox in the
Field Info dialog box.

When the cant Modi f y property for the current stack is t r ue and the
user Modi fy property is f al se, no changes can be made in a field. When
cant Modi fyistrue,user Modi fyistrue,and| ockText isf al se, any
editing done in a field is lost when the user moves to another card.

LongWindowTitles

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

430

Global environment

set [the] | ongW ndowTitles to boolean

Boolean is an expression that yields either t r ue or f al se.

set longWndowTitles to true
set the longWndowTitles to fal se

You use the | ongW ndowTi t | es property to determine whether the stack
name or the full pathname appears in the title bar of the card window.

The default value of | ongW ndowTi t | es is f al se and shows only the stack
name in the title bar. If | ongW ndowTi t | es is set to t r ue, the full pathname
of the stack is shown in the card window title bar.

See also Chapter 5, “Referring to Objects, Menus, and Windows,” for more
information about stack names and the full pathname of a stack.

LongWindowTitles

MarkChar

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

Menu items

set [the] markChar of menultem of menu to char

Menultem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a menu descriptor. Char is an
expression that yields the checkmark character you want to display in the
menu to the left side of the specified menu item when it is chosen.

set markChar of nenultem "Bl ue" of nenu "Col ors" to >
put the markChar of nenultem 4 of the sixth nmenu

You use the mar kChar property to set or determine the checkmark character
for a menu item. When the mar kChar of a menu item is not enpt y, the menu
item’s checkMar k property is t r ue. To remove a checkmark character from a
menu item, set its mar kChar property to enpt y or set its checkMar k property
tofal se.

HyperCard does not automatically check or uncheck custom menu items each
time a menu item is chosen, as it does for its own standard menus. Once an
added menu item with a checkmark is chosen, the checkmark remains next to
the menu item regardless of whether it is chosen again. You need to create
handlers to keep track of checked and unchecked custom menu items.

If you try to set or determine the mar kChar property of a menu item that does
not exist, HyperCard displays a “No such menu item” dialog box.

See also the put command in Chapter 10, “Commands,” and the checkMar k
property, earlier in this chapter.

MarkChar 431

CHAPTER 12

Properties
Marked
APPLIES TO
Cards
SYNTAX
set [the] marked of card to boolean
Card is an expression that yields the descriptor of any card within the current
stack. Boolean is an expression that yields either t r ue or f al se.
EXAMPLES
put [the] marked of card 35
set marked of card 2 to true
if the marked of this card is true then doSonet hi ng
DESCRIPTION
You use the mar ked property to set or determine the marked state of any
card in the current or specified stack. The default value of mar ked is f al se.
A marked card or group of marked cards can be referred to in complicated
searches and when printing.
NOTES

You can also set the mar ked property with the Card Marked option in the Card
Info dialog box.

See also the mar k and unmar k commands in Chapter 10, “Commands.”

432 Marked

CHAPTER 12

Properties

MenuMessage

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

Menu items

set [the] menuMessage of menultem of menu to message

Menultem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a menu descriptor. Message is an
expression that yields a message to be sent by the menu item.

set nenuMessage of nenultem 7 of menu 10 to doMenu "Prev"
put the menuMessage of nenultem "Next" of menu "Pictures”
put "Maple" after menu "Syrups" with nmenuMsg "go card 4"

You use the menuMessage property to specify the message sent to the current
card by a specified menu item. You can also specify a menu message for a
menu item when you create a menu item with the put command.

You may respond to the choosing of menu items in your scripts in two ways.
Whenever a menu item is chosen, HyperCard sends a doMenu message. You
can respond to the choosing of menu items by writing doMenu handlers in
your scripts (this is the first way). If the doMenu message is not intercepted
by any script, HyperCard checks the menu item’s menuMessage property. If
menuMessage is not empty, HyperCard sends that message to the current
card. Therefore you can respond to the choosing of menu items by assigning
them menu messages (this is the second way). If mrenuMessage is empty,
HyperCard checks whether the item is one of its standard menu items. If it
is a standard menu item, the standard behavior of that menu item occurs.

MenuMessage 433

NOTES

434

CHAPTER 12

Properties

Custom menu items with the same name as a standard HyperCard menu item
inherit the standard behavior of the HyperCard menu item. For example, if you
add Background to a menu called Special, choosing it has the same effect as
choosing the standard Background command from the Edit menu, unless you
assign a custom menu message or intercept the doMenu message.

If you try to set or determine the menuMessage property of a menu item that
does not exist, HyperCard displays a “No such menu item” dialog box.

In the case of HyperCard'’s standard menu items, the doMenu command works
even when the item is deleted. For example, if the following handler is
executed, HyperCard exits to the Finder:

on nmouseDown
del ete menultem " Quit HyperCard" fromnmenu "File"
doMenu "Quit Hyper Card"

end nmousebDown

The menuMessage property returns values for standard HyperCard menus
only if they have been changed from the default HyperCard menu messages.
MenuMessage can be abbreviate nenuMsg.

You can’t set the menuMessage property of menu items in the Tools, Patterns,
Font, or Apple menus, except for the menuMessage property of the About
HyperCard menu item in the Apple menu, which you can set.

See also the cr eat e nmenu, del et e, doMenu, and put commands in
Chapter 10, “Commands.”

MenuMessage

CHAPTER 12

Properties

MessageWatcher

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTES

Global environment

set [the] messageWatcher to name

Name is an expression that yields a valid message watcher XCMD name.

set nessageWatcher to "M/Watcher"
put the messageWat cher

You use the nessageWat cher property to determine or to change the current
message watcher. The default value is messageVat cher, the built-in message
watcher XCMD. You display the current message watcher with the show
command or by setting the vi si bl e property of the message watcher window
totrue.

The built-in message watcher is a HyperCard XCMD. It can be replaced with a
custom message watcher XCMD by setting the messageWat cher property to
the name of a custom message watcher XCMD.

See also the description of the Message Watcher in Chapter 3, “The Scripting
Environment.”

For more information about creating a custom message watcher XCMD, see
Appendix A, “External Commands and Functions.”

MessageWatcher 435

CHAPTER 12

Properties

Multiple

APPLIES TO
Painting environment

SYNTAX
set [the] nultiple to boolean
Boolean is an expression that yields either t r ue or f al se.

EXAMPLES
set nultiple to true
set nultiple to fal se

DESCRIPTION
You use the mul ti pl e property to determine or to change the Draw Multiple
setting. When rmul t i pl e is t r ue, multiple images are drawn as you drag a
shape tool.
Tools affected by the mul t i pl e property are the Line, Rectangle, Rounded
Rectangle, Oval, and Regular Polygon tools. The default value of the
nmul ti pl e property is f al se.

NOTE
You can also set the mul t i pl e property by choosing Draw Multiple from the
Options menu. Setting mul t i pl e to t r ue puts a checkmark next to the Draw
Multiple item in the Options menu. See also the mul t i Space property,
described later in this chapter.

436 Multiple

CHAPTER 12

Properties
MultipleLines
APPLIES TO
Fields
SYNTAX
set [the] nultiplelines of field to boolean
Field is an expression that yields any valid field descriptor. Boolean is an
expression that yields either t r ue or f al se.
EXAMPLE
set the multipleLines of card field 1 to true
DESCRIPTION
You use the mul t i pl eLi nes property to determine or change whether
multiple-line selections are allowed in the field when it is configured as
a list field (that is, when itsaut oHi | i t ¢, 1 ockText , and dont W ap
properties are t r ue).
NOTES

You can set the mul t i pl eLi nes property from a script or by clicking the
Multiple Lines checkbox in the Field Info dialog box.

MultipleLines 437

CHAPTER 12

Properties

MultiSpace

APPLIES TO
Painting environment

SYNTAX
set [the] multi Space to number
Number is an expression that yields any positive integer.

EXAMPLE
set nulti Space to 12

DESCRIPTION
You use the mul t i Space property to determine or to change the amount of
space left between edges of the multiple images drawn by the shape tools
when the nul ti pl e property is t r ue. The default value of the nmul t i Space
property is 1.

SCRIPT

The following script uses the nmul t i Space and nmul t i pl e properties to create
an interesting image. It also cleans up after it is completed.

on roundyRound
doMenu " New Card"
reset paint
choose oval tool
set nultiple to true
set dragSpeed to 200
set nulti Space to 15
put "60, 25" into upperLeft
put "260, 175" into botRi ght

438 MultiSpace

Name

CHAPTER 12

Properties

put "260, 25" into upperRi ght
put "60,175" into botlLeft
drag fromupperlLeft to botR ght with shiftKey
drag frombot Ri ght to upperLeft with shiftKey
drag frombotLeft to upperRi ght w th shiftKey
drag fromupperRight to botLeft with shiftKey
wait 60 ticks
set | ockScreen to true
choose browse tool
pl ay boi ng
doMenu "Del ete Card"
doMenu "Back"
set lockScreen to fal se

end roundyRound

APPLIES TO

SYNTAX

Backgrounds, buttons, cards, fields, HyperCard, menus, menu items, stacks

set [the] name of object to objectName
set [the] name of menultem of menu to itemName
[the] [english] name of menuNumber

Object is an expression that yields a valid background, button, card, field, or
stack descriptor. ObjectName is an expression that yields any valid HyperCard
object name. The object name can be a maximum of 31 characters.

Menultem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a menu descriptor. ItemName is
an expression that yields the new text to replace the current menu item name.
MenuNumber is an expression that yields the number form of a menu descriptor.

Name 439

EXAMPLES

DESCRIPTION

NOTES

440

CHAPTER 12

Properties

put the english name of nmenu 1

put the english name of nenuitem 2 of nenu 3

set nane of this stack to "TooH p"

put the long nane of this stack into field 2

set nane of this bkgnd to "TrueGit"

put the |l ong nane of this background into field 3

put the Iong nane of field 3 into nsg

set nane of nenultem "Dogs" of nmenu "Aninmals" to "Canines"
put the nane of the third menultem of menu "Direction”
put the nanme of nmenu 8

put the nane of the third nmenu

You use the nane property to determine or to change the name of the specified
background, button, card, field, stack, or menu item. You can use the nane
property to determine the name of a menu, but not to set the name. A stack
name must be a valid Macintosh filename.

When you use the nane of menuNumber form of the name property to get the
name of a menu, the descriptor for the menu is an expression that yields a valid
number of one of the current HyperCard menus or custom menus in the menu
bar. Menus are numbered from left to right, starting with number 1 for the
Apple menu.

Using the adjective engl i sh in conjunction with the name property ensures
that you can correctly refer to menu items even after they have been localized.

If you try to retrieve an object’s name when it has none, HyperCard returns its
ID number.

If you try to modify or determine the name property of a menu item that does
not exist, HyperCard displays a “No such menu item” dialog box.

If you try to modify or determine the name property of a menu that does not
exist, HyperCard displays a “No such menu” dialog box.

Name

CHAPTER 12

Properties

You can set the name of the About HyperCard menu item in the Apple menu to
a different value.

See also the put command in Chapter 10, “Commands.”

Number
APPLIES TO
Backgrounds, buttons, cards, fields, windows
SYNTAX
put [the] nunber of object [into container]
Object is an expression that yields any valid background, button, card, or field
descriptor. Container is the selection, any field, a variable, or the Message box.
EXAMPLES
if the nunmber of this bkgnd is 2 then go next card
put nunber of last card into nsg
DESCRIPTION
You use the nunber property to determine the number of any background,
button, card, or field in the current stack.
You can’t set the number of a background, button, card, or field; the number
of an object changes when you add or delete a background, a button, a card, or
a field. The number of a field or button may also change if you change its
part Nunber property.
NOTE

See also the nunber function in Chapter 11, which returns the count (how
many) of various elements, not the descriptor number of an individual object.

Number 441

CHAPTER 12

Properties

NumberFormat

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

442

Global environment

set nunber Format to formatType

FormatType is an expression that yields the format (within quotation marks)
that is to be used for the display of numbers.

set nunberFormat to "00.##" -- display 02.21
set nunberFormat to "0" -- display 2 for the same val ue
set nunberFormat to "0." -- display 2.2

The nunber For mat property determines the precision with which the results
of mathematical operations are displayed in fields and the Message box. Use
zeros to show how many digits you want to appear, a period to show where
you want the decimal point (if at all), and number signs (#) to the right of the
decimal point in places where you want a trailing digit to appear, but only if it
has value. Use zeros to the right of the decimal point if you always want the
same number of digits to show, whether or not they have value. HyperTalk
does calculations with up to 19 digits of accuracy.

HyperCard resets the nunber For mat property to its default value,
" 0. ######" , at idle time (in effect, at the end of all pending handlers).

NumberFormat

CHAPTER 12

Properties

NOTE
The nurber For mat property has no effect on how a number is displayed
unless you perform a mathematical operation on it first (for details, see
Chapter 6, “Values”).

Owner

APPLIES TO
Card or window

SYNTAX
put [the] owner of windowlcard
Window is the name, ID, or layer number of a window, and card is the name, ID,
or positional number of a card in the current stack.

EXAMPLES
put the owner of w ndow 8
put the owner of card "Introduction”

DESCRIPTION

You can ask HyperCard to return the owner of either a card or a window. For a
window, this read-only property returns the name of the entity that created the
window. This might be HyperCard itself (as in the case of a stack window) or
the name of an XCMD like Picture, Message Watcher, or Variable Watcher. The
owner of a card is the name or ID of the background that card shares.

Owner 443

CHAPTER 12

Properties
PartNumber
APPLIES TO
Button or field
SYNTAX
put [the] partNunber of buttonlfield
set [the] partNurber of buttonlfieldt o number
Button is an expression yielding a button identifier, field is an expression
yielding a field identifier, and number is a positive integer that is less than
or equal to the number of parts in the enclosing background or card.
EXAMPLES
put the partNunber of bg btn "StackKit"
put the partNunmber of bg fld "Card Title"
set the partNunber of button "Apple Event Prinmer" to 1
-- sends that object back
DESCRIPTION

444

The par t Nurber property returns a number representing the order in which a
button or field was placed in its enclosing object. For example, the order of
buttons and fields within a card might be card field 1, card field 2, card button
1, card field 3. Even though the number of card button 1 is 1, it’s actually in the
third position within its enclosing object.

You can use par t Nunber to reset the ordering of parts within a background or
card. A smaller number than the object’s original par t Numrber sends the object
back, and a larger number brings it forward.

PartNumber

CHAPTER 12

Properties

Pattern
APPLIES TO
Painting environment
SYNTAX
set [the] pattern to number
Number is an expression that yields a positive integer in the range 1 to 40,
each representing a pattern in the Patterns palette. The patterns are shown in
Figure 12-3.
EXAMPLES
set pattern to 12
put the pattern
DESCRIPTION

You use the pat t er n property to determine or change the current pattern used
to fill shapes (including Paint text) and to paint with the Brush tool.

Figure 12-3 Patterns palette and pattern numbers

[11101]31
32
23 | 33
24 | 34
25 | 35
26 | 36
27 | 37
28 | 38
29 | 39
30 | 40

=
N
N
N

—
[o%

[EnN
i

Jany
[«2)

[y
~

=
[ee]

@oo\lc»m.boull\al—\
=
5

=
©

=
o
N
o

Pattern 445

CHAPTER 12

Properties

The pattern numbers correspond to the 40 positions in the Patterns palette, not
to a specific pattern.

NOTE
You normally set the pat t er n property from the Patterns palette. You can edit
a pattern by double-clicking it on the Patterns palette.

PolySides

APPLIES TO
Painting environment

SYNTAX
set [the] polySides to number
Number is an expression that yields a positive integer between 3 and 50. This
integer is the number of sides in the polygon.

EXAMPLE
set polySides to 12

DESCRIPTION
You use the pol ySi des property to determine or to change the number of
sides of the polygon created by the Regular Polygon tool. The default value is 4.
If you set the value of pol ySi des to a number lower than 3 or higher than 50,
it automatically reverts to 3 or 50, respectively. If you choose the circle in the
Polygon Sides dialog box, the setting becomes 0.

NOTE
You normally choose the Polygon Sides setting from a dialog box invoked by
choosing Polygon Sides from the Options menu or by double-clicking the
Regular Polygon tool.

446 PolySides

PowerKeys

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

Global environment

set power Keys to boolean

Boolean is an expression that yields either t r ue or f al se.

set powerKeys to true
set powerKeys to fal se

You use the power Keys property to provide keyboard shortcuts for painting
actions. The availability of power keys is usually set on the User Preferences
card of the Home stack.

The default setting is determined at startup and resume time by the setting on
the User Preferences card of the Home stack.

Setting power Keys to t r ue in a script puts a checkmark next to the Power
Keys command in the Options menu and changes the setting on the User
Preferences card.

PowerKeys 447

CHAPTER 12

Properties

PrintMargins

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

448

Global environment

set [the] printMargins to rectangle

Rectangle is an expression that yields two points, reported as four positive
integers separated by commas.

set the printMargins to 78,78, 340, 440
the printMargins -- puts current margins in Msg box

You use the pr i nt Mar gi ns property to determine or change the current
margin of the print area to be used when printing an expression. It may

also affect page margins when printing a field. The default value for the

pri nt Mar gi ns property is 0,0,0,0. The value of the pri nt Mar gi ns property
represents the top-left and bottom-right corners of the printing area.

See also the pri nt Text Al i gn, pri nt Text Font, pri nt Text Hei ght,
print Text Si ze, and pri nt Text St yl e properties described in this
chapter and the pri nt andreset pri nting commands in Chapter 10.

PrintMargins

CHAPTER 12

Properties

PrintTextAlign

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

Global environment

set [the] printTextAlign to alignment

Alignment is an expression that yields ri ght ,1 eft,,or center.

set the printTextAlign to Right
the printTextAlign -- puts current alignnent in Msg box

You use the pri nt Text Al i gn property to determine or change the current
alignment to be used when printing the contents of a variable or when you
want to modify the text alignment in the header of a print report job. The
default value for the pri nt Text Al i gn property is| eft.

See also the pri nt Mar gi ns, pri nt Text Font , pri nt Text Hei ght,
print Text Si ze, and pri nt Text St yl e properties described in this
chapter and the pri nt andreset pri nting commands in Chapter 10.

PrintTextAlign 449

CHAPTER 12

Properties

PrintTextFont

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

450

Global environment

set [the] printTextFont to font

Font is an expression that yields a valid font name in the current Macintosh
system or the name of a font in a font resource installed in HyperCard or in the
current stack.

set the printTextFont to "Pal ati no"
the printTextFont -- puts current font in Msg box

You use the pr i nt Text Font property to determine or change the current font
to be used when printing the contents of a variable or when you want to
modify the font used in the header of a print report job. The default value for
the pri nt Text Font property is Geneva.

See also the pri nt Mar gi ns, pri nt Text Ali gn, pri nt Text Font,
print Text Si ze, and pri nt Text St yl e properties described in this
chapter and the pri nt andreset pri nting commands in Chapter 10.

PrintTextFont

CHAPTER 12

Properties

PrintTextHeight

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

Global environment

set [the] printTextHeight to number

Number is an expression that yields a valid line height for a font in the current
Macintosh system or a font in a font resource installed in HyperCard or in the
current stack.

set the printTextHeight to 16
the printTextHeight -- puts current line height in Msg box

You use the pr i nt Text Hei ght property to determine or change the space
between baselines of text to be used when printing the contents of a variable or
when you want to modify the line height of the text in the header of a print
report job. The default value for the pri nt Text Hei ght property is 13.

See also the pri nt Mar gi ns, pri nt Text Ali gn, pri nt Text Font,
print Text Si ze, and pri nt Text St yl e properties described in this
chapter and the pri nt andreset pri nting commands in Chapter 10.

PrintTextHeight 451

CHAPTER 12

Properties

PrintTextSize

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

SCRIPT

452

Global environment

set [the] printTextSize to number

Number is an expression that yields an integer that represents a valid font size
in the current Macintosh system or the size of a font in a font resource installed
in HyperCard or in the current stack.

set the printTextSize to 12
the printTextSize -- puts current text size in Mg box

You use the pri nt Text Si ze property to determine or change the current size
of the font when printing the contents of a variable or when you want to
modify the size of the text in the header of a print report job. The default value
for the pri nt Text Si ze property is 10.

This script sets some of the printing properties and prints the contents of card
field 1, which is put in the variable PJob:

on printField
put card field 1 into PJob
set the printTextFont to "New York"
set the printTextStyle to "Qutline"
set the printTextSize to "12"
print PJob

end printField

PrintTextSize

NOTE

CHAPTER 12

Properties

See also the pri nt Mar gi ns, pri nt Text Ali gn, pri nt Text Font,
pri nt Text Hei ght , and pri nt Text St yl e properties described in this
chapter and the pri nt andreset pri nting commands in Chapter 10.

PrintTextStyle

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

Global environment

set [the] printTextStyle to style

Style is an expression that yields a valid font style in the current Macintosh
system or the style of a font in a font resource installed in HyperCard or in the
current stack. Valid HyperCard font styles are bol d, condense, ext end,
italic,outline, plain,andunderli ne.

set the printTextStyle to bold
the printTextStyle -- puts current font style in Msg box

You use the pri nt Text St yl e property to determine or change the current
style of the font when printing the contents of a variable or when you want to
modify the style of the text in the header of a print report job. The default value
for the pri nt Text St yl e property is pl ai n. The gr oup style that is available
in the HyperCard Style menu does not apply to printing.

See also the pri nt Mar gi ns, pri nt Text Al i gn, pri nt Text Font,
pri nt Text Hei ght , and pri nt Text Si ze properties described in this
chapter and the pri nt andreset printing commands in Chapter 10.

PrintTextStyle 453

CHAPTER 12

Properties

Rect

APPLIES TO

Variable and message watcher windows, picture windows, card windows,
script windows

SYNTAX

set rect of w ndow variableWatcher t o location
set rect of w ndow name to location

VariableWatcher is an expression that yields the name of a variable watcher
window. Location is an expression that yields two points, reported as four
positive integers separated by commas. Name is an expression that yields the
name of a picture or stack window.

EXAMPLES
set rect of wi ndow "Variable Watcher" to "0, 0, 168, 185"
put rect of wi ndow "M/MWatcher" into nsg

DESCRIPTION

Ther ect property is two points, reported as four integers separated by
commas. You use the r ect property to determine or change the size of
the variable watcher window.

The points represent the rectangle’s top-left (horizontal and vertical) and
bottom-right (horizontal and vertical) corner offsets in pixels, respectively, from
the top-left corner of the variable watcher window. The first point is always 0,0,
and the second point is the offset from the first point.

NOTES

Rect is also the abbreviated form of the r ect angl e property and works on all
of the objects and windows that the r ect angl e property works on.

454 Rect

Rectangle

CHAPTER 12

Properties

Properties that work on HyperCard’s built-in external windows may not work
on custom external windows. It is the responsibility of the creator of the
custom window to provide support for HyperTalk external window properties.
See also the var i abl eWat cher, hBar Loc, and vBar Loc properties in this
chapter.

APPLIES TO

SYNTAX

Buttons, cards, fields, menu bar, windows

set [the] rect[angle] of object to location
Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

message [box] ornmessage [w ndow] orw ndow "nmessage"”
pattern wi ndoworw ndow "patterns” (thePatterns palette)
t ool w ndoworwi ndow "t ool s" (the Tools palette)

wi ndow "navi gator" (the Navigator palette)

scroll wi ndoworw ndow "scrol "

wi ndow " Fat bi t s"

message wat cher orw ndow "nessage wat cher"

vari abl e wat cher orwi ndow "vari abl e wat cher™

card wi ndow

Wi ndowstackName

menubar

Location is an expression that yields two points, reported as four positive
integers separated by commas. StackName is the name of a stack.

Rectangle 455

EXAMPLES

DESCRIPTION

456

CHAPTER 12

Properties

put rectangle of nenubar

set the rectangle of field 4 to 23, 45, 68,85

put rectangle of field "Sweet" into nsg

put the rect of nessage box -- puts h,v,h,v into Mg
set rect of card window to 64, 81, 576, 441

set the rect of this card to 0,0, 512, 360

The r ect angl e property is two points, reported as four integers separated by
commas. You use the r ect angl e property to set or determine the size of
buttons, fields, and windows. This property is a read-only property for the
Message box, Tools palette, Patterns palette, Scroll window, and menu bar.

The points represent the rectangle’s top-left (horizontal and vertical) and
bottom-right (horizontal and vertical) corner offsets in pixels, respectively, from
the top-left corner of the card. The offsets for card windows and menu bar
measure from the top-left corner of the screen.

You can set either of the rectangle points of a field or button beyond the
boundaries of the card rectangle, putting the field or button out of view
until you reset its coordinates through HyperTalk.

You can set the bottom-right corner location of a button or field to a value
smaller than the top-left corner location, effectively causing the button or
field to disappear. If you set a field to a size smaller than the minimum

(12 by 12 pixels) but large enough to see, HyperCard resets it to the minimum
size when you click it with the corresponding tool.

You can also change a button or field rectangle by dragging the top-left or
bottom-right corner of the button or field with the appropriate tool selected
(Button or Field).

Rectangle

CHAPTER 12

Properties

SCRIPT
The following example handler, placed in a button script, is invoked when
you click the button. It waits until you move the pointer outside the button
rectangle, then beeps when you move the pointer back inside the button
rectangle:
on nouseUp
wait until the nouseLoc is not within rect of ne
repeat until the nmouselLoc is within rect of ne
set cursor to busy -- spin beach ball while we wait
end repeat
beep
end nouseUp
NOTES

Ther ect angl e property can be abbreviated r ect . The four integers that
make up the rectangle property can also be changed individually and in
various combinations. See the descriptions of bot t om bot t onRi ght,

hei ght,l eft,right,top,topLeft,andw dt h in this chapter. These are
known collectively as rectangle properties and are summarized in Table 12-6.

Ther ect angl e property cannot be set for palettes or the built-in Message
Watcher.

The r ect angl e property of the menu bar cannot be set.

The operator wi t hi n pertains to any rectangle, such as the rectangles of
buttons and fields, the Tools and Patterns palettes, the Message box, and
the screen on which the HyperCard menu bar is displayed. The syntax of
an expression in which wi t hi n is valid is the following:

location is [not] within rectangle
Location is an expression that yields a list of two integers separated by a

comma, and rectangle is an expression that yields a list of four integers
separated by commas.

Rectangle 457

CHAPTER 12

Properties

When you resize a card window with the r ect angl e property, a si zeW ndow
system message is sent. The si zeW ndowmessage is also sent when you zoom
a card window by clicking the zoom box or when you change its size with the
Scroll window (Command-E).

If the | ocat i on property of a card window changes when you set the
rect angl e property, a noveW ndowsystem message is sent. The
moveW ndowmessage is also sent when you drag the window to a new
location, zoom it in or out, or show the window at a new location with the
showcommand.

See also the | ocat i on property, earlier in this chapter.

ReportTemplates
APPLIES TO

Stacks
SYNTAX

EXAMPLES

DESCRIPTION

458

put [the] reportTenpl ates of stack stackName

StackName is an expression that yields the name of a stack.

put reportTenpl ates of stack "People" into field 2
get the reportTenpl ates of stack "Forecast"

The r epor t Tenpl at es property is a read-only property of stacks. It returns a
return-delimited list of the names of the report templates for the specified stack.

ReportTemplates

CHAPTER 12

Properties

NOTES
Report templates are created and saved for a stack with the Print Report
command in the File menu. See the HyperCard Reference for more information
about creating report templates.
See also the open report printing command in Chapter 10.

Right

APPLIES TO
Buttons, fields, windows, menu bar

SYNTAX

set [the] right of object to number
Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

nmessage [box] ornmessage [w ndow] orw ndow "nmessage"
pattern w ndoworw ndow "patterns” (thePatterns palette)
t ool w ndoworwi ndow "t ool s" (the Tools palette)

wi ndow "navi gator" (the Navigator palette)

scroll w ndoworw ndow "scrol | "

wi ndow " Fat bi t s"

message wat cher orw ndow "nessage wat cher”

vari abl e wat cher or wi ndow "vari abl e wat cher”

card wi ndow

W ndowstackName

menubar

Number yields an integer that is the horizontal offset in pixels from the left side
of the card to the right side of the object. When the object is the card window,
the offset is relative to the left side of the screen. StackName is an expression
that yields the name of an open stack.

Right 459

EXAMPLES

DESCRIPTION

NOTE

Script

CHA

PTER 12

Properties

set
put
put
set

right of button 2 to 165

right of button 2

the right of the card w ndow
right of pattern wi ndow to 100

You use the ri ght property to determine or change the value of item 3 of the

rect

angl e property (left, top, right, bottom) when applied to the specified

object or window.

The r

i ght of the menu bar is a read-only property.

See also the r ect angl e property, earlier in this chapter.

APPLIES TO

SYNTAX

460

Backgrounds, buttons, cards, fields, stacks

set

[the] script of object to scriptText

Object is the current background, button, card, field, or stack or any background,
button, card, field, or stack name currently available to HyperCard. ScriptText
yields any valid container that contains a script, or yields a text string that is

a script.

Script

CHAPTER 12

Properties
EXAMPLES
set script of field "Effect” of first card to enpty
set the script of second bkgnd to enpty
set the script of third card to field 3
put the script of stack "honme" into field "Honme Script"
DESCRIPTION
You use the Scri pt property to retrieve or to replace the script of the specified
object. The value of the scri pt property is the text string composing the script
of the specified stack.
When you set the Scri pt property using the set command, you replace
it entirely.
NOTE
Scripts are normally edited using the HyperCard script editor described in
Chapter 3, “The Scripting Environment.”
ScriptEditor
APPLIES TO
Scripting environment
SYNTAX

set

[the] scriptEditor to name

Name is an expression that yields a valid script editor XCMD name.

ScriptEditor 461

EXAMPLES

DESCRIPTION

NOTES

CHAPTER 12

Properties

set the scriptEditor to "MyEditor"
the scriptEditor -- puts current script editor in Msg box
put the scriptEditor after field "Editor in Use"

You use the scri pt Edi t or property to determine or change the current script
editor. The default value for the scr i pt Edi t or property is scri pt Edi t or,
the name of the built-in script editor.

The built-in script editor is a HyperCard XCMD. It can be replaced with a
custom script editor XCMD by setting the scri pt Edi t or property to the
name of a script editor XCMD.

See also the scri pt Text Font and scri pt Text Si ze properties described
later in this chapter and the description of the scripting environment in
Chapter 3.

For more information about creating a custom script editor XCMD, see
Appendix A, “External Commands and Functions.”

ScriptingLanguage

APPLIES TO

SYNTAX

462

Buttons, fields, parts, cards, background, stacks, global environment

set the scriptinglLanguage [of object] to scriptingLanguage
Object is any background, button, card, field, part, or stack name currently

available to HyperCard. ScriptingLanguage is a scripting language installed on
the current system.

ScriptingLanguage

CHAPTER 12

Properties

EXAMPLE
put the scriptingLanguage of this cd
set the scriptingLanguage to Appl eScri pt

DESCRIPTION
The scri pti ngLanguage property lets you set any of the HyperCard objects
to accept scripts written in the scripting language of your choice, among those
available in your system. The script editor has a pop-up menu that displays
the available scripting languages.

NOTE
You can use the unary operator t here i s a to test for the existence of a
scripting language capability on the system where HyperCard is running,
using the syntax
there is a scriptinglLanguage scriptinglLanguage
The statement returns a Boolean value.

ScriptTextFont

APPLIES TO
Scripting environment

SYNTAX

set [the] scriptTextFont to font

Font is an expression that yields a valid font name in the current
Macintosh system.

ScriptTextFont 463

CHAPTER 12

Properties

EXAMPLES
set the scriptTextFont to "Pal atino"
the scriptTextFont -- puts current script editor
-- font in the Msg box
DESCRIPTION
You use the scri pt Text Font property to determine or change the current
font in the script editor. The default value for the scri pt Text Font property
is nonaco.
NOTES
You can also set the scri pt Text Font property in the dialog box invoked by
typing se into the Message box, using a handler provided in the standard
Home stack script.
See also the scri pt Edi t or and scri pt Text Si ze properties described in
this chapter and the description of the scripting environment in Chapter 3.
ScriptTextSize
APPLIES TO
Scripting environment
SYNTAX
set [the] scriptTextSize to number
Number is an expression that yields an integer that represents a valid font size
in the current Macintosh system.
EXAMPLES
set the scriptTextSize to 12
the scriptTextSize -- puts current script editor
-- font size in the Msg box
464 ScriptTextSize

DESCRIPTION

CHAPTER 12

Properties

You use the scri pt Text Si ze property to determine or change the current
size of the font used in the script editor. The default value for the
scri pt Text Si ze property is 9.

NOTES
You can also set the scri pt Text Si ze property in the dialog box invoked by
typing se into the Message box.
See also the scri pt Edi t or and scri pt Text Font properties described in
this chapter and the description of the scripting environment in Chapter 3.
Scroll (fields)
APPLIES TO
Fields
SYNTAX
set [the] scroll of scrollingField to number
ScrollingField is any valid card or background scrolling field. Number is an
expression that yields an integer representing the number of pixels that have
scrolled above the top of the field rectangle.
EXAMPLES
set the scroll of field "Clues" to 0
put the scroll of field 1 div the textHeight of field 1-
into |inesAbove
DESCRIPTION

You use the scr ol | property to determine or to change how much material is
hidden above the top of a scrolling field’s rectangle. Figure 12-4 illustrates the
scrol | property.

Scroll (fields) 465

CHAPTER 12

Properties

The value of the scroll property is 0 if the top of the field is visible. The
number of text lines to which the scr ol | property correlates depends on
the t ext Hei ght property of the field.

NOTES

You normally control how much material is above the top of the field rectangle
by clicking or dragging in the scroll bar at the right side of the field.

If you try to get or set the scr ol | property of a nonscrolling field, you get an
error dialog box.

Figure 12-4 The scr ol | property

The scroll. A Thiz iz a goralling fiald
Its value is Y with some text in it Ac
the vertical

. ou scrall, the text
distance 4 ’

in pixels. disappears from view
off the top of the field
but it isn't really gone.

Here is some more text
down at the bottom of
the field.

Scroll (windows)

APPLIES TO

Card windows, picture windows

466 Scroll (windows)

SYNTAX

EXAMPLES

DESCRIPTION

NOTES

CHAPTER 12

Properties

set [the] scroll of [the] card w ndow to point
set [the] scroll of window to point

Point is an expression that yields two comma-separated positive integers that
represent the point on the card or picture to be displayed at the top-left corner
of the window. Window is an expression that yields a reference to a window
created with the pi ct ur e command or to a card window.

set the scroll of the card wi ndow to 45, 60
put the scroll of card wi ndow into scroll Var
set the scroll of w ndow "Home" to "0, 100"

You use the scr ol | property to determine or change the horizontal and
vertical scroll (position) of the card window over the current card or the
window over the current picture. This property allows you to scroll over a card
that is larger than the area of the card window region. The default position of
the scrol | property for a card window is 0,0.

The scrol | property has no effect on card windows that are the same size as
the card. Card windows can’t be larger than the card. You can reset the value of
the scrol | property to reposition the card window with the Scroll command
in the Go menu. You cannot set the scr ol | property of a window that is
displaying an inactive stack.

See also the r ect angl e property in this chapter and the pi ct ur e command
in Chapter 10.

Scroll (windows) 467

CHAPTER 12

Properties
SharedHilite
APPLIES TO
Background buttons
SYNTAX
set [the] sharedHilite of button to boolean
Button is an expression that yields any valid background button descriptor.
Boolean is an expression that yields either t r ue or f al se.
EXAMPLES
set sharedHi lite of bkgnd button "Flip card" to true
put the sharedHilite of bkgnd button 2 into nsg
DESCRIPTION
You use the shar edHi | i t e property to determine or to change whether the
specified background button shares the same highlight state on all cards of
that background. The default value for new background buttonsis t r ue.
When shar edHi | i t e is set to t r ue, the background button has the same
highlight state on all cards of that background.
NOTES

468

Background buttons have two sets of highlight states, one you see when the
button’s shar edHi | i t e ist r ue and one you see when its sharedHi | i t e is
f al se. If you have a background button with its sharedHi | i t e set to f al se,
that button on each of those cards of that background can have a different
highlight state (determined by the hi | i t e property). If you change the
sharedHi | i t e property to t r ue on that background button, the highlight
state of that button on all of the cards of that background is set to f al se (not
highlighted). The unshared highlight states of that background button are not
lost, however. The unshared highlight states are stored separately with each
card and can be returned to their previous values by setting the

sharedHi | i t e property back to f al se.

SharedHilite

SharedText

CHAPTER 12

Properties

Background buttons copied and pasted to other cards have the same
sharedHi | i t e value as the button originally copied.

You can also change the shar edHi | i t e property by clicking the Shared Hilite
checkbox in the Button Info dialog box. See also the descriptions of the
autoHi liteand hilit e properties, earlier in this chapter.

APPLIES TO

SYNTAX

EXAMPLE

DESCRIPTION

NOTES

Background fields

set [the] sharedText of field to boolean

Field is an expression that yields any valid background field descriptor. Boolean
is an expression that yields either t r ue or f al se.

set the sharedText of field 3 to true

You use the shar edText property to determine or to change whether the text
in the specified background field appears on each card of that background.
When the value of shar edText ist r ue, the text in the specified background
field is shared by all cards of that background. When it is f al se, the text can

be different in the specified field on all the cards of that background. The
default value of the shar edText property for new background fields is f al se.

Abackground field with its shar edText property set to t r ue effectively has
its dont Sear ch property set to t r ue. The f i nd command excludes the field
from any searches.

SharedText 469

CHAPTER 12

Properties

If you change the shar edText property to t r ue on a background field that
previously had the shar edText property set to f al se (unshared text), no text
is displayed in that field on any of the cards of that background. The previous
unshared text of that background field on each of the cards with that back-
ground is not lost, however. The unshared text is stored separately with each
card and can be redisplayed in the background field of those cards with that
background by setting the shar edText property back to f al se.

You can also change shar edText by clicking the Shared Text checkbox in the

Field Info dialog box.
ShowLines
APPLIES TO

Fields
SYNTAX

set [the] showlLines of field to boolean

Field is an expression that yields any valid field descriptor. Boolean is an
expression that yields either t r ue or f al se.

EXAMPLES
set the showlLines of field four to true
put the showLines of card field 1 into nsg

DESCRIPTION

You use the showLi nes property to determine or to change whether the text
baselines in the card or background field show or not. The default value of the
showli nes property is f al se (lines don’t show).

470 ShowLines

CHAPTER 12

Properties

NOTES
You can also change showLi nes by clicking in the Show Lines checkbox
in the Field Info dialog box. The showLi nes property does not apply to
scrolling fields.
ShowName
APPLIES TO
Buttons
SYNTAX
set [the] showNanme of button to boolean
Button is an expression that yields any valid background or card button
descriptor. Boolean is an expression that yields either t r ue or f al se.
EXAMPLES
set showName of button "You who" to true
put the showNane of button "You who" into nsg
DESCRIPTION
You use the showNane property to determine or to change whether the name
of the specified button (if it has one) is displayed in its rectangle on the screen.
Buttons created with the New Button command have showNane set to t r ue.
Buttons created by Command-dragging the button tool have their showName
property initially set to f al se.
NOTE

You can also change this property by clicking the Show Name checkbox in the
Button Info dialog box.

ShowName 471

ShowPict

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTES

472

Cards, backgrounds

set [the] showPict of object to boolean

Object is an expression that yields any valid background or card descriptor.
Boolean is an expression that yields either t r ue or f al se.

set showPict of next card to fal se
set the showPict of this bkgnd to false
put showPi ct of bkgnd 3

You use the showPi ct property to determine or to change whether the picture
on the specified card or background (if it has one) is displayed on the screen.
The default value is t r ue (displayed).

Setting the showPi ct property of a card to f al se is the same as hiding it with
the pi ct ur e form of the hi de command. Setting it to t r ue is the same as
showing it with the pi ct ur e form of the showcommand.

When the showPi ct property of the current background or card is f al se and
you try to use a Paint tool on it manually, a dialog box appears asking if you
want to make the picture visible; clicking OK sets the showPi ct property to

t r ue and the picture appears. You can draw on hidden pictures from a script.

See also the showand hi de commands in Chapter 10.

ShowPict

CHAPTER 12

Properties
Size
APPLIES TO
Stacks
SYNTAX
put [the] size of stack stackName [into container]
StackName is the current stack, or an expression that yields any stack name
currently available to HyperCard. Container is an expression that yields any
valid container.
EXAMPLES
get size of stack "Home"
put size of stack "Home" into field "Hone Size"
DESCRIPTION
You use the Si ze property to determine the size of the specified stack in bytes.
SCRIPT
The following handler examines a stack to see if it fits on an 800 KB disk:
on cl oseSt ack
if size of this stack > 795000
then answer "This stack won't fit on an 800 KB disk."
pass cl oseSt ack
end cl oseStack
NOTES

The minimum stack size is 4096 bytes; the theoretical maximum is
512 MB.

Size 473

StacksInUse

CHAPTER 12

Properties

The si ze property can’t be changed with the set command; it’s changed only
by adding things to and deleting things from the stack (you must then compact
the stack for any deletions to affect its size).

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTES

474

Global environment

put [the] stackslnUse [into container]

Container is an expression that yields any valid container.

the stackslnUse -- puts stack list in Msg box
put the stackslnUse into field "Message Path"

You use the st acksl nUse property to determine the stacks that have been
added to the current message-passing hierarchy. St acksl nUse returns a
return-delimited list of the stacks in the current message-passing hierarchy. The
stacks are listed in the order in which they are currently placed in the hierarchy.

The st acks| nUse property can’t be changed with the set command; the
stacks in the current message-passing hierarchy can only be changed with the
start usingandstop using commands.

See also the st art usi ng and st op usi ng commands in Chapter 10 and the
description of the message-passing hierarchy in Chapter 4.

If the message-passing hierarchy hasn’t been altered with the st art usi ng
command, st acksl nUse returns empty.

StackslnUse

CHAPTER 12

Properties

Style
APPLIES TO
Buttons, fields
SYNTAX
set [the] style of object to objectStyle
Object is an expression that yields any valid button or field descriptor.
ObjectStyle is an expression that yields one of the valid field or button
styles. Button styles are t r anspar ent, opaque, r ect angl e, r oundRect,
shadow checkBox, r adi oBut t on, st andar d, def aul t, oval , and popup.
Field styles are t r anspar ent , opaque, r ect angl e, shadow and
scrol l'ing.
EXAMPLES
set the style of field 1 to scrolling
set style of button "You who" to roundRect
put the style of button 3 into nsg
set the style of field 2 of card 4 to transparent
DESCRIPTION
You use the st y| e property to determine or to change the style of any button
or field in the current stack.
NOTE

You can also change the button or field style by using the Style pop-up menu
in the Button or Field Info dialog box. Some useful peculiarities of radio
buttons and checkbox buttons are described under the hi | i t & property, in
this chapter.

Style 475

CHAPTER 12

Properties

Suspended

APPLIES TO

Global environment

SYNTAX
t he suspended

DESCRIPTION

The suspended property returns whether or not HyperCard is currently
running in the background under MultiFinder or System 7. A user can switch
from HyperCard to another program while a handler is running and scripts
will continue to run in the background.

Use the suspended property in a handler to alter the handler’s behavior if it’s
running in the background—for example, to avoid displaying ask or answer
dialog boxes.

HyperCard gives time to the system (and thus to other programs)

= after it executes each HyperTalk statement in a handler,

= whenever it rotates the busy cursor (during compacting, sorting, and
printing),

= during the execution of the show car ds command and the wai t command.

EXAMPLE

if not (the suspended) then
-- Show di al og when not running in background
ask file "Save as what file?"
put it into theFil eName

el se
--We're in the background, use a default nane
put "Untitled" into theFil eName

end if

476 Suspended

CHAPTER 12

Properties

TextAlign

APPLIES TO
Buttons, fields, painting environment

SYNTAX
set [the] textAlign [of object] to alignment
Object is an expression that yields a button or field descriptor. Alignment is an
expression that yields one of the words | ef t, ri ght, and cent er.

EXAMPLES
set the textAlign of field 1 to |eft
set textAlign to center -- for paint text

DESCRIPTION
You use the t ext Al i gn property to determine or to change the way characters
are aligned around the insertion point as you type them. This property applies
to Paint text, button name text, and the text in fields. The default value of
thet ext Al i gn property is | ef t for fields and Paint text; the default value is
cent er for buttons.

NOTES

For Paint text, you can also set the t ext Al i gn property from the Font dialog
box, which is invoked by choosing Text Style from the Edit menu, by double-
clicking the Paint Text tool, or by pressing Command-T when the Paint Text
tool is selected.

For buttons or fields, you can also set the t ext Al i gn property by choosing
one of the text alignment options from the Text Properties dialog box. To
invoke the Text Properties dialog box, you click the Text Style button in the
Button or Field Info dialog box, choose Text Style from the Edit menu, or press
Command-T when a button or field is selected.

See also the pri nt Text Al i gn property, earlier in this chapter.

TextAlign 477

TextArrows

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTE

478

Global environment

set textArrows to boolean

Boolean is an expression that yields either t r ue or f al se.

set textArrows to true
set textArrows to false

The t ext Ar r ows property alters the function of the Right Arrow, Left Arrow,
Up Arrow, and Down Arrow keys.

The default value of the t ext Ar r ows property is f al se. When the

t ext Arr ows property is f al se, the Right Arrow and Left Arrow keys take
you to the next and previous cards in the stack, respectively, and the Up Arrow
and Down Arrow keys take you forward and backward, respectively, through
the cards you've already viewed.

When the t ext Ar r ows property ist r ue, the arrow keys move the text
insertion point around in a field that you've opened for text editing or in the
Message box if you've clicked it. In the Message box, the Up Arrow and Down
Arrow keys move the insertion point to the beginning and end of the line of
text, respectively.

When the t ext Ar r ows property is t r ue, holding down the Option key while
you press the arrow keys produces the same effect as pressing them alone
when t ext Arrows is f al se.

TextArrows

TextFont

CHAPTER 12

Properties

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

NOTES

Buttons, fields, painting environment

set [the] textFont [of chunk] of field to font
set [the] textFont [of object] to font

Chunk is any valid chunk expression. Field is an expression that yields a field
descriptor. Object is an expression that yields a button or field descriptor.
Font is an expression that yields one of the font names available in your
Macintosh system.

set textFont of field 1 to "courier"
set the textFont of bkgnd button 3 to helvetica
set textFont to Palatino -- for paint text

You use the t ext Font property to determine or to change the font in which
text appears. This property applies to button name text, the text in fields, and
Paint text. The default value of the t ext Font property is geneva for fields
and Paint text; the default value for buttons is chi cago.

For Paint text, you can also set the t ext Font property from the Font dialog
box, which is invoked by choosing Text Style from the Edit menu, by
double-clicking the Paint Text tool, or by pressing Command-T while using a
Paint tool.

For buttons or fields, you can also set this property by choosing one of the font
names from the Font menu or from the Font dialog box. To invoke the Font

TextFont 479

CHAPTER 12

Properties

dialog box, you click the Font button in the Field or Button Info dialog box,
choose Text Style from the Edit menu, or press Command-T while a button or
field is selected.

If you reset the default font for a field with the t ext Font property, any text
that is already in that field is updated. If you try to set the t ext Font property
to a font that doesn’t exist, HyperCard sets it to geneva.

If different fonts are in a chunk of a field, t ext Font returns the result ni xed.

See also the sel ect edChunk and sel ect edLi ne functions in Chapter 11,
and the pri nt Text Font and scri pt Text Font properties, earlier in
this chapter.

TextHeight
APPLIES TO
Buttons, fields, painting environment
SYNTAX
set [the] textHeight [of object] to number
Object is an expression that yields a button or field descriptor. Number is an
expression that yields any positive integer.
EXAMPLES
set textHeight of field 1 to 20
set textHeight to 20 -- for paint text
DESCRIPTION

You use the t ext Hei ght property to determine or to change the space
between baselines of button text, field text, and Paint text. The value of
the t ext Hei ght property is in pixels.

480 TextHeight

NOTES

TextSize

CHAPTER 12

Properties

For Paint text, you can also set the t ext Hei ght property in the Line Height
box of the Font dialog box, which is invoked by choosing Text Style from the
Edit menu, by double-clicking the Paint Text tool, or by pressing Command-T
when a Paint tool is selected.

For buttons or fields, you can also set this property by typing the line height in
the Line Height box in the Font dialog box. To invoke the Font dialog box, you
click the Font button in the Field or Button Info dialog box, choose Text Style
from the Edit menu when the field or button is selected, or press Command-T
when a button or field is selected.

Although you can set this property for a button, it is meaningless because
button-name text has only one line. See also the f i xedLi neHei ght and
pri nt Text Hei ght properties described earlier in this chapter.

APPLIES TO

SYNTAX

EXAMPLES

Buttons, fields, painting environment

set [the] textSize [of chunk] of field to number
set [the] textSize [of object] to number

Chunk is any valid chunk expression. Field is an expression that yields a field
descriptor. Object is an expression that yields a button or field descriptor.
Number is an expression that yields any positive integer.

set textSize of field 1 to 18
set the textSize of word 3 of line 4 to 12
set textSize to 18 -- for paint text

TextSize 481

DESCRIPTION

NOTES

CHAPTER 12

Properties

You use the t ext Si ze property to determine or to change the font size in
which text appears on the screen. The t ext Si ze property applies to button
text, text in fields, and Paint text. The value of the t ext Si ze property is in
pixels. The default value of the t ext Si ze property is 12.

Although you can use any integer for t ext Si ze, exact sizes of fonts available
look best. Fonts available are in the Macintosh system or in the font resources
in the current stack, a stack in use, the Home stack, or HyperCard.

For Paint text, you can also set the t ext Si ze property from the Font dialog
box, which is invoked by choosing Text Style from the Edit menu, by double-
clicking the Paint Text tool, or by pressing Command-T while using a Paint tool.

For buttons or fields, you can also set this property from the Style menu or by
selecting one of the font sizes shown or typing directly in the size box in the
Font dialog box. To invoke the Font dialog box, you click the Font button in
the Field or Button Info dialog box, choose Text Style from the Edit menu
while a button or field is selected, or press Command-T while a button or field
is selected.

If you reset the default text size for a field with the t ext Si ze property, any
text that is already in that field is updated.

If different sizes of text are in a text selection, t ext Si ze returns the
result m xed.

See also the pri nt Text Si ze and scri pt Text Si ze properties, earlier in
this chapter.

TextStyle (buttons, fields, painting environment)

APPLIES TO

482

Buttons, fields, painting environment

TextStyle (buttons, fields, painting environment)

SYNTAX

EXAMPLES

DESCRIPTION

NOTES

CHAPTER 12

Properties

set [the] textStyle [of chunk] of field to style
set [the] textStyle [of object] to style

Chunk is any valid chunk expression. Field is an expression that yields a field
descriptor. Object is an expression that yields a button or field descriptor. Style
is an expression that yields a value of pl ai n or any combination of the
following: bol d, i tal i c,under! i ne,outl i ne, shadow condensed,

ext end, and gr oup (separated by commas).

set textStyle to plain -- for paint text

set textStyle to bold,italic,underline -- for paint text
set textStyle of field 1 to plain

set the textStyle of line 1 of field 1 to bold, group

set the textStyle of the first card field to bold

You use the t ext St yl e property to determine or to change the style in which
text appears. The t ext St yl e property applies to button text, text in fields, and
Paint text. Its default value is pl ai n. If you use pl ai n in combination with
any of the other values, the other values override pl ai n.

You use the gr oup text style to group characters, words, or lines together so
they are seen as a unit by HyperTalk. The gr oup style does not apply to Paint
text or button text.

Group text is supported through the nouseDown and nouseUp messages that
are sent to locked fields when clicked and through three functions:
clickChunk,clickLi ne,and cl i ckText.

Here’s an example in which you might use group text. You have a field with a
list containing George Washington, King George, and George Bush, and you
want to display more information about the appropriate George on the screen
when his name is clicked. If these three phrases are set to plain text, clicking

TextStyle (buttons, fields, painting environment) 483

CHAPTER 12

Properties

“George” wouldn’t be specific enough, because HyperTalk’s cl i ckText
function would only return the single word George, without specifying more
information about which George was clicked. If you set the style of each of the
phrases George Bush, George Washington, and King George to gr oup, then
when the user clicks any word in the group phrase, the person’s full name is
returned and can be analyzed. If the user clicks either George or Bush in the
phrase George Bush, the whole phrase—not just the word the user clicked—is
returned by the cl i ckText function.

For Paint text, you can also set the t ext St y| e property from the Font dialog
box, which is invoked by choosing Text Style from the Edit menu, by
double-clicking the Paint Text tool, or by pressing Command-T while using a
Paint tool.

For buttons or fields, you can also set the t ext St yl e property by choosing a
style from the Style menu or in the Font dialog box. To invoke the Font dialog
box, you click the Font button in the Field or Button Info dialog box, choose
Text Style from the Edit menu, or press Command-T while a button or field

is selected.

If you reset the t ext St yl| e property for a field, any text that is already in that
field is updated to the specified style.

If different styles of text are within a text selection, t ext St y| e returns the
result m xed.

See also the pri nt Text St yl e property, earlier in this chapter, and the
cli ckChunk,clickLi ne,cli ckText, sel ect edChunk, and
sel ect edLi ne functions in Chapter 11.

TextStyle (menu items)

APPLIES TO

484

Menu items

TextStyle (menu items)

SYNTAX

EXAMPLES

DESCRIPTION

NOTES

CHAPTER 12

Properties

set [the] textStyle of menultem of menu to style

Menultem is an expression that yields a menu item descriptor. Menu is an
expression that yields a menu descriptor. Style is an expression that yields
a value of pl ai n or any combination of the following: bol d,i tal i c,
under | i ne, out | i ne, shadow condensed, and ext end (separated

by commas).

set the textStyle of nmenultem "Get Back" of -
menu "Direction" to "outline"

put the textStyle of nmenultem "Get Back" of =
menu "Direction”

You use the t ext St yl e property to set or determine the text style of a
specified menu item. The default value for the t ext St y| e property is pl ai n.

The t ext St yl e property could be used with the checkMar k property to
indicate that a menu item has been chosen.

If you try to modify or determine the t ext St yl e property of a menu item that
does not exist, HyperCard displays a “No such menu item” dialog box.

The text style of the menu items in the Font and Tools menu cannot be altered
with the t ext St yl e property.

See also the pri nt Text St yl e property, earlier in this chapter, and the
create menuand put commands in Chapter 10, “Commands.”

TextStyle (menu items) 485

CHAPTER 12

Properties

TitleWidth
APPLIES TO
Pop-up buttons
SYNTAX
set [the] titleWdth of button to number
Button is an expression that yields a valid button descriptor. Number is the
width of the title area of the button in pixels.
EXAMPLE
set the titlewdth of last button to 65
DESCRIPTION
You use the ti t| eW dt h property to determine or change the width of the
title area of a pop-up button. You can also adjust the width of the title area by
using the mouse to drag the line separating the title area and the pop-up menu.
NOTE
See also the st y| e property, earlier in this chapter.
Top
APPLIES TO

486

Buttons, fields, windows

TitleWidth

SYNTAX

EXAMPLES

DESCRIPTION

CHAPTER 12

Properties

set [the] top of object to number
Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

message [box] ornessage [w ndow] orw ndow "nmessage"”
pattern wi ndoworw ndow "patterns" (thePatterns palette)
t ool w ndoworwi ndow "t ool s" (the Tools palette)

w ndow "navi gator" (the Navigator palette)

scroll w ndoworw ndow "scrol | "

wi ndow " Fat bi t s"

message wat cher orw ndow "nessage wat cher”

vari abl e wat cher orwi ndow "vari abl e wat cher”

card wi ndow

W ndowstackName

menubar

Number is an expression that yields an integer that is the vertical offset in pixels
of the top of the specified object. StackName is an expression that yields the
name of an open stack.

set top of button 2 to 65
put top of button 2
set top of tool wi ndowto 10

You use the t op property to determine or change the value of item 2 of the

r ect angl e property (left, top, right, bottom) when applied to the specified
object or window. The t op property of an object can also be set to a value off
the screen. Setting the t op property of an object to a value off the screen may
make the object seem as though it is hidden.

Top 487

NOTE

TopLeft

CHAPTER 12

Properties

See also the r ect angl e property, earlier in this chapter.

APPLIES TO

SYNTAX

488

Buttons, fields, windows

set [the] topLeft of object to point
Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

nmessage [box] ornmessage [w ndow] orw ndow "nmessage"”
pattern wi ndoworw ndow "patterns” (thePatterns palette)
t ool w ndoworwi ndow "t ool s" (the Tools palette)

wi ndow "navi gat or" (the Navigator palette)

scroll w ndoworw ndow "scrol | "

wi ndow " Fat bi t s"

nmessage wat cher orw ndow "nessage wat cher”

vari abl e wat cher orwi ndow "vari abl e wat cher”

card wi ndow

wi ndowstackName

menubar

Point is an expression that yields a list of two integers separated by a comma.
Point represents the horizontal and vertical offsets, respectively, in pixels from
the top-left corner of the card to the top-left corner of the specified object.
StackName is an expression that yields the name of an open stack window.

TopLeft

CHAPTER 12

Properties

EXAMPLES
set toplLeft of bkgnd button id 23 to 64, 30
put topLeft of w ndow "scroll"
put the topLeft of tool w ndow
set topLeft of message box to 150,75
DESCRIPTION
You use the t opLeft property to determine or change items 1 and 2 of the
value of the r ect angl e property (left, top, right, bottom) when applied to the
specified object or window. When you change the t opLeft property of an
object, the entire object moves, its width and height remaining the same.
NOTE
See also the r ect angl e property, earlier in this chapter.
TraceDelay
APPLIES TO
Global environment
SYNTAX
set [the] traceDel ay to number
Number is an expression that yields 0 or a positive integer.
EXAMPLES

set traceDelay to 32
put the tracebDel ay

TraceDelay 489

CHAPTER 12

Properties

DESCRIPTION
You use the t r aceDel ay property to set or retrieve the value of the debugger’s
trace rate. Setting the number value changes the number of ticks HyperCard
waits between executing lines of HyperTalk while tracing. The default value for
traceDel ay is O, the fastest trace rate.

UserLevel

APPLIES TO
Global environment

SYNTAX
set userlLevel to number
Number is an expression that yields one of the valid user-level numbers,
1 through 5.

EXAMPLE
set userlLevel to 5

DESCRIPTION
You use the user Level property to set or retrieve the value of the current
HyperCard user level. User levels give progressively more power to the user.
The levels are 1 (Browsing), 2 (Typing), 3 (Painting), 4 (Authoring), and 5
(Scripting), as explained in the HyperCard Reference.
If you set the value of user Level to a number lower than 1 or higher than 5, it
automatically reverts to 1 or 5, respectively.

NOTES

You can invoke the Protect Stack dialog box from the File menu to impose a
limit on the user level available in a stack. In that case, setting the user level

490 UserLevel

UserModify

CHAPTER 12

Properties

higher than the Protect Stack limit has no effect, although it generates no error
message. On leaving the protected stack, the user level in effect when the stack
was entered is restored.

If your stack script changes the value of user Level , be sure to restore the
original value of user Level when your stack closes.

APPLIES TO

SYNTAX

EXAMPLES

DESCRIPTION

Global environment

set userModify to boolean

Boolean is an expression that yields either t r ue or f al se.

set userMdify to true
set userMdify to fal se

The user Modi f y property is a global property pertaining to HyperCard itself.
It controls whether or not a user can type into fields or use Paint tools on a
stack that has been write-protected. A stack is write-protected under any of the
following circumstances:

s The stack is on a CD-ROM.

= The stack is on a file server in a folder whose access privileges are set to
Read Only.

s The Locked box is checked in the stack’s Get Info dialog box in the Finder’s
File menu.

UserModify 491

CHAPTER 12

Properties

» The stack is on a locked disk.

= “Can’t modify stack” is checked in the stack’s Protect Stack dialog box.

SCRIPT
The following openSt ack handler sets up HyperCard so that the stack can be
used, even though it is locked:
on openSt ack
if the cantModify of this stack is true then
set the userMddify to true
end if
pass openSt ack
end openSt ack
NOTES
Changes can be made only to the level that the user Level settings allow. Any
changes made to the stack are disregarded when the stack is closed.
See also the cant Del et e and cant Modi f y properties, earlier in this chapter.
VariableWatcher
APPLIES TO
Global environment
SYNTAX

492

set [the] variabl eWatcher to name

Name is an expression that yields a valid variable watcher XCMD name.

VariableWatcher

EXAMPLES

DESCRIPTION

NOTES

VBarLoc

CHAPTER 12

Properties

set variabl eWatcher to "M/Watcher”
put the vari abl eWat cher

You use the var i abl eWat cher property to determine or to change the
current variable watcher. The default value for var i abl eWat cher is

vari abl eWat cher, the built-in variable watcher. You display the current
variable watcher with the showcommand or by setting the vi si bl e property
of the variable watcher window to t r ue.

The built-in variable watcher is a HyperCard XCMD. It can be replaced with a
custom variable watcher XCMD by setting the var i abl eWat cher property to
the name of a custom variable watcher XCMD.

See also the description of the Variable Watcher in Chapter 3, “The Scripting
Environment.”

For more information about creating and calling a custom variable watcher
XCMD, see Appendix A, “External Commands and Functions.”

APPLIES TO

SYNTAX

Variable watcher windows

set [the] vBarLoc of w ndow "variabl e watcher" to number
Number is an expression that yields a positive integer that represents the offset

in pixels from the left side of the variable watcher window to the vertical bar in
the window.

VBarLoc 493

EXAMPLES

DESCRIPTION

NOTES

Version

CHAPTER 12

Properties

set the vBarLoc of w ndow "variable watcher” to 123
put the vBarLoc of w ndow "variabl e watcher"

You use the vBar Loc property to determine or to change the current position
of the vertical bar in the variable watcher window. The vertical bar separates
the variable names from the actual values of the variables.

The built-in variable watcher is a HyperCard XCMD. It can be replaced with a
custom variable watcher XCMD by setting the var i abl eWat cher property to
the name of a variable watcher XCMD.

A custom variable watcher may or may not respond to the vBar Loc property.
It is up to the variable watcher XCMD to provide support for variable watcher
properties.

See also the description of the Variable Watcher in Chapter 3, “The Scripting
Environment,” and the hBar Loc, r ect, and var i abl eWat cher properties in
this chapter.

For more information about creating and calling a custom variable watcher
XCMD, see Appendix A, “External Commands and Functions.”

APPLIES TO

SYNTAX

494

HyperCard, stacks

the [long] version [of HyperCard]
the version of stack stackName

StackName is an expression that yields a stack name.

Version

EXAMPLE

DESCRIPTION

CHAPTER 12

Properties

if the version > 1.0 then set textArrows to true

The ver si on property returns the version number of the HyperCard applica-
tion currently running or the versions of HyperCard that created and modified
a specified stack.

The | ong ver si on returns an eight-digit number that represents the major
revision number, minor revision number, and software state (development,
alpha, beta, or final, plus the release number). Here are the values the numbers
represent:

version xxyyzzrr

XX major revision number
vy minor revision number
zZ 80 = final

60 = beta

40 = alpha

20 = development

Ir release number

For example, 0200600E is version 2.0 beta engineering release, and 02008000 is
version 2.0 final.

The versi on of stackName form returns a list of five comma-separated
eight-digit numbers. The first four of these numbers are of the form described
previously for the | ong ver si on. They are, respectively the version of
HyperCard used to create this stack, the version of HyperCard that last
compacted this stack, the version of HyperCard that last modified the stack,
and the version of HyperCard that first modified the stack. The last number is
the date and time (in seconds) of the most recent save before the start of the
current session. (You can use the convert command to change the seconds
format into a date and time format.)

Version 495

CHAPTER 12

Properties

Visible

APPLIES TO

Buttons, fields, menu bar, windows

SYNTAX
set the visible of object to boolean

Object yields one of the following:

a valid button descriptor in the current stack

a valid field descriptor in the current stack

message [box] ornmessage [w ndow] orw ndow "nmessage"
pattern wi ndoworw ndow "patterns" (thePatterns palette)
t ool w ndoworwi ndow "t ool s" (the Tools palette)

wi ndow "navi gat or" (the Navigator palette)

scroll w ndoworw ndow "scrol |"

wi ndow " Fat bi t s"

message wat cher orw ndow "nessage wat cher”

vari abl e wat cher orwi ndow "vari abl e wat cher"

card wi ndow

wi ndowstackName

menubar

Boolean is an expression that yields either t r ue or f al se. StackName is an
expression the yields the name of an open stack window.

EXAMPLES
if the visible of menubar is false
then set the visible of nmenubar to true
set the visible of tool window to fal se
set the visible of window "variable watcher" to true

496 Visible

DESCRIPTION

SCRIPT

NOTE

CHAPTER 12

Properties

The vi si bl e property determines whether a button, field, menu bar, or
window is shown or hidden on the screen.

The Tools and Patterns palettes become visible when you tear them off the
menu bar; the Message box and the menu bar can be toggled between being
visible and hidden by pressing Command-M and Command-Space bar,
respectively.

The script that follows could be used to show a hidden field that is used for
making notes. Create a button and a background field with the shar edText
property set to f al se. The script placed in the button would display a field
named Not es with the showcommand based on the value of the vi si bl e
property of the Not es field. It also hides the field if you click the button again:

on nmouseUp -- button or field script to showa field
if the visible of bkgnd field "Notes" then
hi de bkgnd field "Notes"
el se
show bkgnd field "Notes"
end if
end nouseUp

The next short script makes a field disappear after it has been made visible. The
script, when placed in a locked field, sets the vi si bl e property of the field to

f al se when the field receives a mouseUp message. Whenever a user clicks the
visible field, it disappears:

on nmouseUp -- field script to set visible property
set the visible of ne to not the visible of ne
end nouseUp

See also the showand hi de commands in Chapter 10.

Visible 497

CHAPTER 12

Properties
WideMargins
APPLIES TO
Fields
SYNTAX
set [the] wideMargins of field to boolean
Field is an expression that yields a background or card field descriptor. Boolean
is an expression that yields either t r ue or f al se.
EXAMPLES
set wideMargins of field "just fine" to true
the wi deMargins of field 1 -- puts value in Mg box
DESCRIPTION
You use the wi deMar gi ns property to specify whether some extra space is
included at the left and right sides of each line in the field (to make the text
easier to read). The default value of wi deMar gi ns is f al se.
NOTE

You can also change this property by clicking the Wide Margins checkbox in
the Field Info dialog box.

498 WideMargins

CHAPTER 12

Properties

Width
APPLIES TO
Buttons, fields, cards, windows, menu bar
SYNTAX
set [the] width of object to number
Object is an expression that yields a valid button, field, or window descriptor.
Number is an expression that yields a positive integer. The number value
represents the total number of pixels in the horizontal width of the
specified object.
EXAMPLES
set width of cd windowto width of cd wi ndow div 2
-- actually shrinks the window for all cards in the current
-- stack because all cards in a stack share same w ndow
put width of button 4 -- puts width in Mg box
the width of bkgnd field "phoneList"
DESCRIPTION
You use the Wi dt h property to determine or change the horizontal distance in
pixels occupied by the rectangle of the specified button, field, or window.
NOTES

The wi dt h property is read-only for the Message box and menu bar.

See also the r ect angl e property, earlier in this chapter.

Width 499

CHAPTER 12

Properties
Zoomed
APPLIES TO
Windows
SYNTAX
Set [the] zoomed of window to boolean
Window is an expression that yields a window descriptor. Boolean is an
expression that yields either t rue or f al se.
EXAMPLE
set the zoonmed of w ndow "home" to true
DESCRIPTION

500

You use the zooned property to determine or change whether a window is set
to its maximum size and centered on the screen, as when the user clicks its
zoom box in its upper-right corner.

Zoomed

Appendixes

A PPENDIX A

External Commands and Functions

This appendix describes the external command and function interface of
HyperCard. In addition to general information about external commands and
functions, this appendix contains specific information that requires a reading
knowledge of 68000 assembly language, Pascal, or C to be understood. This
appendix does not include information about how to write code, nor does it
explain how to use a compiler or assembler to create an executable resource.

Definitions, Uses, and Examples

External commands and functions are extensions to the HyperTalk built-in
command and function set. HyperCard includes interface procedures that
make extending HyperTalk in this way convenient and practical for expert
programmers.

XCMD and XFCN Resources

External commands (ex-commands, or XCMDs) and external functions
(ex-functions, or XFCNs) are executable Macintosh code resources, written

in a Macintosh programming language (such as Pascal, C, or 68000 assembly
language), which are attached to the HyperCard application or a stack with
a resource editor such as ResEdit. The resource type of an external command
is ' XCMD)', and the resource type of an external function is "XFCN'.

An XCMD or XFCN is a compiled (or assembled) executable code module. After
XCMDs or XFCNs have been created and attached to HyperCard or a stack,
they’re called from HyperTalk in much the same way that built-in commands
or user-defined message and function handlers are called. They also use the
message-passing hierarchy in the same way.

An XCMD or XFCN resource has no header bytes; it is invoked by a jump
instruction to its entry point. These resources are simpler than Macintosh
drivers: they can’t have any global (or static) data, and they can’t be larger

Definitions, Uses, and Examples 503

APPENDIX A

External Commands and Functions

than 32 KB in size. (For more details about these restrictions, see “Guidelines
for Writing XCMDs and XFCNs,” later in this appendix.)

For detailed information on Macintosh resources, see the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox, published by
Addison-Wesley.

Uses for XCMDs and XFCNs

External commands and functions can provide access to the Macintosh Toolbox
and to some of HyperCard’s own internal routines; they can provide fast
processing speed for time-critical operations; and they can override built-in
HyperTalk commands to provide custom solutions. XCMDs or XFCNs can

be used for serial port input and output routines, custom search-and-replace
routines, AppleCD SC control routines, file input and output routines, and

SO on.

A typical use for an XCMD would be as an interface for a driver, allowing
HyperCard to control an external device such as a video disc player. Such an
interface would have three parts: the driver, the XCMD, and a HyperTalk
handler. The driver would be completely separate from HyperCard. (See Inside
Macintosh: Devices for information about writing drivers.) The XCMD would be
small; its purpose would be to convert HyperTalk messages to the appropriate
driver calls. The HyperTalk handler would call the XCMD with various
parameters directing it to open or close the driver or to perform a specific
control call.

Using an XCMD or XFCN

504

You invoke XCMDs and XFCNs from HyperTalk using the regular message
syntax and user-defined function call syntax. The message or function call is
passed through the HyperCard message-passing hierarchy.

Using an XCMD or XFCN

APPENDIX A

External Commands and Functions

Invoking XCMDs and XFCNs

You invoke an XCMD as you do a message handler. That is, you type the
name of the XCMD followed by its parameters in a HyperTalk script or in

the Message box. Separate the parameters (if there are more than one) with
commas, and put quotation marks around parameters of more than one word.
When the script executes or when you send the Message box contents by
pressing Return or Enter, HyperCard sends the message through the normal
message-passing hierarchy. For external commands, the Macintosh resource
name correlates to the message name—the first word in the message.

Similarly, you call an XFCN in a HyperTalk statement in the same way you
would a user-defined function (use parentheses after the function rather than
preceding the function with the word t he). Enclose any parameters within
parentheses, separate them (if more than one) with commas, and put quotation
marks around parameters of more than one word. If the function takes no
parameters, append empty parentheses after it. For external functions, the
Macintosh resource name correlates to the function name—the word preceding
parentheses in the function call.

You can pass a maximum of 16 parameters to an XCMD or XFCN.

Message-Passing Hierarchy

External commands and functions use the message-passing hierarchy in the
same way as message and function handlers and built-in commands and
functions. External commands and functions can be attached to any stack or
to the HyperCard application.

If a stack receives a message or function call for which it has no handler, then
before passing the message or function call to another stack (if added to the
message-passing hierarchy with the st art usi ng command) or HyperCard,
it checks to see if it has an external command or function of the same name.
When HyperCard receives a message or function call, it checks to see if it has
an external command or function before it looks for a built-in command or function.

That is, HyperCard searches for message and function handlers, XCMDs and
XFCNs, and built-in commands and functions through the message-passing
hierarchy shown in Figure A-1.

Chapter 4 discusses the message-passing hierarchy, including the dynamic
path, in detail.

Using an XCMD or XFCN 505

APPENDIX A

External Commands and Functions

Figure A-1 Message-passing hierarchy, including XCMDs and XFCNs

[Message and function calls J

' L

Field handlers Button handlers

R}

Card
handlers

Background
handlers

Stack
handlers

Stack
XCMDs and XFCNs

Home stack
handlers

Home stack
XCMDs and XFCNs

HyperCard
XCMDs and XFCNs

System file
XCMDs and XFCNs

T I T I 0 I S A T A

|

HyperCard commands
and functions

i
L

Current card
handlers

Current background
handlers

Dynamic path —

Current stack
handlers

o i e

L]]

Current stack
XCMDs and XFCNs

506 Using an XCMD or XFCN

APPENDIX A

External Commands and Functions

Guidelines for Writing XCMDs and XFCN5s

XCMDs and XFCNss can call most of the Macintosh Toolbox traps and routines,
but they have certain limitations and restrictions. They can’t do everything that
an application can do because they are guests in HyperCard’s memory space.
In that regard they are more like desk accessories than applications. Here are
some guidelines for writing XCMDs and XFCNs:

Guidelines for Writing XCMDs and XFCNs

Do not initialize the various Macintosh managers by calling their initializa-
tion routines. That is, don’t call | ni t Graf , I ni t Font s, | ni t W ndows,
and so on.

Do not rely upon having lots of RAM available for your XCMD. There is
some extra space in HyperCard’s heap, but if HyperCard is running in
750 KB under MultiFinder, for example, an XCMD should not be bigger
than about 32 KB.

Do not use register A5 of a 68000-family processor. The value in A5 belongs
to HyperCard, and it points to HyperCard’s global data, jump table, and
other things that constitute an “A5 world.” XCMDs do not currently have
their own A5 world.

XCMDs cannot have global data.

You can use string literals in XCMDs compiled with the - b switch in MPW
C version 3.0 or later. You can use 'STR ' resources or put the strings in a
short assembly-language glue file.

XCMDs cannot have a jump table, so they cannot have code segments. This
restriction imposes a 32 KB limit on the size of XCMDs for 68000-based
machines (the 68020 supports longer branches).

XCMDs can, however, allocate small chunks of memory by standard
NewHand| e calls. (You can also allocate memory with NewPt r calls, but
they should be used sparingly to avoid heap fragmentation.)

If your XCMD allocates some memory in the heap, it should also deallocate
the memory.

507

APPENDIX A

External Commands and Functions

= If an XCMD allocates a handle to save state information between invocations
of the XCMD, then you must pass the handle back to HyperCard to be
stored somewhere in the current stack, such as in a hidden field. You must
convert the handle from a long integer to a string, because all values are
treated as strings by HyperTalk.

= Since HyperCard jumps blindly to the start of an XCMD'’s code, it is
important that the main routine actually ends up at the start of the XCMD.
The link order is vitally important.

= If, as you write, the size of your XCMD begins to approach 32 KB, consider
converting it to a driver.

Attaching an XCMD or XFCN

To attach an existing XCMD or XFCN (one that has already been compiled or
assembled into a resource) to one of your stacks, use a resource editor such as
ResEdit. The following steps describe the procedure using ResEdit:

1. Launch ResEdit.

2. Select and open the stack containing the 'XCMD' or 'XFCN' resource
you want.

. Select and open the resource type of ' XCMD' or 'XFCN'.
. Select and open the particular resource you want by name.
. Press Command-C to copy the resource.

. Select and open the stack you want to paste the resource into.

N O O o W

. If your stack has no resource fork, ResEdit displays a dialog box asking if
you want to open one. Click OK. ResEdit opens a window.

Qe

. Press Command-V to paste the resource into your stack.

9. Click the window’s close box. When ResEdit asks if you want to save the
file, click Yes.

10. Quit ResEdit.

508 Attaching an XCMD or XFCN

APPENDIX A

External Commands and Functions

Parameter Block Data Structure

If HyperCard matches a message or function call with an external command or

function, it passes a single argument to the XCMD or XFCN: a pointer to a
parameter block called XCndBI ock. All communication between HyperCard
and the XCMD or XFCN passes through the parameter block. In Pascal, the
parameter block data structure is a record; in C it’s a struct.

HyperCard uses the first two fields of the parameter block to pass information
to the XCMD or XFCN before invoking its execution. The XCMD or XFCN uses

the other data fields in XCndBl ock to pass back results and to communicate
with HyperCard during execution.

The Pascal parameter block is shown below:

TYPE

XCdPtr = AXCrdBl ock;
XCmdBl ock = RECORD

par anCount : | NTEGER, {
event handling call.

par ans: ARRAY[1. .16] OF Handl e;

ret ur nVal ue: Handl e;

passFl ag: BOOLEAN,;

entryPoint: ProcPtr;
request: | NTEGER;
resul t: | NTEGER;

i NArgs: ARRAY[1..8] COF Longlnt;
out Ar gs: ARRAY[1. .4] OF Longlnt;

END;

END;

Parameter Block Data Structure

-1 then this is an

{ to call back to HyperCard }

509

510

APPENDIX A

External Commands and Functions

Passing Parameters to XCMDs and XFCNs

Before calling the XCMD or XFCN, HyperCard places the number of param-
eters and handles to the parameter strings in two fields of the parameter block:
par anCount and par ans.

ParamCount

HyperCard puts an integer representing the parameter count in field
par amCount . You can pass a maximum of 16 parameter strings.

Params

HyperCard evaluates the parameters and puts their values into memory as
zero-terminated ASCII strings. Before it invokes the XCMD or XFCN,
HyperCard puts the handles to the parameter strings into the par ans array.
For example, the command Beep 5 creates a single handle in par ans[1]
containing the ASCII equivalent of 5 and a zero terminator. HyperCard
disposes of the handle.

Passing Back Results to HyperCard

When an XCMD or XFCN finishes executing, HyperCard examines two fields
of the parameter block: r et ur nVal ue and passFl ag.

ReturnValue

An XCMD or XFCN can store one zero-terminated string to communicate the
result of its execution. HyperCard looks for a handle to the result string in the
r et ur nVal ue field of XCniBl ock. Storing a result string is optional for an
XCMD,; it is expected of an XFCN, but it’s not required. If you store a result
string handle into r et ur nVal ue in an XCMD, the user can get it by using the
HyperTalk functiont he resul t (useful for explaining why there was an
error). For an XFCN, HyperCard uses the r et ur nVal ue string to replace the
function call itself in the HyperTalk statement containing the call. If you don’t
store anything, the result is the empty string.

Parameter Block Data Structure

APPENDIX A

External Commands and Functions

PassFlag

When an XCMD or XFCN terminates, HyperCard examines the Boolean value
of the passFl ag field. If passFl ag is FALSE (the normal case), control passes
back to the previously executing handler (or to HyperCard's idle state if no
handler was executing). If passFl ag is TRUE, HyperCard passes the message
or function call to the next object in the hierarchy. This has the same effect as
the pass control statement in a script.

Callbacks

The remaining five fields of the XCndBl ock record have to do with calling
HyperCard back in the middle of execution of an XCMD or XFCN. You use the
callback mechanism to obtain data or request HyperCard to perform an action.
HyperCard has 77 callback requests (see “Callback Procedures and Functions,”
later in this appendix). The five XCndBl ock fields that compose the callback
interface are ent r yPoi nt, r equest, resul t, i nArgs, and out Ar gs. If you
link your code with the HyperXLib library (the Hyper XLi b. o file that comes
with MPW), then you will use only the r esul t field.

EntryPoint

When HyperCard sets up the parameter block data structure before passing
control to an XCMD or XFCN, it places an address in ent r yPoi nt . The XCMD
or XFCN uses this address to execute a jump instruction to pass control to
HyperCard for the callback.

Request

Before executing the jump instruction, the XCMD or XFCN puts an integer
representing the callback request it’s making into the r equest field.

Result

After it completes the callback request, HyperCard places an integer result
code in ther esul t field. The result code can be 0, 1, or 2. If the callback
executed successfully, the result is 0; if it failed, the result is 1; if the callback
request is not implemented in HyperCard, the result is 2.

Parameter Block Data Structure 511

APPENDIX A

External Commands and Functions

InArgs

The XCMD or XFCN sends up to eight arguments to HyperCard as long
integers in the i NAr gs array. Depending on the callback request, HyperCard
expects arguments in certain elements of the i nAr gs array. In many callbacks,
the arguments are pointers to zero-terminated strings. The callback arguments
are shown in Pascal in “Callback Procedures and Functions,” later in this
appendix.

OutArgs

After it executes the callback request, HyperCard returns up to four long
integers (or other types, such as handles) to the XCMD or XFCN as elements
of the out Ar gs array. The arguments HyperCard returns from callbacks are
shown in Pascal in “Callback Procedures and Functions,” later in this
appendix.

Callback Procedures and Functions

512

If you want to manage a callback to HyperCard yourself, you can define the
XCmdBl ock data structure in your XCMD or XFCN. Then you can put values
you want to send to HyperCard in i nAr gs, put a request code inr equest , and
execute a jump instruction to the address HyperCard places in ent r yPoi nt .
HyperCard returns values in out Ar gs and a result codeinresul t.

However, if you use MPW Pascal or C, you can take advantage of interface
definition and library files. The definition and library files provide simple
procedure and function calls that you can use inside your XCMD or XFCN to
handle callback requests more easily. Include them when you compile and link
your XCMD or XFCN.

The Pascal code for an XCMD or XFCN should include the definition file

Hyper XCnd. p at the beginning of the USES clause. There must be an argument
of type XCmdPt r passed by HyperCard to the XCMD or XFCN. In the callback
procedures and functions, all strings are Pascal strings unless noted as zero-
terminated strings (which have no length byte; the end of the string is indicated
by a null byte). In general, if a handle is returned, the XCMD or XFCN is
responsible for disposing of it.

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

HyperTalk Utilities

FUNCTI ON Eval Expr (paranPtr: XCrdPtr; expr: Str255): Handl e;

Eval Expr evaluates the HyperTalk expression passed in expr and returns a
handle to a zero-terminated string containing the result of the evaluation.

For example, Eval Expr (' the | ong date') returns a handle to a string
containing the current date in the long format (Sat ur day, June 25, 1988).
The caller must dispose of the handle.

PROCEDURE RunHandl er (paranPtr: XCndPtr; handl er: Handl e);

The zero-terminated string in handl er is interpreted first as a message. If it is
a message (command or function), it is sent to the current card. The text can be
one or more lines of HyperTalk, including conditional statements and repeat
loops. The lines are executed as though sent from the Message box. If it is
multiple lines beginning with on messageName and ending with end
messageName, messageName is sent to this handler in the context of the card. If
the handler exits, execution terminates. If the handler contains the line pass
messageName, messageName is passed down HyperTalk’s normal
message-passing path, beginning with the current card script.

You can not override a script executed with RunHandl er . For example, if

the current card has an on messageName handler, and an XCMD issues a
runHandl er callback with an on messageName, the XCMD’s handler executes.
If the handler passes the message, the card’s script executes.

Execution is somewhat slower using RunHandl er than it would be running
the same script as a card handler. You cannot use the debugging tools to debug
scripts executed with RunHandl er.

PROCEDURE SendCar dMessage(paranPtr: XCrdPtr; msg: Str255);
The string in Mg is sent as a message to the current card.

PROCEDURE SendHCMessage(paranPtr: XCrdPtr; msg: Str255);

The string in M8 is sent as a message directly to HyperCard, bypassing the
entire message-passing hierarchy.

Callback Procedures and Functions 513

514

APPENDIX A

External Commands and Functions

Memory Utilities

FUNCTI ON Get d obal (paranPtr: XCndPtr; gl obNanme: Str255):
Handl e;

CGet G obal returns a handle to a zero-terminated string that contains a copy of
the contents of the HyperTalk global variable gl obNane. If gl obNane doesn’t
exist, Get G obal returns a handle to an empty string. The caller must dispose
of the handle.

PROCEDURE Set d obal (paranPtr: XChdPtr; gl obNanme: Str255;
gl obVal ue: Handl e);

Set d obal copies the zero-terminated string to which gl obVal ue is a handle
into the HyperTalk global variable named gl obNarre. If gl obNane doesn’t
exist, Set G obal creates it. HyperCard does not dispose of gl obVal ue.

PROCEDURE Zer oByt es(paranPtr: XCndPtr; dstPtr: Ptr;
| ongCount: Longl nt);

Zer 0Byt es sets | ongCount bytes beginning at dst Pt r to 0. It performs

no boundary checking. For example, it can write past the end of a zero-
terminated string.

String Utilities

PROCEDURE ScanToReturn(paranPtr: XCndPtr; VAR scanPtr:
Ptr);

ScanToRet ur n scans the zero-terminated string pointed to by scanPtr,
stopping at the first return character or at the end of the string. ScanPt r is
incremented to point to the new location.

PROCEDURE ScanToZero(paranPtr: XCndPtr; VAR scanPtr: Ptr);
ScanToZer o scans the zero-terminated string pointed to by scanPtr,

stopping at the end of the string. ScanPt r is incremented to point to the
new location.

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

FUNCTI ON StringEqual (paranPtr: XCrdPtr; strl,str2:
Str255): BOOLEAN,

St ri ngEqual compares the two Pascal strings st r 1 and st r 2 (case-
insensitive and diacritical-sensitive) and returns TRUE if the two strings
are identical; otherwise, it returns FALSE.

FUNCTI ON StringLength(paranPtr: XCndPtr; strPtr: Ptr):
Longl nt;

St ri ngLengt h returns the number of characters in the zero-terminated string
pointed to by st r Pt r. Note that st r Pt r is a pointer, not a handle.

FUNCTI ON Stringhatch(paranPtr: XCndPtr; pattern: Str255;
target: Ptr): Ptr;

St ri ngMat ch performs a case-insensitive search for pat t er n (a Pascal string)
in the zero-terminated string pointed to by t ar get . If the search is successful,
the location of the first matching character is returned as the function result. If
the search is unsuccessful, St ri ngMat ch returns ni | . This is equivalent to
HyperTalk’s of f set function.

PROCEDURE Zer oTer mHandl e(paranPtr: XCrdPtr; hndl: Handl e);
Zer oTer mHandl e increases the block referenced by hndl by 1 byte and then

sets the extra byte to 0, making hndl legal for operations such as
SaveXWscr i pt, For mat Scri pt, and Zer oToPas.

String Conversions

PROCEDURE Bool ToStr (paranPtr: XCrdPtr; bool: BOOLEAN, VAR
str: Str255);

Bool ToStr converts bool to a Pascal string (TRUE or FALSE).

PROCEDURE Ext ToStr(paranPtr: XCndPtr; num Extended; VAR
str: Str255);

Ext ToStr converts num(a SANE extended type) to a Pascal string.

Callback Procedures and Functions 515

516

APPENDIX A

External Commands and Functions

PROCEDURE LongToStr (paranPtr: XCrdPtr; posNum Longlnt;
VAR str: Str255);

LongToStr converts posNum(a 32-bit unsigned integer) to a Pascal string.

PROCEDURE NunToHex(paranPtr: XCndPtr; num Longlnt;
nDigits: INTEGER, VAR str: Str255);

NuniToHex returns in st r a hexadecimal (base 16) representation of the value
of num expanding the string to nDi gi t s in length.

PROCEDURE NumroStr (paranPtr: XCndPtr; num Longlnt; VAR
str: Str255);

NunifoSt r converts num(a 32-bit signed integer) to a Pascal string.
FUNCTI ON PasToZero(paranPtr: XCndPtr; str: Str255): Handl e;

PasToZer o converts st r to a zero-terminated string and returns a handle to
the new string. The caller must dispose of the handle.

PROCEDURE Poi nt ToStr (paranPtr: XCrdPtr; pt: Point; VAR
pasStr: Str255);

Poi nt ToSt r converts the point passed in pt to a Pascal string and returns the
string in pasSt r.

PROCEDURE Rect ToStr (paranPtr: XCrdPtr; rct: Rect; VAR
pasStr: Str255);

Rect ToSt r converts the rectangle passed inr ct to a Pascal string and returns
the point in pasStr.

PROCEDURE Ret urnToPas(paranPtr: XCndPtr; zeroStr: Ptr; VAR
pasStr: Str255);

Ret ur nToPas copies characters from the zero-terminated string pointed to

by zer oSt r into the Pascal string pas St r, stopping at the first return
character (ASCl | $0D), the end of the zero-terminated string, or the 255th

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

character, whichever comes first. The variable pasSt r will not include the
return character.

FUNCTI ON Str ToBool (paranPtr: XCndPtr; str: Str255):
BOOLEAN;

St r ToBool converts st r to a Boolean (TRUE or FALSE) and returns the
Boolean value as its result.

FUNCTI ON Str ToExt (paranPtr: XCmdPtr; str: Str255):
Ext ended;

St r TOExt converts str to an extended type. Extended numbers contain a sign
bit, 15 bits for the exponent, and 63 bits for the significand. This is the standard
data type for SANE, the Standard Apple Numerics Environment.

FUNCTI ON Str ToLong(paranPtr: XCndPtr; str: Str255):
Longl nt;

Converts st r to a long (32-bit) unsigned integer. Unsigned long integers range
from 0 to 4,294,967,295.

FUNCTI ON StrToNum(paranPtr: XCrdPtr; str: Str255): Longlnt;

Converts st r to a long (32-bit) signed integer. Signed long integers range from
—2,147,483,648 to 2,147,483,647.

PROCEDURE St r ToPoi nt (paranPtr: XCrdPtr; str: Str255; VAR
pt: Point):

Converts the Pascal string passed in st r to a point and returns the point in pt .

PROCEDURE StrToRect (paranPtr: XCmdPtr; str: Str255; VAR
rct: Rect):

Converts the Pascal string passed in st r to a rectangle and returns the
rectangleinrct.

Callback Procedures and Functions 517

518

APPENDIX A

External Commands and Functions

PROCEDURE Zer oToPas(paranPtr: XCrdPtr; zeroStr: Ptr; VAR
pasStr: Str255);

Zer oToPas converts the zero-terminated string pointed to by zer oSt r to a
Pascal string and returns the string in pasSt r.

Field Utilities

FUNCTI ON Get Fi el dByl D(paranPtr: XCndPtr; cardFl d: BOOLEAN;
fldl D | NTEGER): Handl e;

Get Fi el dByl Dreturns a handle to a zero-terminated string that contains a
copy of the contents of field ID f | dI D. If car dFl d is TRUE, f | dI Dis a card
field; otherwise, it is a background field.

FUNCTI ON Get Fi el dByNane(paranPtr: XCndPtr; cardFl d:
BOOLEAN; fl dNanme: Str255): Handl e;

Cet Fi el dByNane returns a handle to a zero-terminated string that contains a
copy of the contents of field f | dNane. If car dFl d is TRUE, f | dNane is a card
field; otherwise, it is a background field.

FUNCTI ON Get Fi el dByNun{ paranPtr: XCrdPtr; cardFl d:
BOOLEAN; fldNum | NTEGER): Handl e;

Get Fi el dByNumreturns a handle to a zero-terminated string that contains a
copy of the contents of field number f | dNum If car dFl d is TRUE, f | dNumis a
card field; otherwise, it is a background field.

FUNCTI ON Get Fi el dTE(paranPtr: XCrdPtr; cardFi el dFl ag:
BOOLEAN;, fieldlD, fieldNum |NTEGER, fiel dNamePtr:
StringPtr): TEHandl e;

Cet Fi el dTE returns a copy of the styled TEHand| e from the specified field,
including style runs (see Inside Macintosh: Text). The caller must dispose of this
TEHandl e.

Iffi el dl Dis nonzero, then HyperTalk uses it; else if f i el dNumis nonzero,
then HyperTalk uses it; else if f i el dNanmePt r is not NI L, HyperTalk uses the

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

field name pointed to by it. If Get Fi el dTE returns NI L, the field was not
found or there wasn’t enough memory to copy the text and styles.

PROCEDURE Set Fi el dByl D(paranPtr: XCrdPtr; cardFl d:
BOOLEAN;, fldlID: |INTECER; fldVval: Handle);

Set Fi el dByl Dcopies the zero-terminated string to which f | dVal is a handle
into the field ID f | dI D. If car dFl d is TRUE, f | dl Dis a card field; otherwise, it
is a background field. The caller must dispose of the handle.

PROCEDURE Set Fi el dByNane(paranPtr: XCrdPtr; cardFl d:
BOOLEAN; fl dNanme: Str255; fldval: Handle);

Set Fi el dByNane copies the zero-terminated string to which f | dVval is a
handle into field f | dNane. If car dFl d is TRUE, f | dNan® is a card field;
otherwise, it is a background field. The caller must dispose of the handle.

PROCEDURE Set Fi el dByNum(paranPtr: XCndPtr; cardFl d:
BOOLEAN; fldNum | NTEGER, fldVal: Handle);

Set Fi el dByNumcopies the zero-terminated string to which f | dVal isa
handle into the field number f | dNum If car dFl d is TRUE, f | dNumis a card
tield; otherwise, it is a background field. The caller must dispose of the handle.

PROCEDURE Set Fi el dTE(paranPtr: XCrdPtr; cardFi el dFl ag:
BOOLEAN; fieldl D, fieldNum |NTEGER, fiel dNamePtr:
StringPtr; fieldTE: TEHandl e);

Set Fi el dTE sets the text and styles of the field to the text and styles contained
infiel dTE

Miscellaneous Utilities

PROCEDURE Begi nXSound(paranPtr: XCndPtr; w ndow
W ndowPtr) ;

Begi nXSound informs HyperCard that an XCMD is about to use the Sound
Manager. An XCMD should call Begi nXSound before it attempts to allocate
a sound channel or perform any other Sound Manager operation. After an

Callback Procedures and Functions 519

520

APPENDIX A

External Commands and Functions

XCMD calls Begi nXSound, HyperCard’s built-in pl ay command will not
operate until the XCMD calls EndXSound (see the next procedure).

If an external window is making the callback, it should pass a pointer to its
window in the wi ndow parameter. An XCMD should pass NI L for the wi ndow
parameter. An XCMD or an external window can optionally pass a pointer to a
valid external window in the wi ndow parameter if it wants to “aim” the call at
another external window. If HyperCard gets a valid W ndowPt r in wi ndow it
will post an XG veUpSoundEvt event to that window at an appropriate time.
If the XCMD passes NI L for wi ndow HyperCard will be unable to signal the
XCMD when HyperCard needs the sound channel back.

An XCMD that uses the Sound Manager can be structured as follows:

Begi nXSound(paranPtr, N L);

(* allocate a sound channel *)
(* do your sound thing *)

(* deall ocate sound channel *)
EndXSound(paranPtr);

PROCEDURE EndXSound(paranPtr: XCrdPtr);

EndXSound informs HyperCard that an XCMD has finished using the Sound
Manager. If the XCMD has not previously called Begi nXSound, EndXSound
does nothing.

FUNCTI ON Fr ont DocW ndow(paranPtr: XCndPtr): W ndowPtr;

Fr ont DocW ndowreturns the W ndowPt r of the document that is frontmost
in HyperCard’s document layer. It does not return the W ndowPt r of a
window in the miniwindow layer. To return the frontmost window of any type,
use the Window Manager’s Fr ont W ndow function.

FUNCTI ON Get Fil ePat h(paranPtr: XCndPtr; fil eNane: Str255;
nunifypes: | NTECER; typeList: SFTypelist; askUser: BOOLEAN;
VAR fil eType: OSType; VAR full Name: Str255): BOOLEAN

Get Fi | ePat h determines the full pathname of the file f i | eNane using the

search paths stored in the Home stack. If f i | eType is 'STAK', Get Fi | ePat h
uses the stack search paths. If fi | eType is 'APPL’, Get Fi | ePat h uses the

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

application search paths. If f i | eType is neither 'STAK' nor 'APPL’,

Get Fi | ePat h uses the document search paths. The parameters nunilypes
and t ypeLi st are used as described in the chapter “Standard File Package”
in Inside Macintosh: Files. If askUser is TRUE and HyperCard fails to find
the file on its own, Get Fi | ePat h prompts the user to find the file with a
standard file dialog box. If the file is located either by HyperCard or by the
user, the full pathname of the file is returned in f ul | Name and the file type
isreturned in f i | eType. If the user clicks Cancel in the standard file dialog
box or HyperCard fails to find the file for any other reason, Get Fi | ePat h
returns FALSE.

PROCEDURE GCet XResl nfo(paranPtr: XCndPtr; VAR resFile:
I NTECER; VAR reslD: | NTEGER, VAR rType: ResType; VAR nane:
Str255);

Get XRes| nf o returns the file reference number of the resource file from which
the calling XCMD was read inr esFi | e and the resource ID of the XCMD in

r esl D, the resource type (XCMD or XFCN) in r Type, and the resource name

in namne.

PROCEDURE Noti fy(paranPtr: XCndPtr);

If HyperCard is active or MultiFinder is not loaded, Not i f y returns
immediately. Otherwise, Not i f y blinks the small HyperCard icon over the
Apple in the Apple menu (System 6) or over the Applications menu (System 7)
until the user switches to HyperCard’s layer. Only then does Not i f y return.
No other HyperCard processing takes place while Not i f y is waiting.

PROCEDURE SendHCEvent (paranPtr: XCndPtr; event:
Event Recor d) ;

SendHCEvent is useful only to XCMDs that call the Toolbox routines

Get Next Event and Wi t Next Event . Such XCMDs should use
SendHCEvent to pass events required by HyperCard. For example, an XCMD
that creates a draggable window and calls Get Next Event may receive update
events for HyperCard windows. HyperCard performs the updates if it receives
the update events via this callback. More importantly, an XCMD that calls

Get Next Event and receives an app4Evt generated by MultiFinder must pass
the event along to HyperCard. If HyperCard does not receive its suspend and
resume events, unexpected results may occut.

Callback Procedures and Functions 521

522

APPENDIX A

External Commands and Functions

XCMDs that create windows by means of the NewXW ndow callback don’t need
to call Get Next Event or Wi t Next Event and therefore don’t need to use
SendHCEvent .

PROCEDURE SendW ndowMessage(paranPtr: XCrdPtr; wi ndPtr:
W ndowPtr; wi ndowNane: Str255; msg: Str255);

SendW ndowivessage is functionally equivalent to send message t 0

wi ndow windowName from HyperTalk. Use this for direct communication
between XCMDs that manage external windows. If wi ndPt r is not NI L, the
window pointer in W ndowpt r is used to determine which window receives
the message; otherwise, the name in wi ndowNane is used.

FUNCTI ON St ackNameToNum(paranPtr: XCndPtr; stackName:
Str255): Longlnt;

Internally, HyperCard no longer remembers stacks only by their name. It uses
a stack number to represent the stack. This number is similar to a volume
reference number: it is valid as an indicator as long as the application is open,
but won’t be valid across multiple launches. This number is valid when used in
an XTal kQbj ect to get and set the scripts of objects. St ackNameToNum
translates the name of a stack into this number.

Creating and Disposing of External Windows

FUNCTI ON Get NewXW ndow(paranPtr: XCndPtr; tenpl ateType:
ResType; tenplatel D. | NTEGER; col or Wnd: BOOLEAN,
floating: BOOLEAN): W ndowPtr;

Get NewXW ndow creates a new window or dialog box from a resource. If the
Window Manager fails to create the window, Get NewXW ndowreturns NI L. If
the window is created successfully, Get NewXW ndowsets up the mechanism
by which events pertaining to the window are sent to the XCMD that created it.

Tenpl at eType must be either ' WND or' DLOG . Tenpl at el Dis the
resource ID of the window or dialog box template to be used. The template
resource can exist in any resource file that’s currently open.

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

If col or W nd is TRUE, HyperTalk attempts to create a color window using the
Get NewCW ndowor NewCDi al og toolbox trap. If col or W nd is TRUE and
Color QuickDraw is not present, the window is not created and

Get NewXW ndowreturns NI L.

Iff I oat i ng is TRUE, HyperTalk places the new window in the miniwindow
layer. Otherwise, the window is placed into the document layer. See “Window
Layer Management,” later in this appendix, for an explanation of these two
layers and their relationship to each other.

Note

Get NewXW ndowis compatible with nonstandard
window definition functions (see NewXW ndow for
more information). 0

FUNCTI ON NewXW ndow(paranPtr: XCrdPtr; boundsRect: Rect;
title: Str255; visible: BOOLEAN, procl D | NTEGER;
col orWwnd: BOCOLEAN;, floating: BOOLEAN): W ndowPtr;

NewXW ndow creates a new window and returns a pointer to it as the func-
tion’s result. If the Window Manager fails to create the window, NewXW ndow
returns NI L. If the window is created successfully, NewXW ndowsets up the
mechanism by which events pertaining to the window are sent to the XCMD
that created it.

If col or W nd is TRUE, HyperTalk attempts to create a color window using the
NewCW ndow Toolbox trap. If col or W nd is TRUE and Color QuickDraw is not
present, the window is not created and NewXW ndowreturns NI L.

The value in pr ocl Dis the same as the pr ocl Dargument to the Window
Manager routine NewW ndow For example, passing docunment Pr oc as

the pr ocl Dproduces a standard document window with no zoom box.
BoundsRect is the bounding rectangle for the window in global coordinates.
Ti t | e becomes the title of the window.

The vi si bl e argument determines whether the window is created visible.

To create windows similar to HyperCard miniwindows, such as the Tools
palette and the Message box, use HyperCard’s built-in window definition
function for windows.

Callback Procedures and Functions 523

524

APPENDIX A

External Commands and Functions

Here are the possible built-in window values to use for pr ocl D

pal ett eProc = 2048; { wi ndow with grow box }

pal NoGrowProc = 2052; { standard wi ndow }

pal ZoonPr oc = 2056; { window with zoom and grow }
pal ZoomNoG ow = 2060; { wi ndow with zoom and no grow }
hasZoom = 8;

hasTal | TBar = 2;

toggleHilite 1;

For example, the Navigator palette uses pal NoG owPr oc for pr ocl D.

Note
NewXW ndowis also compatible with other nonstandard
window definition functions. O

PROCEDURE O oseXW ndow(paranPtr: XCrdPtr; w ndow
W ndowPt r) ;

When an XCMD that manages an external window requests that the window
be closed, it should call O oseXW ndow When all pending calls to the XCMD
have returned, HyperCard sends an XxCl oseEvt to the XCMD. Only in
response to this event should it dispose of its data structures and exit.

When the external window receives the xCl oseEvt, it signals its willingness
to close by setting par anPt r *. passFl ag to TRUE. If this is not done,
HyperTalk will not proceed with the disposal of the window.

HyperTalk tries to close all open external windows when the user quits
HyperCard. If any windows refuse to close at that time, HyperCard will
not quit.

Do not use any of the following Toolbox routines to close external windows:
Cl oseW ndow Di sposeW ndow Cl oseDi al og, and Di sposDi al og.

Any XCMD can close any external window created with the NewXW ndow or
Get NewXW ndow calls by means of a call to O oseXW ndow Cl oseXW ndow
has no effect on windows that were not created by means of a call to

NewXW ndow or Get NewXW ndow

You can also close an external window from a script with the cl ose wi ndow
command.

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

Window Utilities

PROCEDURE Hi deHCPal ett es(paranPtr: XCrdPtr);

Hi deHCPal et t es hides all of HyperCard’s built-in miniwindows (the Tools
palette, the Patterns palette, the FatBits window, the Scroll window, and the
Message box).

PROCEDURE Regi st er XWenu(paranPtr: XCndPtr; nenu:
MenuHandl e; registering: BOOLEAN);

Regi st er X\Wvenu is useful only to XCMDs that manage external windows.
Regi st er X\Wenu informs HyperCard that the given menu is meant for use
with the external window. When an item in the menu is chosen by the user, the
XCMD that registered the menu chosen receives a menu event (xMenuEvt).
Note that an XCMD can register one of HyperCard’s menus, for example, the
Font menu, in order to borrow the menu temporarily.

Regi st er XWWenu does not change the menu bar. The XCMD must call the
Menu Manager in order to insert or delete the menu and to redraw the menu
bar. Once the menu has been registered, it remains the property of the XCMD
until Regi st er X\Wenu is called again with r egi st er i ng set to FALSE.

Note

HyperCard expects XCMD menus to have unique IDs but
does not ensure that they do. You may employ the
following function to find an unused menu ID. O

FUNCTI ON UnusedMenul D: | NTEGER,;
VAR t hi sl D | NTEGER;
menuHndl : MenuHandl e;

BEG N
thislD:= 1023;
REPEAT
thisID:=thisID + 1;
menuHndl : = Get MHandl e(t hi sl D);

UNTI L nmenuHndl = NIL;
UnusedMenul D : = thislD;
END;

Callback Procedures and Functions 525

526

APPENDIX A

External Commands and Functions

PROCEDURE Set XW dl eTi ne(paranPtr: XCndPtr; ticks: Longlnt);

XCMDs that manage external windows can request idle time from HyperCard.
Use Set XW dl eTi ne if your XCMD needs to perform a periodic action.

Until Set XW dl eTi e is called by an XCMD, the XCMD does not receive
periodic calls. A value greater than 0 for t i cks represents the requested
interval between periodic calls by HyperCard. HyperCard sends the XCMD a
nul | Event message when making its periodic call. Call Set XW dI eTi e
only after your external window has received an xOpenEvt .

Whether HyperCard’s periodic calls occur as often as requested depends
on whether HyperCard is currently performing a timing-critical or data-
intensive operation.

To give up idle time, call Set XW dl eTi me with a value of O fort i cks.

Note
Nul | Event messages are sent in both the foreground and
background under MultiFinder. O

PROCEDURE ShowHCPal ett es(paranPtr: XCrdPtr);

ShowHCPal et t es reverses the effect of H deHCPal et t es, showing all of
HyperCard’s miniwindows that were visible when Hi deHCPal et t es was
called to hide them.

PROCEDURE XWHasl| nt er r upt Code(paranPtr: XCndPtr; haveCode:
BOOLEAN) ;

When HyperCard creates an external window (by means of either the
NewXW ndow or Get NewXW ndow callback), it is assumed that the code of the
XCMD that manages it can be moved in memory when it is not executing.

If haveCode is TRUE, HyperCard never unlocks the relocatable block
containing the XCMD code in memory. This allows Pr ocPt r s and other
addresses within an XCMD’s code to be preserved and valid at all times.
XWHas| nt er r upt Code should be used with extreme prudence and should
be undone as soon as possible—HyperCard’s memory management can
become seriously taxed if there are any locked blocks inconveniently located
in its heap. In particular, it’s impossible to open card windows at the full size
of large cards when a nonrelocatable block is located too close to the bottom of
the application heap.

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

The preferred method for an XCMD to manage procedure pointers
passed to the Toolbox is to refresh them as needed rather than to call
XWHas| nt er r upt Code to ensure their validity. This method permits
HyperCard to unlock the XCMD’s code between invocations. An example
of such an XCMD is a text editor with a custom cl i kLoop routine. For
best results, such an XCMD should recalculate and refresh its pr ocPt r
every time the user clicks the vi ewRect . For example:

CASE evt.what OF
nmouseDown:

BEG N
G obal ToLocal (evt. where);
hTE*. cl i kLoop : = @WC i kLoop;

{ an assenbl y-l anguage clik |oop }

TEC i ck(evt.where, FALSE, hTE);

END;

An XCMD that uses this method will have no need to call
XWHas| nt er r upt Code.

An XCMD'’s code is always locked while it is actually executing.
XWHas| nt er r upt Code determines only whether the block of code can be
unlocked when control is returned to HyperCard.

PROCEDURE XWAl waysMveHi gh(paranPtr: XCndPtr; noveH gh:
BOOLEAN) ;

XWAl waysMoveHi gh tells HyperTalk to always move the external window’s
code high on the heap before locking it down and calling it. External windows
that may allocate large amounts of memory or send card messages to do such
operations as go to another card should use this call.

In normal XCMD and external window operations, HyperTalk makes a
determination at the time the code is jumped to as to whether the code should
be moved high in the application heap before being locked down. Currently,
this is done whenever an XCMD is called and when an external window is
given the following events: xQpenEvt , xMenuEvt , nrbuseDown, and keyDown.
All other events are assumed to rarely cause memory allocation or messages to
be sent; therefore, HyperTalk can speed up the process of calling and returning
from an external window. However, some external windows may allocate

Callback Procedures and Functions 527

528

APPENDIX A

External Commands and Functions

memory on such things as an xSet Pr opEvt event. For example, a picture
XCMD could be asked to change information about the currently displayed
PICT, and that may cause memory to be allocated. A good rule of thumb is if
your external window is not called repeatedly in a script and you might
allocate memory on events other than the aforementioned events, call this with
moveH gh = TRUE.

PROCEDURE XWAI | owReENnt rancy(paranPtr: XCrdPtr;
al | owSysEvts: BOCLEAN; all owHCEvts: BOOLEAN);

XWAI | owReENt r ancy allows an XCMD to tell HyperCard whether it is
equipped to receive events (either system events or HyperCard-generated
events) in a reentrant fashion. Either of the Booleans, al | owSysEvt s or

al I owHCEvt s, can be set to TRUE or FALSE to enable or disable (respectively)
this behavior.

In certain situations, it is possible for an external window to generate events for
itself. In other words, calling the Window Manager’s | nval Rect routine on a
portion of the window could create an updat eEvt event for the window.

While running scripts, HyperTalk periodically checks the Event Manager to see
if update, activate, or MultiFinder events are pending. This is how HyperCard
processes events in the background. In the course of these checks, the Window
Manager may report an update event for the external window if it notices that
any or all of the window is invalid. The problem arises from external windows
that use SendCar dMessage, SendHCMessage, Eval Expr, or any other
HyperTalk callback that can run a script. X\WAl | owReEnt r ancy was
implemented to allow external windows to perform asynchronous handling of
certain events. For example, if a SendCar dMessage callback causes a lengthy
script to be executed, the external window may want to be notified that the
user switched out of HyperCard under MultiFinder. The default is for
HyperTalk to not allow these reentrant calls to take place. Unlike system
events, HyperTalk events are not queued, so unreceived events are ignored.

Note

An external window should only call

XWAI | owReENt r ancy at the end of its response to an
xOpenEvt event. The first event that is sent to an external
window is its xQpenEvt event. O

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

Because xGet Pr opEvt and xSet Pr opEvt are events, if an external window
has not called XWAI | owReEnt r ancy(par anPt r, xxxx, TRUE) , the scenario
described below results in the external window never receiving its

xSet PropEvt for its visible property:

SendCar dMessage(paranPtr, ' go next card');
on cl oseCard
hi de wi ndow "fred" -- this call wll fail
end cl oseCard

The xSet Pr opEvt causes the external window to be reentered, so HyperTalk
skips the event and continues. If your external window needs to communicate
with running scripts, make sure that you allow it to be reentrant.

Writing completely reentrant code is difficult, and some development systems
may not support reentrancy correctly. One tip is to make sure that every time
an external window receives an event, it should completely save and restore its
state. A good idea is to use the external window’s r ef Con field to store a
handle to all the window’s state information. Beware of the use of global
variables in stand-alone code resources. See Macintosh Technical Note 256 for
more information.

Text Editing Utilities

PROCEDURE Begi nXW\Edi t (paranPtr: XCrdPtr; w ndow
W ndowPt r) ;

Begi nXWEdi t registers an external window as the current editing environ-
ment. It can be called only by the XCMD that manages the window. Once it

is called, HyperCard redirects all keystrokes to the XCMD, with the exception
of Command-key combinations recognized by the Menu Manager as the
equivalent of menu items. In addition, HyperCard passes events to the XCMD
that correspond to the first five commands in the Edit menu whenever these
commands are chosen. The XCMD still receives all of the other events
pertaining to its window, including nul | Event s if it has requested them.

Once the XCMD has registered itself as the current editing environment, it
receives an XG veUpEdi t event from HyperCard when the user performs an
action that activates a different editing environment, such as a click in the

Callback Procedures and Functions 529

530

APPENDIX A

External Commands and Functions

Message box or in an unlocked field. When this happens, the XCMD should
deactivate its editable area as appropriate, just as it does when its window
is deactivated.

PROCEDURE EndXWEdi t (paranPtr: XCrdPtr; wi ndow. W ndowPtr);

EndXVEdi t informs HyperCard that an XCMD no longer wants to receive
keystrokes and edit events for its external window.

Call EndXVEdi t before an external window that is an editing environment
is closed.

FUNCTI ON HCWor dBr eakProc(paranPtr: XCrdPtr): ProcPtr;

HCWor dBr eak Pr oc returns a procedure pointer to HyperCard’s built-in
word-break routine used for text in fields, scripts, and the Message box. Script
editors and other text editing XCMDs can use this address in the wor dBr eak
field of a Text Edi t record.

PROCEDURE Pri nt TEHandl e(paranPtr: XCndPtr; hTE: TEHandl e;
header: StringPtr);

Given a handle to a Text Edi t record in hTE, Pri nt TEHandl e displays a
print job dialog box and prints the record using the font, size, and style
information contained within it. Pr i nt TEHand| e works for both old- and
new-style edit records.

Script Editor Utilities

PROCEDURE Fornmat Scri pt (paranPtr: XCndPtr; scriptHndl:
Handl e; VAR insertionPoint: Longlnt; quickFormat: BOOLEAN);

For mat Scri pt reformats the script contained in the zero-terminated string
to which scri pt Hndl is a handle. Call Zer oTer nHandl e before calling
For mat Scri pt if the text is not zero-terminated.

The offset into the text passed in i nserti onPoi nt is adjusted as necessary
to reflect the same position within the text both before and after formatting.

An XCMD that uses TextEdit should pass TEHandl e"*. sel St art for this

parameter, then call TESet Sel ect i on after For mat Scri pt returns.

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

I nserti onPoi nt is also used when qui ckFor mat is TRUE to determine
which handler within the script should be formatted.

Note
Using Eval Expr to get the script of an object
formats it automatically. O

FUNCTI ON Get CheckPoi nt s(paranPtr: XCndPtr): CheckPt Handl e;

Get CheckPoi nt s returns a handle to the cached checkpoints for the
window’s script. The caller must dispose of the handle. If there are no cached
checkpoints, Get CheckPoi nt s returns NI L.

The structure of a CheckPt Handl e is as follows:

CheckPt Handl e = "CheckPt Ptr;
CheckPt Ptr = ~CheckPts;
CheckPts = RECORD
checks: ARRAY[1..16] OF | NTEGER
END;

PROCEDURE SaveXWEcri pt (paranPtr: XCrdPtr; script Text:
Handl e) ;

Given a zero-terminated handle to a script in scri pt Text , SaveXW5cr i pt
saves the script to disk. Call Zer oTer nHandl e before calling SaveXWscr i pt
if the text is not zero-terminated.

This callback is reserved for the use by XCMDs that implement script editors. It
fails if the XCMD has not been called by HyperCard as the current script editor.
SaveXWBcr i pt also fails if the text of the script exceeds 32 KB.

Note
An XCMD can set the script of any object using the
following example code:

Set d obal (paranPtr, ' tenpd obal ', scri pt Hndl) ;

SendCar dMessage(paranPtr, CONCAT('set the script of ',objectNane, ' to
tenpd obal '));

SendCar dMessage(paranPtr, ' put enpty into tenpd obal');

Callback Procedures and Functions 531

532

APPENDIX A

External Commands and Functions

PROCEDURE Set CheckPoi nt s(paranPtr: XCndPtr; checkLi nes:
CheckPt Handl e) ;

Set CheckPoi nt s sets the checkpoints of a script to the array of lines in
checkLi nes.

PROCEDURE Get Obj ect Nane(paranPtr: XCrdPtr; object:
XTal kbj ect; VAR obj Nane: Str255);

Given an XTal kQbj ect as input, returns the name of the object in obj Nane.

PROCEDURE Get Obj ect Scri pt (paranPtr: XCndPtr; object:
XTal kOhj ect; VAR scriptHndl: Handl e);

Given an XTal kQoj ect as input, returns the script of the object in
scri pt Hndl .

PROCEDURE Set Obj ect Scri pt (paranPtr: XCrdPtr; object:
XTal kQhj ect; scriptHndl: Handl e);

Given an XTal kObj ect and a handle to a script as input, sets the script of the
object described by XTal kQbj ect to the scriptin scri pt Hndl .

Variable Watcher Support

PROCEDURE Count Handl ers(paranPtr: XCmdPtr; VAR
handl er Count : | NTEGER) ;

Count Handl er s returns the number of running handlers in handl er Count .
If handl er Count is 0, then no handlers are currently running and the only
variables that exist are global variables.

PROCEDURE Get Handl er | nf o(paranPtr: XCndPtr; handl er Num
| NTECER;, VAR handl er Nane: Str255; VAR obj ect Nane: Str255;
VAR var Count: | NTEGER);

Get Handl er | nf o returns information about handlers. If handl er Num
is 1, Get Handl er | nf o returns information about the current handler, if
there is one. If handl er Numis greater than 1, Get Handl er | nf o returns

Callback Procedures and Functions

APPENDIX A

External Commands and Functions

information about a handler that has a pending call to another handler. For
example, if handl er Numis 2, the information returned is for the handler
that called the current handler. If there is no running handler, passing 0 for
handl er Numyields information about the global variables.

PROCEDURE GCet Var I nfo(paranPtr: XCrdPtr; handl er Num
I NTEGER, var Num | NTEGER; VAR var Nane: Str255; VAR
i sd obal : BOOLEAN; VAR varVal ue: Str255; varHndl: Handle);

Given the variable number var Numin active handler number handl er Num
Get Var | nf o returns information about the variable. If var Hhdl isNI L, a
truncated version of the contents of the variable, limited to 255 characters, is
returned in var Val ue. If var Hndl is a valid handle, the entire contents of
the variable are copied into that handle, which is resized as necessary. If there
is no running handler, passing 0 for handl er Numreturns information about
the global variables.

PROCEDURE Set Var Val ue(paranPtr: XCndPtr; handl er Num
I NTECER; varNum | NTEGER; varHndl: Handl e);

Set Var Val ue sets the value of variable number var Numof handler
handl er Numto the zero-terminated string passed in var Hndl .

Note

Changing the value of a variable other than the global
variables (handl er Num 0) or the variables local to the
current handler (handl er Num 1) does not affect the
handler until it is once again current. O

Debugger Support
PROCEDURE Abort Script(paranPtr: XCndPtr);

Abor t Scri pt cancels the currently executing handlers. The effect is the same
as pressing Command-period or choosing Abort from the HyperCard built-in
Debugger menu.

Note

An XCMD that calls Abort Scri pt is not itself aborted. It
exits normally. O

Callback Procedures and Functions 533

APPENDIX A

External Commands and Functions

FUNCTI ON Get St ackCrawl (paranPtr: XCrdPtr): Handl e;

Returns a zero-terminated handle to the chain of callers (indented) as in the
Message Watcher.

PROCEDURE GoScri pt (paranPtr: XCndPtr);

GoScri pt exits the debugger, closes all temporary debugger windows, and
continues normal execution of scripts.

PROCEDURE St epScript (paranPtr: XCrdPtr; steplnto: BOOLEAN);

St epScri pt creates a temporary checkpoint after the currently executing line.
If st epl nt o0 is TRUE, the checkpoint is created at the next line of HyperTalk to
be executed, even if it belongs to another handler. If st epl nt o is FALSE, the
checkpoint is created at the next line of the current handler. St epScr i pt
causes the debugger to step out of a handler if the current line is its last.

PROCEDURE TraceScri pt (paranPtr: XCndPtr; tracelnto:
BOOLEAN) ;

TraceScri pt is similar to St epScri pt above, except that execution
continues after the line is highlighted by the debugger. Tr aceScri pt respects
the new HyperTalk property t r aceDel ay.

External Windows

534

The HyperCard XCMD interface includes support for external windows.
HyperCard’s built-in external windows are the script editor and the debugger
tools Variable Watcher and Message Watcher, which are all described earlier in
this book. All of these windows and their properties can be controlled through
scripts. You can write your own XCMDs to replace any one of the built-in
HyperCard external windows. You can also write XCMDs that provide any
kind of useful application within a window, such as custom text editors, color
picture editors, video overlay windows, and so on.

External windows are an extension of external commands. Two new callbacks,
NewXW ndowand Get NewXW ndow direct HyperCard to create a new external
window. When an XCMD executes either of these callbacks, HyperCard creates
a new window and saves with it a reference to the XCMD that made the call.

External Windows

APPENDIX A

External Commands and Functions

Then, whenever HyperCard receives an event from the Toolbox Event
Manager, it first determines whether the event pertains to an external window.
If so, HyperCard calls the XCMD that created the window with arguments that
allow it to handle the event. Otherwise, HyperCard handles the event itself.

Whenever an XCMD is called by HyperCard, it receives a pointer to an
XCmdBl ock parameter block. See “Parameter Block Data Structure,” earlier
in this appendix, for the Pascal parameter block structure.

When HyperCard calls an XCMD to handle an event for an external window,
some of the fields of XCndBl ock have new values. The par anmCount field is
set to - 1, indicating that the XCMD has been called to handle an event. The
first parameter, par ans|[1], is a pointer to an XWEvent | nf o block, defined
as follows:

XWEvent | nfoPtr = ~"XWEvent | nf o;
XWEvent | nfo = RECORD
owner W ndow. W ndowPtr ;
t heEvent: Event Record;
event Params: ARRAY[1l..9] OF Longlnt;
event Resul t: Handl e;
END;

Therefore, an XCMD that manages an external window can be structured
as follows:

| F paranPtr”. paranCount >=0 THEN Cr eat eMyW ndow
ELSE

BEG N
W TH XWEvent | nf oPtr (paranPtr”. parans[1]) DO
BEG N
nyEvent := theEvent;
myW ndow : = owner W ndow;,
END;

Set Port (myW ndow) ;

CASE nyEvent . what OF
nmouseDown: DoMouse;
and nore code here...

END;

END,;

External Windows 535

APPENDIX A

External Commands and Functions

When an XCMD has been called to handle an event, it has full access to
callback routines, just as it does when invoked from a HyperTalk script.

Events in External Windows

HyperCard automatically sends most standard Macintosh events to XCMDs
that manage external windows. These include the following events:

acti vat eEvt

app4Evt (miniwindows should hide themselves when suspended
and show themselves when resumed)

nmouseDown

nul | Event (see Set XW dI eTi ne)

updat eEvt

Keyboard events (keyDown and aut oKey) are delivered to the XCMD only if it
has registered itself as the active editing environment with the Begi nXVEdi t
callback. All keystrokes, with the exception of Command-key combinations
recognized by the Menu Manager as equivalents of menu items, are sent to an
XCMD when it is the active editing environment.

In addition, XCMDs that manage windows receive messages specific to
HyperCard. These are delivered in the same Event Recor d data structure used
for standard Macintosh events, with the what field set to one of the following
constants:

xQOpenEvt = 1000; { the first event after wi ndow is created}
xCl oseEvt = 1001; { the window will be cl osed}

XxG veUpEdi t Evt = 1002; { you are losing Edit}

XG veUpSoundEvt = 1003; { the sound channel is requested}
xEdi t Undo = 1100; { Edit--Undo}

xEdi t Cut = 1102; { Edit--Cut}

xEdi t Copy = 1103; { Edit--Copy}

xEdi t Past e = 1104; { Edit--Paste}

xEdi t d ear = 1105; { Edit--dear}

xSendEvt = 1200; { script has sent a nmessage (text)}
xSet Pr opEvt = 1201; { set a w ndow property}

536

External Windows

APPENDIX A

External Commands and Functions

xGet Pr opEvt
xCursorWthin
xMenuEvt

xMBar d i ckedEvt
xShowwat chl nf oEvt
xScri pt Error Evt
xDebugEr r or Evt
xDebugSt epEvt
xDebugTr aceEvt
xDebugFi ni shedEvt

= 1202; { get a wi ndow property}

= 1300; { cursor is within the w ndow}

= 1400; { an itemin your nmenu is sel ected}

= 1401; { menu is about to be shown or updated }
= 1501; { variable and nessage wat cher event}

= 1502; { place the insertion point}

= 1503; { user clicked Debug at conplaint}

= 1504; { highlight the line stepping}

= 1505; { highlight the line tracing}

= 1506; { script ended}

Handling Events

Many of the events above require special attention. Many are specific to the
debugger or other debugging tools. Here is a summary of all the events and
their appropriate behavior:

xOpenEvt

xCl oseEvt

XG veUpEdi t Evt

Use this event to set up the external window-specific parts of
your code, such as any of the callbacks that have an XWin
their name. These are Regi st er X\Wenu, Set XW dl eTi ne,
XVWHas| nt er r upt Code, XWAI waysMoveH gh, and

XWAl | owReENt r ancy.

HyperTalk sends your external window an xCl oseEvt event when
your window has called Cl oseXW ndow, when another external
window or XCMD has called CI oseXW ndowusing your window’s
W ndowPt r , or when the user has used the new cl ose w ndow

" windowName" command. The external window should not dispose
of any of its data until receiving this event. If the external window
sets passFl ag to TRUE, the window is disposed. If not, the window
is left open.

When an external window calls Begi nXVEdi t , it will receive
keystrokes and Edit menu commands until the user clicks back
in the card window or activates some other editing window (for
example, the Message box). HyperTalk signals the current editor
with an xG veUpEdi t Evt event just before it activates the
other editor.

continued

External Windows 537

APPENDIX A

External Commands and Functions

XG veUpSoundEvt

xEdi t Undo

XEdi t Cut

xEdi t Copy

XEdi t Past e

XEdi t O ear

xSendEvt

xSet Pr opEvt

xGet Pr opEvt

In the event that one external window requests the sound channel
(with Begi nXSound) while another external window has the
channel, the current owner is given an XG veUpSoundEvt . If the
external window doesn’t set passFl ag to TRUE, the other external
window’s callback returns with the result code set to xr esFai | . If
an XCMD owns the sound channel, it can’t be notified of the second
request, so that request will fail.

While an external window is the editing environment, it receives this
event, which corresponds to the Undo command in HyperCard's
built-in Edit menu.

While an external window is the editing environment, it receives this
event, which corresponds to the Cut command in HyperCard’s
built-in Edit menu.

While an external window is the editing environment, it receives this
event, which corresponds to the Copy command in HyperCard’s
built-in Edit menu.

While an external window is the editing environment, it receives this
event, which corresponds to the Paste command in HyperCard’s
built-in Edit menu.

While an external window is the editing environment, it receives this
event, which corresponds to the Clear command in HyperCard’s
built-in Edit menu.

When a user issues the send message t 0 window command,

or when an XCMD or external window issues the

SendW ndowivessage callback, the external command receives an
xSendEvt event. When this event is received, event Par ans|[1]
contains a pointer to a Pascal string (St r 255) containing the name of
the message. This is done for speed purposes and to expedite using
the St ri ngEqual callback to index through the commands your
window supports.

HyperTalk contains new extensible syntax for setting properties of
external windows. The syntax is

set property of window to propertyValue

HyperTalk contains new extensible syntax for getting properties of
external windows. The syntax is

get property of window

538 External Windows

APPENDIX A

External Commands and Functions

HyperTalk has two built-in properties of external windows: | oc and vi si bl e.
If an external window doesn’t do anything special in response to being moved,
shown, or hidden, it can set passFl ag to TRUE in response to both

xSet PropEvt and xGet PropEvt and HyperTalk handles the request. If a
property is requested other than the two built-in ones and the external window
passes the event, HyperTalk displays an error dialog box to the user.

HyperCard 2.2 adds these built-in properties: r ect angl e, wi dt h, hei ght,
and the corresponding rectangle properties (see Chapter 12). These properties
are read-only. If you want to change these properties, your XCMD must handle
this itself.

If the external window wishes to respond specially to these requests, or if

it has additional properties it wants to support, it can directly handle

all of HyperTalk’s requests. In both xSet Pr opEvt and xGet Pr opEvt,

event Par ans[1] contains a pointer to a Pascal string (St r 255) containing
the name of the property. In the case of an xSet Pr opEvt , event Par ams[2]
contains a handle to the property value. In the case of an xGet Pr opEvt event,
the external window must return a handle in the event Resul t field with the
value of the property requested.

HyperTalk gets and sets the vi si bl e property to translate the hi de and show
commands. In the event the user says hi de wi ndow "Vari abl e Watcher",
HyperTalk informs the external window by giving it an xSet Pr opEvt event
with the property vi si bl e and the value f al se.

For an example of the ability of external windows to use properties, try these
properties of the Message Watcher window: | oc, vi si bl e, hi del dl e,

hi deUnused, t ext , and next Li ne (set only). The Variable Watcher supports
the following properties: | oc, vi si bl e, hBar Loc, vBar Loc,and r ect .

There are four new callbacks to aid in getting and setting properties:
Poi nt ToStr, Rect ToSt r, St r ToPoi nt ,and St r ToRect .

XxCursor Wt hin This event is sent when the cursor is over any part of the external

XxMenuEvt

window. If the external window sets passFl ag to TRUE,
HyperCard sets the cursor to an arrow.

When an external window has used Regi st er XWWenu for one or
more menus in HyperCard’s menu bar, HyperTalk notifies it of an
item being chosen by sending it an xMenuEvt event. This holds
true for Command-key equivalents as well. When the event is
received, event Par anms[1] is the menu ID and event Par ans[2]
is the menu item.

continued

External Windows 539

APPENDIX A

External Commands and Functions

xMBar d i ckedEvt If an external window has registered one or more menus in the

menu bar, HyperTalk sends it an xMBar Cl i ckedEvt event just
before it calls the Menu Manager’s MenuSel ect or MenuKey
routine. This is to allow the external window to adjust its menus
just before the user sees them.

xShowwat chl nf oEvt Sent to the Message Watcher and Variable Watcher whenever it is

appropriate. For the Message Watcher, event Par ans[1] contains
a handle to the current message. For the Variable Watcher, there
are no arguments sent.

XxScri pt ErrorEvt Sent to the current script editor when HyperTalk displays the

“Debug, Script, or Cancel” alert and the user clicks Script.
Event Par ans[1] contains the line number on which the
error occurred.

xDebugEr ror Evt, Sent to the current debugger window.

xDebugSt epEvt,

xDebugTr aceEvt

xDebugFi ni shedEvt Sent to all external windows when the user chooses the Go or

540

Abort command in the Debugger menu.

Closing an External Window

External windows should only dispose of their private data structures in
response to an XCl oseEvt event. Whenever an XCMD calls G oseXW ndow it
should not dispose of any of its internal information until it receives its

xCl oseEvt event.

When an xO oseEvt event is sent, the XCMD must set passFl ag to TRUE if it
actually wants to close. If it does not set passFl ag, it is telling HyperTalk that
it wants to cancel the close operation. This is useful for editors that put up a
“Save this document?” dialog box that includes a Cancel button.

Special XCmdBlock Values

Because special XCMDs like the Message Watcher and script editor look like
normal XCMDs, there has to be some defense against a user typing

Scri pt Edi t or in the Message box and launching the script editor. Therefore,
the special-case XCMDs are given special parameter blocks when they are
opened by HyperTalk.

External Windows

APPENDIX A

External Commands and Functions

Message Watcher

When HyperTalk calls the Message Watcher to initialize itself, it sets

par anPt r . par amCount to xMessageWat cher | D(- 2) . There are no
parameters sent. The Message Watcher is called at startup time and is always
present. If you switch to another message watcher (using set t he
messageWat cher to " MyWatcher"), that watcher is loaded immediately.
The normal behavior of a message watcher is that it should be inactive when it
is invisible.

Variable Watcher

When HyperTalk calls the Variable Watcher to initialize itself, it sets

par anPtr . par amCount to xVar i abl eWat cher | D (- 3). There are no
parameters sent. The Variable Watcher is called at startup time and is always
present. If you switch to another variable watcher (using set t he

vari abl eWat cher to "MyWatcher"), that watcher is loaded immediately.
The normal behavior of a variable watcher is that it should be inactive when it
is invisible.

Script Editor

When HyperTalk calls a script editor to initialize itself, it sets

par anPtr . par anmCount toxScri pt Editor| D (-4). There are three
parameters sent. Par ans[1] is a zero-terminated handle to the script of

the object (unindented). Par ans[2] is a pointer to a Pascal string (St r 255)
containing the name of the window as proposed by HyperTalk (for example,
script of card button id 4 = "Fred"). Parans[3] is a pointer to
the XTal kCbj ect structure describing the object to be edited (see the

next section).

Note

There can be multiple script editors open at once, all
sharing the same copy of the XCMD resource in memory.
For this reason, XCMDs must not write to their own code,
or serious problems can result. O

External Windows 541

APPENDIX A

External Commands and Functions

Debugger

A debugger window is initialized the same as a script editor, with the excep-
tion that the par anPt r ~. par anCount is set to xDebugger | D(-5).

XTalkObject

In order to increase a script editor’s flexibility, it can communicate with
HyperTalk using a special data structure called XTal kObj ect . Each time a
script editor is opened, it is passed a pointer to this structure describing the
object whose script is being edited. However, any XCMD can use it as long
as the relevant fields are filled in correctly.

XTal kQhj ectPtr

= ~XTal kbj ect ;

XTal kQbj ect = RECORD
obj ect Ki nd: | NTEGCER, { stack, bkgnd, card, field

st ackNum

bkgndl D:

cardl D

but t onl D

fieldlD:
END;

obj ect Ki nd

st ackNum

bkgndl D

or button }

Longlnt; { reference nunber of the
source stack }
Longl nt;
Longl nt;
Longl nt;
Longl nt;

The type of object: st ackQbj , bkgndQbj , car doj , fi el dObj,
butt onQbj .

The reference number of the stack containing the object. Use

St ackNanmeToNumto get the st acknumof a stack when you know the
name. Use Get Qbj ect Nane to get the name of the stack if all you know
is the number. If XTal kObj ect . obj ect Ki nd = st ackQbj, this is the
last relevant field.

The ID of the background. If XTal kObj ect . obj ect Ki nd = bkgndCbj,
this is the last relevant field. If the object is a card, this is the background to
which the card belongs. If the object is a background field or button, this is
the ID of the background to which the field or button belongs.

continued

542 External Windows

APPENDIX A

External Commands and Functions

cardl D The ID of the card. If XTal kObj ect . obj ect Ki nd = car dQbj , this is
the last relevant field. If the object is a card field or button, this is the ID of
the card to which the field or button belongs.

buttonl D The but t onl Dis the ID of the button. If the button is a card button,
car dI Dcontains the ID of the button’s card. If the button is a background
button, bkgndl D contains the ID of the button’s background.

fieldlD The f i el dI Dis the ID of the field. If the field is a card field, car dI D
contains the ID of the field’s card. If the field is a background field,
bkgndl D contains the ID of the field’s background.

Window Layer Management

Within HyperCard, each window resides in one of three layers: the dialog
layer, the miniwindow layer, or the document layer, as shown in Figure A-2.

External Windows 543

APPENDIX A

External Commands and Functions

Figure A-2 HyperCard window layers

544

Document layer

Miniwindow layer

[u]
‘ ‘ &L [T \06
Dialog layer 0
O] I
— =
H B
() — Ll
. L
[E— =
[E—
a
a
a
|G | G —
|G| G— —

The front layer, the dialog layer, is reserved for modal dialog boxes. Any
window that forces the user to complete a task before continuing, such as the
standard file dialog box and HyperCard’s ask dialog box, belongs in this layer.

The center layer, the miniwindow layer, is reserved for windows that have a
single state, such as HyperCard’s Tools palette, which is always active when it
is visible. All of HyperCard's floating windows, including the Message box and
the Tools palette, reside in this layer. Windows in this layer never receive
activate events.

The rear layer is the document layer. Windows that have multiple states, active
and inactive, such as HyperCard card windows and script editing windows,
reside in this layer.

If your window resides in the document layer and you wish to determine
whether it’s frontmost in its layer, use the Fr ont DocW ndow callback. The
Window Manager routines, such as Fi ndW ndowand Fr ont W ndow operate

External Windows

APPENDIX A

External Commands and Functions

in the HyperCard window environment. For example, Fr ont W ndowreturns a
pointer to the frontmost window.

HyperCard automatically inserts new external windows in the proper layer
according to type (see the description of the NewXW ndow callback).

An XCMD can determine the layer in which its external windows reside by
using the f | oat i ng argument to Get NewXW ndowand NewXW ndow If

f1 oati ngis TRUE, the window is placed at the front of the miniwindow layer;
otherwise, it is placed at the front of the document layer.

FUNCTI ON NewXW ndow(paranPtr: XCrdPtr; boundsRect: Rect;
title: Str255; visible: BOOLEAN;, proclD: | NTEGER; col or:
BOOLEAN; floating: BOOLEAN): W ndowPtr;

FUNCTI ON Get NewXW ndow(paranPtr: XCrdPtr; tenpl ateType:
ResType; tenplatel D. | NTEGCER, col or: BOOLEAN; fl oating:
BOOLEAN) : W ndowPtr ;

The dialog layer isn’t really a layer at all; rather, it is reserved for use by modal
windows and dialog boxes. Use the Macintosh Window Manager’s routines to
create and remove windows in the dialog layer, but do not leave them up after
the XCMD has returned.

Flash: An Example XCMD

A simple example external command included with HyperCard is f | ash,
which inverts the screen display (changes the black pixels to white and vice
versa) a specified number of times. A version of f | ash written and compiled
in MPW Pascal has already been attached to the HyperCard application file
(that is, to HyperCard itself).

Fl ash is invoked from HyperCard just like a HyperTalk command. That is,
you send the message f | ash to HyperCard from the Message box or from an
executing script. The f | ash message takes one parameter: an integer. The

f1 ash XCMD inverts the screen display twice that many times. For example,
the following handler, in response to a mbuseUp message, sends the f | ash

Flash: An Example XCMD 545

*

*)

APPENDIX A

External Commands and Functions
message and its parameter. When the message reaches HyperCard, it invokes
the f | ash external command, which inverts the screen display 20 times:

on nmouseUp
flash 10
end nouseUp

The screen display flashes (is inverted and inverted back again) 10 times.

Flash Listing in MPW Pascal

Here’s the Pascal listing for f | ash:

Fl ash. p- A sanpl e HyperCard XCVD to highlight the screen
Copyri ght Apple Conputer, Inc. 1987-1993.
Al Rights Reserved.

Build instructions for MPW3.3 (puts XCMD in a ResEdit file):

Pascal Flash.p -o Flash.p.o

Link -t rsrc -c¢c RSED -rt XCMD=0 -m ENTRYPO NT -sg Flash 0
Flash.p.o 0
"{Libraries}"HyperXLib.o 0
-0 "Flash XCwD'

{$R-}

{$S Fl ash} { Segment nane nust be same as command nane }

(*

*

DummyUnit is what HyperTal k junps to when running the XCND.

* Also note that XCVDs do not support their own A5 World,

546

Flash: An Example XCMD

APPENDIX A

External Commands and Functions

* thus NO GLOBAL VARI ABLES are al | owed.
*)

UNI T DumyUni t;
| NTERFACE
USES Types, QuickDraw, SysEqu, Hyper XCnd;
PROCEDURE EntryPoi nt (paranPtr: XCrdPtr);
| MPLEMENTATI ON
PROCEDURE Fl ash(paranPtr: XCndPtr); FORWARD;
PROCEDURE EntryPoi nt (paranPtr: XCrdPtr);
BEG N
Fl ash(paranPtr);
END;

PROCEDURE Fl ash(paranPtr: XCrdPtr);

VAR flashCount: | NTEGER;

agai n: | NTEGER;
port: Gafbtr;
str: St r 255;

when: LONG NT;

ticksPtr: NLONG NT;

BEG N
flashCount := 0;
| F (paranPtr”. paranCount = 1) THEN BEG N
{ first paramis flash count }

ZeroToPas(paranPtr, paranPtr”. parans[1]”,

Flash: An Example XCMD

str);

547

APPENDIX A

External Commands and Functions

flashCount := StrToNun(paranPtr, str);
END,;

| F (paranPtr”. paranCount <> 1) OR (flashCount < 1) THEN
flashCount := 3;

Get Port (port);
ticksPtr := PO NTER(Ticks);{ 'Ticks' defined in Syskqu.p }

FOR again := 1 TO 2 * flashCount DO BEG N
when = ticksPtr® + 4;
I nvert Rect (port”. portRect);
REPEAT UNTIL ticksPtr® >= when;
END;
END;

END.

Flash Listing in MPW C

Here’s a version of f | ash written in MPW C:

/*
Fl ash.c -A sanple HyperCard XCVMD to highlight the screen
Copyri ght Apple Conputer, Inc. 1987-1993.
Al'l Rights Reserved.

Exanpl e: CFl ash 5

Build instructions for MPW 3. 3:
C Flash.c -0 Flash.c.o
Link -t rsrc -¢c RSED -rt XCMD=0 -m MAIN -sg CFlash 0
Flash.c.o0 0
"{Libraries}"HyperXLib.o 0
-0 "CFl ash xcwvD'

548 Flash: An Example XCMD

APPENDIX A

External Commands and Functions

Build instructions for THINK C 6. 0:
Build as a Code Resource of type XCMD,
add MacTraps and HyperXLib libraries to project;
will not need conpiler's standard Prefi x.

*/

#i ncl ude<Types. h>
#i ncl ude<Qui ckdr aw. h>
#i ncl ude<SysEqu. h>
#i ncl ude<Hyper XCnd. h>

/*
Your routine MJST be the first code that is generated in the file,
as HyperTalk sinmply JSRs to the start of the XCMD segnment in
menory. Note that XCMDs do not support their own A5 Wrld,
t hus NO GLOBAL VARI ABLES are al |l owed.

*/
pascal void main(XCndPtr paranPtr)
{
short flashCount = 0, again;
GafPtr port;
Str 255 str;
| ong when;

unsi gned long *ticksPtr;

if (paranPtr->paranCount == 1)
{
/* get flash count*/
ZeroToPas(paranPtr, *(paranPtr->parans[0]), (StringPtr)str);
/* convert string to number*/
flashCount = StrToNum(paranPtr, (StringPtr)str);

Flash: An Example XCMD 549

APPENDIX A

External Commands and Functions

if ((paranPtr->paranCount != 1) || (flashCount < 1))
flashCount = 3;

Get Port (&port);
ticksPtr = (unsigned | ong *)Ticks;
fl ashCount *= 2;

for (again = 1; again <= flashCount; agai n++)

{
when = *ticksPtr + 4;
I nvert Rect (&port->portRect);
while (*ticksPtr < when) ;
}

Flash Listing in 68000 Assembly Language

Here’s the 68000 assembly-language listing for f | ash:

* Flash.a

* A sanpl e HyperCard XCMD i n 68000 Assenbly
* Copyri ght Apple Conputer, Inc. 1988-1993
* Al'l Rights Reserved.

* This version of the Flash XCVD, ' AFlash', only looks at the first
* character of parameter 1. It does not have the timng code of the
* Pascal and C versions.

* Build Instructions:
* Asm Fl ash.a -0 Flash.a.o

* Link -t rsrc -c RSED -rt XCVMD=7 -sg AFl ash Flash.a.o 0
* -0 "AFl ash Xcwb'

550 Flash: An Example XCMD

APPENDIX A

External Commands and Functions

I NCLUDE' Qui ckEqu. a

I NCLUDE' Tr aps. a

SEG ' AFl ash

PROC
AFl ash

@

@

link a6, #-4
move. | d4,-(sp)
nove. w #3, d4
move. |l 8(a6), a0
nove.l 2(a0), al
cnpa.l #0,al
beq.s @

nove.l (al),al
nmove. b (al)+, d1
cnp.b #1',d1
blt.s @

cnp.b # 9',d1
bgt.s @

and. w #$000F, d1
nove. w d1, d4

pea -4(ab)
_Get Port
bra.s @

move.|l -4(a6), a0
pea port Rect (a0)
_InverRect

move. |l -4(a6), a0
pea port Rect (a0)

Segnanme nust be same as command nane

uses a0, al, di

save
St r ToNum def aul t

resul t

get paranPtr in a tenp reg

get handle to flashCount (as C string)

if handle NI L, use default

der ef
get a char

test for a non-0 digit

less than valid

greater than valid

mask to val ue of

| egal

stick value into result

var result of GetPort

get into DBRA | oop

get port

address or portRect

get port

address or portRect

Flash: An Example XCMD

char

551

_InverRect
@ dbra d4, @3

move. |l (sp)+,d4 ; restore
unl k a6

move. |l (sp)+, a0 ; rts Pascal style
add. | #4, a7

jmp (a0)

END

A PPENDTIX B

Constants

This appendix describes HyperTalk’s built-in constants. A constant is a
named value that never changes. It’s different from a variable because you
can’t change it, and it’s different from a literal because it does not require
quotation marks.

The values of some constants are the string of characters making up the name,
while others are different. In some cases, it’s more convenient to use a constant
(such as pi) in place of a long string (such as 3.14159265358979323846). In other
cases, it’s more convenient to use a constant (such as f or mFeed) because

the only other way to enter that character is with the nunifoChar function,
requiring that you know the ASCII number of the character (asint he
nunrfoChar of 12).

You can’t give a variable a name that is the same as that of any built-in
constant; if you try, HyperCard displays an error dialog box.

Table B-1 is a list of all the built-in constants in HyperTalk.

Table B-1 HyperTalk constants

Constant name Description

col on The “:” character is equivalent to ASCII 58.

conma The “,” character, ASCII 44, is used as the default item
delimiter by HyperCard.

down The value returned by the commandKey, nouse,

opt i onKey, or shi f t Key function when the named
key (or button, in the case of nbuse), is currently
pressed. Its value is the same as the literal " down" .

enpty The null string; the same as the literal " ".
eof The end-of-file condition; used with ther ead andwite
commands.

continued

553

554

APPENDIX B

Constants

Table B-1

HyperTalk constants (continued)

Constant name

fal se

f or nFeed

| i neFeed

pi

quot e

return

space
tab

true

up

zero..ten

Description

The opposite of t r ue; one of the states tested by the i f
control structure and one of the possible results of
evaluation of a logical expression. Its value is the same
as the literal " f al se".

The form feed character (ASCII 12), which starts a new page
in some file formats.

The line feed character (ASCII 10), which starts a new line in
some file formats.

The mathematical value pi to 20 decimal places, denoting
the ratio of the circumference of a circle to its diameter,
represented by the number 3.14159265358979323846.

The double quotation mark character. It is needed to build a
string containing quotation marks because they are stripped
out of the string when literals are evaluated:

put "george" into It -- quotation marks
-- arenot in It

put quote & "george" & quote into It

-- quotation nmarks are in It

The return character (ASCII 13), which delimits the lines of
a string or container.

The space character (ASCII 32), the same as the literal " ".
The horizontal tab character (ASCII 9).

The opposite of f al se; one of the states tested by the

i f control structure and one of the possible results of
evaluation of a logical expression. Its value is the same
as the literal "t rue”.

The value returned by the conmandKey, nouse,
opt i onKey, or shi f t Key function when the named
key (or button, in the case of nbuse) is not currently
pressed. Its value is the same as the literal " up” .

The numbers 0 through 10.

APPENDTIX C

Enhancing the Execution Speed
of HyperCard

This appendix provides scripting hints and other techniques for getting the
most performance out of HyperCard applications.

One of the key methods for increasing the speed of HyperCard is avoiding disk
accesses whenever possible. If you remember a few good scripting techniques,
you can keep disk access at a minimum. To avoid excessive disk accesses, do
the following:

= Change stacks as seldom as possible.
= Use variables instead of fields for all operations.
= Refer to a remote card rather than going there.

Other good scripting techniques that generally improve the performance of
HyperCard are as follows:

= Migrate to XCMDs and XFCNs for highly repetitive tasks, such as sorting.

= Setl ockScreen totrue to avoid needless redrawing.

= Setl ockMessages totrue to save time during card-to-card data collection.
= Combine multiple messages.

= Take unnecessary code out of loops.

= Always use quoted literals.

= Use in-line statements rather than handler calls.

= Do complex calculations once.

= Watch overuse of variable references.

= Do visible work first.

Each of the techniques is described in the sections that follow.

555

556

APPENDIX C

Enhancing the Execution Speed of HyperCard

Change Stacks as Seldom as Possible

Changing stacks means going to a disk, hard disk, or CD-ROM to retrieve
information and, in the case of a floppy disk and hard disk, to store informa-
tion. The disk accessing process takes more time than any other HyperCard
operation.

When you need to read or write data from another stack, go the stack only
once. Whenever possible, get or put everything you need at the same time.

Keep related information in the same stack. This includes data that you regu-
larly sort, search, or move between. If you plan to use cards with substantially
different appearances within the same application (a HyperCard application
could consist of several stacks) and you need to cross boundaries frequently,
use multiple backgrounds in the same stack rather than separate stacks.

However, there are exceptions to this rule. Because you might want to put the
finished stack on a floppy disk for ease of backup and transportation, you need
to keep an eye on the size of stacks as you build them. If you have too much
related data to put on a single floppy, you have to use multiple stacks rather
than one stack. Alternatively, you could put the final stack on a CD-ROM.

Another exception to the single stack rule is command operations. The
HyperCard sort and f i nd commands can operate on the entire stack, and
you may not want the entire stack sorted or searched.

Use Variables, Not Fields, for Operations

Whenever possible, do operations such as sorting, data collection, and calcu-
lations in variables rather than fields. HyperCard operations are much faster
in variables.

Fields are for the display of data and for long-term storage; HyperCard keeps
field information stored on disk and draws that information onto the screen.
Variables, in contrast, are in RAM and are for storage and manipulation of
transient data—data that doesn’t appear on the screen and is lost when you
quit HyperCard. For example, collecting data on different cards into variables
is approximately 50 percent faster than collecting the same data into a field.

Do calculations in variables to get faster results: for example, adding the
contents of a series of fields from different cards. Everything that goes into
fields, including numbers, is converted to a string, regardless of its original
format. The numeric content of variables, in contrast, is stored in binary format,
making calculation more precise and less time consuming.

APPENDIX C

Enhancing the Execution Speed of HyperCard

Refer to a Remote Card Rather Than Going There

Referring to a remote card is generally faster than going there but is dependent
on the number of fields referred to per card. For example, when collecting data
from fewer than 10 fields, referring to a remote card in the current stack is
faster than going to the card. However, when collecting data from 10 fields or
more, it is faster to go to that card and then collect the data. For example, this
script refers to a remote card containing data needed from the fields on that
card. The script works in the current card of the current stack.

on col | ect Goodi es
repeat with FieldNum= 1 to 8
put (line 2 in card field Fiel dNumof card 4) & return-
& (line 3 in card field FieldNumof card 4) & return after-
field 3 of this card
end repeat
end col | ect Goodi es

If the data is needed from more than 10 fields on a remote card, the script
might look like this:

on col | ect Goodi es
set | ockMessages to true
push card
| ock screen
go to card 4
repeat with FieldNum= 1 to the nunber of bkgnd fields
put (line 2 in card field FieldNumof card 4) & return &
(line 3 in card field FieldNumof card 4) & return-
after var
end repeat
pop card
put var into field 3
unl ock screen
set | ockMessages to fal se
end col | ect Goodi es

557

558

APPENDIX C

Enhancing the Execution Speed of HyperCard

Migrate to XCMDs and XFCNs for Repetitive Tasks

No matter how efficient your HyperTalk code is, sorting 500 items is still going
to take a long time. Repetitive time-intensive tasks are best handled with
XCMDs and XFCNs. XCMDs and XFCNs have the same calling interface as
any other HyperCard command, so are not any harder to use in a script.

If you do not have the programming experience in another high-level language
to create an appropriate XCMD for your application, public domain and
shareware XCMDs may exist that provide all of the required functions that
your application needs. These XCMDs can be found through HyperCard user
groups, user bulletin boards, and other information services.

Set LockScreen to True to Avoid Needless Redrawing

Redrawing the screen takes time, and it makes no sense to change the screen if
all you are doing is going to another card to collect data. Set | ockScr een to

t r ue (or use the | ock command) while your scripts collect data by going from
card to card and stack to stack.

See the second script example in the section “Refer to a Remote Card Rather
Than Going There.”

Set LockMessages to True During
Card-to-Card Data Collection

The | ock messages command prevents HyperCard from sending the six
open and close system messages associated with cards, backgrounds, and
stacks. See Chapter 8, “System Messages,” for more information about
HyperCard system messages.

Combine Multiple Messages

Message sending is relatively time consuming because each message traverses
the entire message-passing path. The techniques described here avoid excessive
message sending and can save lots of time.

Operators are interpreted directly and don’t incur the cost of message sending.
Using the operatorsi s in,is not in,andcontai ns is faster than using
of f set () because they are interpreted directly and are not sent as messages.

APPENDIX C

Enhancing the Execution Speed of HyperCard

Calling a built-in function with t he or of is faster than calling with “() ”
because “() ” functions traverse the message path. Therefore, using dat e()
is slower than using t he dat e.

Use put to move values directly, rather than using get to store a valuein | t
and then using put to move the value out of I t . As an example,

get x
put It intoy

is slower than

put x intoy

Take Unnecessary Code Out of Loops

The reason for removing unnecessary code from loops is fairly obvious but
frequently overlooked. Shorter handlers with fewer lines of code take less time
to run than longer handlers. This fact is magnified in loops. For example, a loop
that comprises 6 lines and runs six iterations is equivalent to 25 lines of code.
Every extra line in that six-iteration loop counts as an additional 6 lines.
Unwrap your code where possible and avoid unnecessary lines. For example,
don’t start a loop with the line set the cursor to watch, because you get
that for free.

Use In-Line Statements Rather Than Handler Calls

It always takes time to get from one place to another and back again in any
HyperCard application and script. To save time, put all of your code in-line.
Create utility handlers where possible to avoid calling back to handlers in the
main module. Putting a lot of your code in-line can, however, make your code
hard to read. You should consider whether the increase in speed is worth
having code that is hard to read. A good solution is to save most of the in-line
code for repetitive time-consuming tasks that you haven’t written XCMDs

to handle.

559

560

APPENDIX C

Enhancing the Execution Speed of HyperCard

Do Complex Calculations Once

When you've figured something out, put the results in a variable, then refer to
the variable. This also includes parameter values. Retrieve parameter values
once rather than many times (assuming you know the values haven’t changed).
This technique results in the greatest time savings within loops.

Watch Overuse of Variable References

The speed increases seen by avoiding overusing variable references are
minimal, but it is good scripting technique. The line add x to vy isslightly
faster than put x + y into vy, because the former has fewer variable
references (two) than the latter (three).

A PPENDTIX D

Extended ASCII Table

This appendix lists the character assignments for the 256 single-byte character
values used by the Macintosh.

There are 256 possible 8-bit binary values, from 00000000 to 11111111. Of these,
the first 128 (from 00000000 to 01111111) have been assigned to a standard set of
characters and commands used in data processing and communication. These
assignments form the ASCII character set. (ASCII stands for American Standard
Code for Information Interchange.)

The remaining 128 binary values, those for which the most significant bit (first
digit) is 1 instead of 0, are not assigned in the ASCII standard. Because they
have higher numerical values than the first 128 characters, they are often
referred to as high-ASCII characters.

This appendix lists all character values by their decimal equivalent.

Table D-1 lists the first 32 characters, the control characters, which have no
printable-character representation, with the standard abbreviation for each and
its meaning.

Table D-1 Control character assignments
Value Name Meaning Value Name Meaning
0 NUL Null 8 BS Backspace
1 SOH Start of heading 9 HT Horizontal tab
2 STX Start of text 10 LF Line feed
3 ETX End of text 11 VT Vertical tab
4 EOCT End of transmission 12 FF Form feed
5 ENQ Enquiry 13 CR Carriage return
6 ACK Acknowledge 14 SO Shift out
7 BEL Bell 15 S Shift in

continued

561

APPENDIX D

Extended ASCII Table

Table D-1 Control character assignments (continued)

Value Name Meaning Value Name Meaning

16 DLE Data link escape 24 CAN Cancel

17 DC1 Device control 1 25 EM End of medium

18 DC2 Device control 2 26 SUB Substitute

19 DC3 Device control 3 27 ESC Escape

20 D4 Device control 4 28 FS File separator

21 NAK Negative acknowledge 29 GS Group separator

22 SYN Synchronous idle 30 RS Record separator

23 ETB End of transmission block 31 us Unit separator
Table D-2 lists the remaining 224 character values with the characters to which
they are assigned in the Macintosh Courier font.
Table D-2 Character assignments in Macintosh Courier font

Value Character Value Character Value Character Value Character

32 Space 43 + 54 6 65 A

33 ! 44 , 55 7 66 B

34 " 45 - 56 8 67 C

35 # 46 57 9 68 D

36 $ 47 / 58 69 E

37 % 48 0 59 ; 70 F

38 & 49 1 60 < 71 G

39 ' 50 2 61 = 72 H

40 (51 3 62 > 73 I

41) 52 4 63 ? 74]

42 * 53 5 64 @ 75 K

continued

562

APPENDIX D

Extended ASCII Table

Table D-2 Character assignments in Macintosh Courier font (continued)
Value Character Value Character Value Character Value Character
76 L 101 e 126 ~ 151 6
77 M 102 f 127 Del 152 o]
78 N 103 g 128 A 153 0
79 o 104 h 129 A 154 o
80 P 105 i 130 C 155 0
81 Q 106 j 131 E 156 4
82 R 107 k 132 N 157 u
83 S 108 133 O 158 8!
84 T 109 m 134 U 159 i
85 U 110 n 135 a 160 t
86 \% 111 o 136 a 161 °
87 W 112 p 137 a 162 ¢
88 X 113 q 138 a 163 £
89 Y 114 r 139 a 164 §
90 Z 115 s 140 a 165 .
91 [116 141 o 166 q
92 \ 117 u 142 é 167 i
93] 118 A\ 143 e 168 ®
94 A 119 w 144 é 169 ©
95 _ 120 X 145 é 170 ™
96 121 y 146 i 171 ‘
97 a 122 z 147 i 172
98 b 123 { 148 i 173 %
99 C 124 I 149 i 174 £
100 d 125 } 150 i 175 %]
continued

563

APPENDIX D

Extended ASCII Table

Table D-2 Character assignments in Macintosh Courier font (continued)
Value Character Value Character Value Character Value Character
176 o 200 » 224 1 248 -
177 + 201 225 249 -
178 < 202 ** 226 : 250
179 > 203 A 227 . 251 °
180 ¥ 204 A 228 % 252 .
181 H 205 0 229 A 253 -
182 0 206 & 230 E 254 .
183 > 207 02 231 A 255 -
184 M 208 - 232 E
185 T 209 — 233 E
186 f 210 “ 234 i
187 a 211 " 235 T
188 0 212 ‘ 236 [
189 Q 213 ’ 237 I
190 ® 214 + 238 o
191] 215 0 239 C
192 ¢ 216 % 240
193 i 217 N4 241 e}
194 - 218 / 242 U
195 Vv 219 o 243 U]
196 f 220 < 244 V]
197 = 221 > 245 [
198 A 222 fi 246 - **Stands for a
199 « 3 £l 47 . nonbreaking space

564

A PPENDTIX E

Operator Precedence Table

Table E-1 shows the order of precedence of HyperTalk’s operators. In a complex
expression containing more than one operator, HyperTalk performs the
operation indicated by operators with lower-numbered precedence before
those with higher-numbered precedence. Operators of equal precedence are
evaluated left-to-right, except for exponentiation, which goes right-to-left.

If you use parentheses, HyperTalk evaluates the innermost parenthetical
expression first.

Chapter 7 discusses expression evaluation.

Table E-1 Operator precedence

Order Operators Type of operator

1 () Grouping

2 - Minus sign for numbers
not Logical negation for Boolean values
there is a Comparison for HyperCard items
there is an Comparison for HyperCard items
there is not a Comparison for HyperCard items
there is not an Comparison for HyperCard items

3 A Exponentiation for numbers

4 * [div nod Multiplication and division for numbers

5 +— Addition and subtraction for numbers

6 & && Concatenation of text

7 > < <=>=< 2 Comparison for numbers or text
isin Comparison for text

continued

565

APPENDIX E

Operator Precedence Table

Table E-1 Operator precedence (continued)
Order Operators Type of operator
cont ai ns Comparison for text
is within Boolean test for point within rectangle
is not within Boolean test for point within rectangle
is not in Comparison for text
is a Comparison for types
is an Comparison for types
is not a Comparison for types
is not an Comparison for types
8 =is Comparison for numbers or text
is not <> # Comparison for numbers or text
9 and Logical for Boolean values
10 or Logical for Boolean values

566

A PPENDTIX F

HyperCard Synonyms

Table F-1 lists the alternative ways that HyperTalk terms can be used.

Table F-1 HyperTalk synonyms

Synonym Term

abbr abbr ev abbr evi at ed
bg bkgnd backgr ound
bgs bkgnds backgr ounds
bot Ri ght bot t onRi ght

bt n button

bt ns buttons

cd card

cds cards

char char acter

chars characters

fld field

flds fields

grey gray

hilite hi ghl i ght highlite hi li ght
in of

| oc | ocation

md m ddl e

nsg nessage nessage box

continued

567

568

APPENDIX F

HyperCard Synonyms

Table F-1 HyperTalk synonyms (continued)

Synonym Term

nmsg wat cher nmessage wat cher

part button field
pol y pol ygon

prev previ ous

rect rectangl e

reg regul ar

sec secs seconds
spray spray can

tick ticks

APPENDIX G

HyperCard Limits

This appendix lists various minimum and maximum sizes and numbers of
elements defined in HyperCard.

The maximum limits shown in Table G-1 are theoretical. Some of them are
lower in practice. For example, HyperCard currently brings an entire card into
memory at once, so the maximum size of a card is limited by available memory.
It’s possible that a card with a lot of text and long scripts, created while
running HyperCard on a Macintosh with 2 MB of RAM, could not be opened
on a Macintosh with 1 MB. The current useful size of a card (or background)

is therefore between 50 and 100 KB.

The term part, in this appendix and internally in HyperCard, refers to buttons
or fields. The value represented by Longl nt is 2,147,483,647; the value
represented by | nt eger is 32,767.

Table G-1 HyperCard limits

Item Limit

Stack limits

Stack size 512 MB
Minimum stack size 4896 bytes
Maximum total number of bitmaps, cards, 16,777,216

and backgrounds per stack

Maximum stack name size 31 characters
Maximum stack script size 30,000 characters

Background limits

Background size (bytes) Longl nt”
Minimum background size 64 bytes
Maximum parts per background | nt eger

continued

569

570

APPENDIX G

HyperCard Limits

Table G-1 HyperCard limits (continued)

Item Limit
Background limits (continued)

Maximum total part size per background (bytes) Longl nt
Maximum background name size 31 characters
Maximum background script size 30,000 characters
Card limits

Card size (bytes) Longl nt *
Minimum card size 64 bytes
Maximum parts per card I nt eger
Maximum total part size per card (bytes) Longl nt
Maximum total text size per card (bytes) Longl nt
Maximum card name size 31 characters
Maximum card script size 30,000 characters
Part (button or field) limits

Part size (bytes) I nteger?
Minimum overhead per part 30 bytes
Maximum part name size 31 characters
Maximum part text size 30,000 characters
Maximum part script size 30,000 characters
HyperTalk limits

Maximum nested repeat structures 30

Maximum active variables (all pending handlers) 512

Maximum size card name with go command

Maximum variable name size

Maximum number format size

31 characters
31 characters

31 characters

continued

APPENDIX G

HyperCard Limits

Table G-1 HyperCard limits (continued)

Item
HyperTalk limits (continued)

Maximum size of command with arguments
Maximum handler name size
Maximum script size

Maximum variable value size

Limit

254 characters
254 characters
30,000 characters

Limited by available
memory

" Limited by HyperCard stack size; less than 100 KB for practical use.

* The sum of the other elements in the button or field must be less than the part size.

571

A PPENDIX H

HyperCard Syntax Summary

This appendix lists HyperTalk’s built-in commands (Table H-1) and functions
(Table H-2), showing the syntax of their parameters.

HyperTalk’s built-in commands and functions are described in more detail in
Chapters 10 and 11, respectively. A brief description for each is included in
Appendix L.

Syntax Description Notation

The syntax descriptions use the following typographic conventions. Words
or phrasesint hi s type are HyperTalk language elements that you type to
the computer literally, exactly as shown. Words in ifalic type are metasymbols
(used to describe general elements), not specific names—you must substitute
the actual instances. Brackets ([]) enclose optional elements that may be
included if you need them. (Don’t type the brackets.) In some cases, optional
elements change what the message does; in other cases they are helper words
that have no effect except to make the message more readable.

It doesn’t matter whether you use uppercase or lowercase letters; names that
are formed from two words are shown in lowercase letters with a capital in
the middle (I i keThi s) merely to make them more readable. The HyperTalk
prepositions of and i n are interchangeable—the syntax descriptions use the
one that sounds more natural.

The terms factor and expression are defined in Chapter 7. Briefly, a factor can be
a constant, literal, function, property, number, or container, and an expression
can be a factor or a complex expression built with factors and operators. Also, a
factor can be an expression within parentheses.

Syntax Description Notation 573

APPENDIX H

HyperCard Syntax Summary

Table H-1 HyperTalk command syntax

add number to [chunk of] container

answer file [promptText] [of type fileType]
answer program [promptText] [of type processType]
answer gquestion Wi th reply

answer question Wi th replyl or reply2

answer gquestion Wi th replyl or reply2 or reply3
arr owkey direction

ask file promptText [with [default] fileName]
ask password [clear] gquestion [W th defaultAnswer]
ask question [W th defaultAnswer]

beep [number]

choose toolName t ool

choose tool toolNumber

click at point [With key]

click at point with key, key2

click at point with key, key2, key3

cl ose [docPathname [wWith|in]] appPathname
close file fileName

close printing

cl ose wi ndow windowName

conmmandKeyDown char

cont rol key keyNumber

convert [chunk of] container|literal [from format [and format]] to format-
[and format]

create menu menuName

continued

574 Syntax Description Notation

APPENDIX H

HyperCard Syntax Summary

Table H-1 HyperTalk command syntax (continued)

create stack stackName [W th background] [in a new w ndow]
debug checkpoi nt

del et e chunk [of container]

del ete menu

del et e menultem of menu

del et e partName

di al number

di al number Wi th [nodem [modemCommands]]

di sabl e [card| background] button

di sabl e menu

di sabl e menultem of menu

di vide [chunk of] container by number

do expression [as scriptLanguage]

doMenu itemName [,menuName] [W t hout dial og] [w th modifierKey [,modifierKey]]
drag from pointl to point2

drag from pointl to point2 with key

drag from pointl to point2 with key, key2

drag from pointl to point2 Wi th key, key2, key3
edit script of object

enabl e button

enabl e menu

enabl e menultem of menu

enterinField

ent er Key

export paint to file fileName

continued

Syntax Description Notation 575

APPENDIX H

HyperCard Syntax Summary

Table H-1 HyperTalk command syntax (continued)

find chars [international] text [in field [of marked cards]
find [international] text [in field] [of marked cards]

find string [international] text [in field [of marked cards]
find whole [international] text [in field [of marked cards]
find word [international] text [in field [of marked cards]
functi onKey keyNumber

get expression

get [the] property [of object]

go back

go forth

go [to] background [of [stack] stackName] [in a new wi ndow] -
[without dial og]

go [to] card [of background] [of [stack] stackName] -
[in a new wi ndow] [wi thout dial og]

go [to] ordinal

go [to] position

go [to] [stack] stackName [in a new wi ndow] [w thout dial og]

hel p

hi de background picture
hi de card picture

hi de groups

hi de nmenuBar

hi de object

hi de picture of background
hi de picture of card

hide titlebar

576 Syntax Description Notation

continued

APPENDIX H

HyperCard Syntax Summary

Table H-1 HyperTalk command syntax (continued)

hi de wi ndow stackName

hi de wi ndow windowName

inport paint fromfile fileName

keyDown char

| ock error dial ogs

| ock messages

| ock recent

| ock screen

mark all cards

mar k card

mark cards by finding chars text [in field]
mark cards by finding string text [in field]
mark cards by finding text [in field]

mark cards by finding whole text [in field]
mark cards by finding word text [in field]
mar k cards where expression

mul tiply [chunk of] container by number

open file fileName

open [fileName Wi t h] application

open printing [w th dial og]

open report printing [wi th dial og]

open report printing [with tenplate templateName]
pal ette paletteName[, point]

pi cture [fileName, fileType, windowStyle, visible, depth, floatingLayer]
pl ay sound [tenpo tempo] [notes]

continued

Syntax Description Notation 577

APPENDIX H

HyperCard Syntax Summary

Table H-1 HyperTalk command syntax (continued)

pl ay stop

pop card [preposition [chunk of] container]

print button

print card [from pointl to point2]

print expression

print field

print fileName W th application

print marked cards

print number cards

push background [of stack stackName]

push card

push card [of stack stackName]

push stack

put expression [preposition [chunk of] container]

put itemName preposition [menultem of] menu [W th nmenuMsg message]
read fromfile fileName at start for numberOfChars
read fromfile fileName for numberOfChars

read fromfile fileName until char

read fromfile fileName until constant

reply expression [wWith keyword aeKeyword]

reply error expression

request appl eEvent datalcl ass|id|sender|return id|sender id
request appl eEvent data with keyword aeKeyword
request expression from program

request expression of | from programid programID

continued

578 Syntax Description Notation

APPENDIX H

HyperCard Syntax Summary

Table H-1 HyperTalk command syntax (continued)

request expression of |fromthis program
reset menubar

reset paint

reset printing

returnlnField

ret ur nkey

save stack stackName as fileName

save [this] stack as [stack] fileName
sel ect enpty

sel ect object

sel ect [preposition] chunk of field

sel ect [preposition] text of field

sel ect edBut t on(family)

the sel ectedButton of family

set [the] property [of element] to wvalue
show all cards

show background picture

show card picture

show cards

show groups

show mar ked cards

show nenuBar

show [number] cards

show object [at point]

show picture of background

Syntax Description Notation

continued

579

APPENDIX H

HyperCard Syntax Summary

Table H-1 HyperTalk command syntax (continued)

show picture of card

show titl ebar

show wi ndow stackName

show wi ndow windowName [at point]

sort [lines|itens of] container [sortDirection] =
[sortType] [by sortKey]

sort [[[marked] cards of] background] [sortDirection] -
[sortType] [by sortKey]

sort [[marked] cards of [this]]stack [sortDirection] =
[sortType] [by sortKey]

start using stack stackName

stop using stack stackName

subtract number from [chunk of] container

t abKey

type text

type text with key

type text with key, key2

type text with key, key2, key3

unl ock error dial ogs

unl ock nessages

unl ock recent

unl ock screen [with effectName]

unmark all cards

unmar k card

unmark cards by finding chars text in field
unmark cards by finding string fext in field

continued

580 Syntax Description Notation

APPENDIX H

HyperCard Syntax Summary

Table H-1 HyperTalk command syntax (continued)

unmark cards by finding fext in field
unmark cards by finding whole fext i n field
unmark cards by finding word fext in field
unmar k cards where expression

visual [effect] effectName [speed] [to image]
wait [for] time [seconds]

wait until condition

wai t whil e condition

wite text to file fileName

wite text to file fileName at end

wite text to file fileName at eof

wite text to file fileName at start

Table H-2 HyperTalk function syntax

the abs of factor

abs (expression)

annui ty(rate, periods)
the atan of factor

at an(expression)

aver age(list)

average function

the char ToNum of factor
char ToNun(expression)

t he cli ckChunk

continued

Syntax Description Notation 581

582

APPENDIX H

HyperCard Syntax Summary

Table H-2 HyperTalk function syntax (continued)

clickChunk()
the clickH
clickH()

the clickLine
clickLine()

the clickLoc
clickLoc()

the clickText
clickText()

the clickV
clickV()

t he conmandKey
commandKey/()
conpound(rate, periods)
the cos of factor
cos(expression)

t he [adjective] date
dat e()

the destination
destination()

t he di skSpace
di skSpace()

the exp of factor
exp(expression)

the expl of factor

Syntax Description Notation

continued

APPENDIX H

HyperCard Syntax Summary

Table H-2 HyperTalk function syntax (continued)

expl(expression)
the exp2 of factor
exp2(expression)

t he foundChunk

f oundChunk()

the foundField

f oundFi el d()

the foundLi ne

f oundLi ne()

t he foundText
foundText ()

t he heapSpace
the length of factor
| engt h(expression)
the I n of factor

I n(expression)

the I nl of factor

I n1(expression)

the 1 0g2 of factor
| 0g2(expression)
max (list)

the nenus
menus()

m n(list)

t he nouse

Syntax Description Notation

continued

583

584

APPENDIX H

HyperCard Syntax Summary

Table H-2 HyperTalk function syntax (continued)

nmouse()

the nousedick

moused i ck()

t he nouseH

mouseH()

t he nouseloc

nmouseloc()

t he nouseV

mouseV()

[the] nunber of objects

[the] nunber of chunks in expression
[the] number of backgrounds [in this stack]
[the] nunber of cards in background
[the] nunmber of cards [in this stack]
[the] number of marked cards

[the] number of nenus

[the] number of nmenultens of menu
[the] nunber of [card|background] parts
[the] number of w ndows

the nunifoChar of factor

numToChar (expression)

of f set (stringl, string2)

t he opti onKey

opti onKey()

the param of factor

continued

Syntax Description Notation

APPENDIX H

HyperCard Syntax Summary

Table H-2 HyperTalk function syntax (continued)

par an(expression)

t he par antCount

par anCount ()

t he parans

par ans()

t he prograns

prograns()

the random of factor

r andon(expression)

the result

result()

the round of factor

r ound(expression)

the screenRect
screenRect ()

the seconds

seconds()

the sel ectedButton of family
sel ect edBut t on (family)

t he sel ect edChunk

sel ect edChunk()

the sel ectedField

sel ect edFi el d()

the sel ectedLi ne [of button| field]
sel ect edLi ne([button| field])

continued

Syntax Description Notation 585

586

APPENDIX H

HyperCard Syntax Summary

Table H-2 HyperTalk function syntax (continued)

t he sel ect edLoc

sel ect edLoc()

the sel ectedText [of button| field]
sel ect edText ([button| field])

t he shiftKey
shi ft Key()

the sin of factor
si n(expression)

t he sound
sound()

the sqrt of factor
sqrt (expression)
the stacks
stacks()

t he stackSpace
st ackSpace()

sun list)

t he systenVersion
syst enVer si on()
the tan of factor
t an(expression)

the target

the ticks
ticks()

t he [adjective] time

Syntax Description Notation

continued

APPENDIX H

HyperCard Syntax Summary

Table H-2 HyperTalk function syntax (continued)

tinme()

t he t ool

tool ()

the trunc of factor
t r unc(expression)
the val ue of factor
val ue(expression)

t he wi ndows

wi ndows()

Syntax Description Notation 587

A PPENDTIX I

HyperTalk Vocabulary

Table I-1 lists and defines, in alphabetical order, HyperTalk’s native vocabu-
lary—the names of its built-in commands and functions, its system messages,
keywords, the names of objects and their properties, and various adjectives,
constants, ordinals, and other terms.

This list is not exhaustive—there are other terms with specific meanings
recognized by HyperCard in particular contexts, and they are described with
the primary term to which they relate. For example, the names of the various
visual effects are listed with the vi sual command in Chapter 10.

The parameter syntax of HyperTalk’s built-in commands and functions is
shown in Appendix H.

Table I-1 HyperTalk vocabulary

Term Category Meaning

abbr[ev[iated]] Adjective Modifies the value returned by the date
function or the nane or | D property.

abs Function Returns the absolute value of a number.

add Command Adds the value of an expression to a value
in a container.

address Property Returns the path of the currently executing
HyperCard program.

after Preposition Used with put command, directing
HyperCard to append a new value
following any preexisting value in a
container.

al | Adjective Specifies total number of cards in stack to
show car ds command.

annui ty Function Computes present or future value of an

ordinary annuity.

continued

589

APPENDIX

I

HyperTalk vocabulary (continued)

HyperTalk Vocabulary

Table I-1
Term Category
answer Command
answer file Command
answer program Command
any Ordinal
appl eEvent System message
ar r owKey Command
arr onkey System message
ask Command
ask file Command
ask password Command
at an Function
autoHilite Property
aut oTab Property

590

Meaning

Displays a dialog box with question and
reply buttons.

Presents the standard dialog box for
locating a file; used for opening files
of a specified type.

Presents the standard dialog box for
locating a progam to link to.

Special ordinal used with object or chunk
to specify a random element within its
enclosing set.

Sent to the current card when an Apple
event is received.

Takes you to another card.

Sent to current card when an arrow key
is pressed.

Displays a dialog box with a question and
default answer.

Presents the standard dialog box for
locating where to save a file; used for
saving files.

Displays a dialog box with a field for a
password.

Returns trigonometric arc tangent of
a number.

Determines whether or not a button’s

hi | i t e property is affected by the message
nmouseDown. Also determines whether or
not a field behaves as a list.

Determines whether the specified
nonscrolling field sends the t abKey
message to the current card.

continued

APPENDIX I

HyperTalk Vocabulary

Table I-1

HyperTalk vocabulary (continued)

Term
aver age

backgr ound

backgr ounds

beep

bef ore

bg
bkgnd
bkgnds

bl i ndTypi ng

bot Ri ght

bott om

bot t onRi ght

br owse

Category
Function

Object

Object type

Command

Preposition

Object
Object
Object type

Property

Property
Property

Property

Tool

Meaning

Returns the average value of numbers
in a list.

Generic name of background object;
used with specific designation (go t o
next background). Also used to
specify containing object for buttons
and, optionally, fields (backgr ound
button 2).

Specifies backgrounds as type of object to
the nurber function.

Causes Macintosh to make a beep sound.

Used with put command, directing
HyperCard to place a new value at the
beginning of any preexisting value in
a container.

Abbreviation for backgr ound.
Abbreviation for backgr ound.

Specifies backgrounds as type of object to
the nunber function.

Allows typing into Message box
when hidden.

Abbreviation for bot t onRi ght .

Determines or changes the value of item 4
of the r ect angl e property when applied
to the specified object or window.

Determines or changes items 3 and 4 of the
value of the r ect angl e property when
applied to the specified object or window.

Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

continued

591

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)
Term Category Meaning
brush Property Determines the current brush shape.
brush Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.
bt n Object Abbreviation for but t on.
bucket Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.
button Object Generic name of button object; used with a
specific designation (hi de button one).
butt on Tool Name of tool from Tools palette; used with

but t onCount

but t ons

cant Abort

cant Del et e

cant Modi fy

cant Peek

592

Property

Object type
Property
Property

Property

Property

choose command or returned by the t 0ol
function.

Determines the number of buttons in
an open palette XCMD displayed by the
pal et t e command.

Specifies buttons as type of object to the
nunber function.

Determines if a script can be stopped by
pressing Command-period.

Determines if a background, card, or stack
can be deleted.

Determines if a stack can be modified. Can
be used with a password to prevent anyone
without the password from modifying

a stack.

Determines if the outline is shown around
buttons and fields when the Command-
Option or Command-Option-Shift keys
are pressed.

continued

APPENDIX

I

HyperTalk vocabulary (continued)

HyperTalk Vocabulary

Table I-1
Term Category
card Object
cards Object type
cd Object
center Adjective
centered Property
char[acter] Chunk
char[acter]s Chunk type
char ToNum Function
checkMar k Property
choose Command
click Command
clickChunk Function
clickH Function
clickLine Function
clickLoc Function
clickText Function

Meaning

Generic name of a card object; used with
a specific designation (o to card
"fred"). Also used to specify containing
object for fields and, optionally, buttons
(card field "date").

Specifies cards as type of object to the
nunber function or showcommand.

Abbreviation for car d.
Specifies center alignment of text in a field.

Determines whether shapes are drawn
from the center or from the corner.

A character of text in any container or
expression.

Specifies characters as type of chunk to the
number function.

Returns ASCII value of a character.

Determines check character for a
menu item.

Changes the current tool.

Causes same actions as clicking at a
specified location.

Returns chunk information about text that
is clicked.

Returns horizontal position of last
mouse click.

Returns line information about text that
is clicked.

Returns location of most recent click.

Returns text information about word or
group phrase that is clicked.

continued

593

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)
Term Category Meaning
cl ose Command Closes an application, document opened by
another application, or desk accessory.
clickVv Function Returns vertical position of last mouse click.
cl ose System message Sent to the current card when you close a

cl oseBackgr ound

cl oseCard
closeField
close file

cl osePal ette

cl osePicture

close printing
cl oseSt ack

cl ose wi ndow

conmandChar

commandKey

comandKeyDown

conmmandKey Down

594

System message

System message
System message
Command

System message

System message

Command

System message

Command

Property
Function

Command

System message

stack window with the cl ose wi ndow
command or by clicking the close box.

Sent to current card just before you leave
the current background.

Sent to current card just before you leave it.
Sent to unlocked field when it closes.
Closes a previously opened disk file.

Sent to the current card when a palette that
was opened with the pal et t e command
is closed.

Sent to the current card when a window
that was created with the pi ct ur e
command is closed.

Ends a print job.

Sent to current card just before you leave
the current stack.

Closes a stack or picture window.

Determines the character to use with the
Command key to invoke a menu item.

Returns the state of the Command key:
up or down.

Causes a built-in HyperCard response,
depending on key pressed with
Command key.

Sent to current card when a combination
of the Command key and another key
is pressed.

continued

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

conmands Property Returns a list of the commands associated
with the buttons in an open palette
displayed by the pal et t € command.

conpound Function Computes present or future value of a
compound interest-bearing account.

cont r ol Key Command Sends the cont r ol Key system message.

contr ol Key System message Sent to current card when a combination of
the Control key and another key is pressed.

convert Command Converts a date or time to specified format.

create nmenu Command Creates a new menu with the specified
name.

create stack Command Creates a new stack with the specified
name and background.

cos Function Returns the cosine of the angle that is
passed to it.

cursor Property Sets image appearing at pointer location on
screen. You can only set cur sor ; you can’t
get it.

curve Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

date Function Returns a string representing the current
date.

debug checkpoi nt Command Sets a checkpoint in a script to invoke the
built-in debugger.

debugger Property Determines the debugger to use.

del et e (menu) Command Deletes a menu.

del et e (menu items) Command Deletes a menu item.

del et e (object) Command Deletes a button or field.

continued

595

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

del ete (part) Command Deletes a button or field.

del et e (text) Command Removes a chunk of text from a container.

del et eBackgr ound System message Sent to current card just before the
background is deleted.

del et eBut t on System message Sent to a button just before it is deleted.

del et eCard System message Sent to current card just before it is deleted.

del eteField System message Sent to a field just before it is deleted.

del et eSt ack System message Sent to the current card just before a stack
is deleted.

destination Function Returns the name of a stack to which
HyperCard is going.

di al Command Generates touch-tone sounds through
audio output or modem attached to
serial port.

di al i ngTi me Property Determines how long HyperCard waits
before closing the serial connection to a
modem after dialing.

di al i ngVol une Property Determines the volume of the touch tones
generated through the speaker by the di al
command.

di sabl e Command Disables the specified menu, menu item,
or button.

di skSpace Function Displays the amount of free space available
on the disk containing the current stack.

dithering Property Determines whether or not the picture
opened by the picture command is dithered.

di vi de Command Divides the value in a container by the
value of an expression.

do Keyword Sends the value of an expression as a

message to the current card.

continued

596

APPENDIX

I

HyperTalk Vocabulary

Table I-1

HyperTalk vocabulary (continued)

Term
doMenu

doMenu

dont Sear ch

dont W ap

down

dr ag

dr agSpeed

edi t Bkgnd

edit script

ei ght

ei ghth

el se

enpty

enabl e

enabl ed

Category
Command

System message

Property

Property
Constant
Command
Property
Property
Command
Constant
Ordinal
Keyword
Constant
Command

Property

Meaning

Performs a specified menu command.

Sent to current card when any menu item
is chosen.

Determines whether a card, background,
or field can be searched by the f i nd
command.

Determines whether the text in a field
wraps onto the next line.

Value returned by various functions
to describe the state of a key or the
mouse button.

Performs same action as a manual drag.

Sets pixels-per-second speed at which
pointer moves with dr ag command.

Determines whether manipulation of
buttons, fields, or paintings occurs on
current card or background.

Opens the script of a specified object.

String representation of the numerical
value 8.

Designates object or chunk number eight
within its enclosing set.

Optionally follows t hen clauseinani f
structure to introduce an alternative
action clause.

The null string; same as the literal " ".

Enables the specified button, menu, or
menu item.

Determines whether the specified button,
menu, or menu item is enabled.

continued

597

APPENDIX

I

HyperTalk vocabulary (continued)

HyperTalk Vocabulary

Table I-1
Term Category
end Keyword
enterlnField Command

enterlnField

ent er Key

ent er Key

envi r onment

eraser

exit

exitField

exp

expl

export paint

exp2

598

System message

Command

System message

Property

Tool

Keyword
System message
Function
Function
Command

Function

Meaning

Marks the end of a message handler,
function handler, repeat loop, or multiple-
statement t hen or el se clause of an

i f structure.

Closes a field that is open for text editing.

Sent to the field when the Enter key is
pressed while there is an insertion point
or selection in the field.

Sends contents of Message box to the
current card.

Sent to the current card when the Enter key
is pressed unless the text insertion point
is in a field.

Determines whether HyperCard Player or
a fully enabled development version of
HyperCard is running.

Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

Immediately ends execution of a message
handler, function handler, or r epeat loop.

Sent to a field when the pointer leaves the
field’s rectangle.

Returns the mathematical exponential of
its argument.

Returns one less than the mathematical
exponential of its argument.

Creates a Macintosh paint file with the
image of the current card.

Returns the value of 2 raised to the power
specified by the argument.

continued

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

fal se Constant Boolean value resulting from evaluation of
a comparative expression and returned
from some functions.

famly Property Groups a set of buttons to function in a
coordinated manner.

field Container Generic name of field container; used with
specific designation (put the time
into card field"ti me").

field Object Generic name of field object; used with
specific designation (get name of
first field).

field Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

fields Object type Specifies fields as type of object to the
nurber function.

fifth Ordinal Designates object or chunk number five
within its enclosing set.

filled Property Determines the Draw Filled setting.

find Command Searches card and background fields for
text strings derived from an expression.

first Ordinal Designates object or chunk number one
within its enclosing set.

five Constant String representation of the numerical
value 5.

fi xedLi neHei ght Property Determine whether or not a field has fixed
line spacing.

f or nfeed Constant The form feed character (ASCII 12), which
starts a new page in some file formats.

f oundChunk Function Returns a chunk expression describing the

text found with the f i nd command.

continued

599

APPENDIX

I

HyperTalk Vocabulary

Table I-1

HyperTalk vocabulary (continued)

Term
f oundFi el d

f oundLi ne

f oundText

f our

fourth

freeSi ze

function

functi onKey

functi onKey

get

gl obal

gl obal Loc

600

Category
Function

Function

Function
Constant
Ordinal

Property

Keyword

Command

System message
Command

Keyword

Property

Meaning

Returns an expression describing the field
the text was found in with the f i nd
command.

Returns an expression describing the line
the text was found in with the f i nd
command.

Returns the text found with the f i nd
command.

String representation of the numerical
value 4.

Designates object or chunk number four
within its enclosing set.

Determines the amount of free space
available in a specified stack.

Marks the beginning of a function handler.
Connects the handler with a particular
function call.

Performs Undo, Cut, Copy, or Paste opera-
tions with parameter values of 1,2, 3, or 4,
respectively.

Sent to current card when any function key
on the Apple Extended Keyboard is pressed.

Puts the value of an expression into the
local variable | t .

Declares specified variables to be valid
beyond current execution of current
handler.

Determines the location of a window
created with the pi ct ur e command in
global coordinates.

continued

APPENDIX I

HyperTalk vocabulary (continued)

HyperTalk Vocabulary

Table I-1
Term Category
gl obal Rect Property
go Command
grid Property
hBar Loc Property
heapSpace Function
hel p Command
hel p System message
hei ght Property
hi de Command
hi de groups Command
hi del dl e Property

hi de nenubar

hi deUnused

hilite

System message

Property

Property

Meaning

Determines the rectangle of a window
created with the pi ct ur e command
in global coordinates.

Takes you to a specified card or stack.
Determines the Grid setting.

Determines the location of the horizontal
bar in the Variable Watcher window.

Returns an integer representing the amount
of heap space available to HyperCard.

Takes you to the first card in the stack
named HyperCard Help.

Sent to the current card, just before leaving
that card, when Help is chosen from the Go
menu (or Command-? is pressed).

Determines or changes the vertical distance
in pixels occupied by the rectangle of the
specified button or field.

Hides the specified window from view.

Hides the gray underline displayed
beneath text by the show gr oups
command.

Determines whether or not the “Hide idle”
checkbox is checked in the Message
Watcher window.

Hides the HyperCard menu bar.

Determines whether or not the “Hide
unused messages” checkbox is checked
in the Message Watcher window.

Determines whether a specified button is
highlighted.

continued

601

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

hilitedButton Property Determines whether a button is highlighted
in a palette XCMD displayed by the
pal et t e command.

icon Property Determines the icon that is displayed with
a specified button.

ID Property Determines the permanent ID number of a
specified background, card, field, or button.

idle System message Sent to the current card repeatedly
whenever nothing else is happening.

if Keyword Introduces a conditional structure contain-
ing statements to be executed only if a
specified condition is t r ue.

i mport paint Command Reads in a Macintosh paint file and makes
it the current selection.

in Operator Used with the comparison operatorsi s in
andis not in.

in Preposition Used as a connective preposition in chunk
expressions—for example, card 12 in
this stack.

into Preposition Used with put command, directing
HyperCard to replace any preexisting value
in a container with a new value.

It Container Local variable that is the default destination
for get , ask, answer,r ead, r equest,
and convert commands.

item Chunk A piece of text delimited by commas in any
container or expression.

itemDelimter Property Determines the character that delimits
items in a container.

items Chunk type Specifies items as type of chunk to the

nunber function.

continued

602

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

keyDown Command Causes HyperCard to enter the character
passed with the command at the insertion
point.

keyDown System message Sent to the current card when a key
is pressed.

| anguage Property Used to choose language in which scripts
are displayed.

| asso Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

| ast Ordinal Special ordinal used with object or chunk to
specify the element whose number is equal
to the total number of elements in its
enclosing set.

| ength Function Returns the number of characters in the text
string derived from an expression.

left Adjective Specifies left-justified alignment of text in
a field.

left Property Determines or changes the value of item 1
of the r ect angl e property when applied
to the specified object or window.

l'ine Chunk A piece of text delimited by return
characters in any container.

l'ine Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

I i neFeed Constant The line feed character (ASCII 10), which
starts a new line in some file formats.

l'i nes Chunk type Specifies | i nes as type of chunk to the
nunber function.

lineSize Property Determines the thickness of lines drawn

with line and shape tools.

continued

603

APPENDIX

I

HyperTalk vocabulary (continued)

HyperTalk Vocabulary
Table I-1
Term Category
I'n Function
I nl Function
| oc Property
| oc[ation] Property
| ock Command
| ockErrorDi al ogs Property
| ockMessages Property
| ockRecent Property
| ockScreen Property
| ockText Property
| og2 Function
| ong Adjective
| ongW ndowTi t | es Property
mar k Command

604

Meaning

Returns the base-e (natural) logarithm of
the number passed to it.

Returns the base-e (natural) logarithm of
the sum of the number passed to it plus 1.

Determines the location at which a picture
window created with the pi ct ure
command is displayed.

Determines the location at which a window,
field, or button is displayed.

Prevents updating of the screen from card
to card.

Allows or prevents HyperCard from
displaying error messages.

Allows or prevents HyperCard from
sending all automatic messages such
as openCar d.

Allows or prevents HyperCard from
adding miniature representations to
the Recent card.

Determines whether the screen is updated
when moving from card to card.

Determines whether text editing is allowed
in a specified field.

Returns the base-2 logarithm of the number
passed to it.

Modifies value returned by dat e function
and by nanme and | D properties.

Determines whether the window title bar
contains the full pathname of a stack or the
short name.

Marks cards.

continued

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

mar kChar Property Determines the checkmark character used
to indicate a menu item is chosen.

mar ked Property Determines whether or not a specified card
is marked.

max Function Returns the highest-value number from a
list of numbers.

me Object The object containing the executing handler.

menu Function Returns a list of the menu items in a
specified menu.

menuMessage Property Determines the message to be sent by a
specified menu item.

menus Function Returns a list of the menu names in the
HyperCard menu bar.

message [box] Container The Message box.

messageWat cher Property Determines the message watcher to use.

m d[dl e] Ordinal Special ordinal used with object or chunk to
specify the element whose number is equal
to one more than half the total number of
elements in its enclosing set.

mn Function Returns the lowest-value number from a
list of numbers.

nmouse Function Returns state of the mouse button: up
or down.

moused i ck Function Returns whether the mouse button has
been clicked.

nmouseDoubl ed i ck System message Sent to a button, locked field, or the current
card when the mouse button is
double-clicked.

nmouseDown System message Sent to a button, locked field, or the current
card when the mouse button is pressed
down.

continued

605

APPENDIX

I

HyperTalk Vocabulary

Table I-1

HyperTalk vocabulary (continued)

Term
nmouseDownl nPi ct ur e

nmouseEnt er

nmouseH

nouselLeave

nmouselLoc

nmouseSti | | Down

nmouseUp

mouseUpl nPi cture

nmouseV

mouseW t hi n

noveW ndow

606

Category

System message

System message

Function

System message
Function

System message

System message

System message

Function
System message

System message

Meaning

Sent to the current card when the
mouse button is down while the pointer
is in a window created with the

pi ct ur e command.

Sent to a button or field when the pointer is
first moved inside its rectangle.

Returns the horizontal offset in pixels of
the pointer from the left edge of the card
window.

Sent to a button or field when the pointer is
first removed from its rectangle.

Returns the point on the screen where the
pointer is currently located.

Sent to a button, locked field, or the current
card repeatedly when the mouse button is
held down.

Sent to a button, locked field, or the current
card when the mouse button is released
after having been previously pressed down
within the same object’s rectangle.

Sent to the current card when the mouse
button is released after being down while
the pointer is in a window created with the
pi ct ur e command.

Returns the vertical offset in pixels of the
pointer from the top of the screen.

Sent to a button or field repeatedly while
the pointer remains inside its rectangle.

Sent to a card when you change a card
window’s | ocat i on property with
HyperTalk, drag or zoom the card
window, or change the location of the
card window with the show command.

continued

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

nmsg [box] Container The Message box.

mul tiple Property Determines whether multiple images are
drawn with a shape tool.

mul ti pl eLi nes Property Used to determine or change whether
multiple-line selections are allowed in a
field configured as a list field.

mul tiply Command Multiplies the value in a container by the
value derived from an expression.

nmul ti Space Property Determines the space between objects
drawn when the rmul ti pl e property
istrue.

name Property Determines the name of a stack, back-
ground, card, field, button, menu, or
menu item.

next Keyword Ends execution of current iteration of a
repeat loop, beginning next iteration.

next Object modifier Used with car d or backgr ound to refer to
the one following the current one.

newBackgr ound System message Sent to the current card as soon as a
background has been created.

newBut t on System message Sent to a button as soon as it has
been created.

newCar d System message Sent to a card as soon as it has been created.

newri el d System message Sent to a field as soon as it has been created.

newst ack System message Sent to the current card as soon as a stack
has been created.

ni ne Constant String representation of the numerical
value 9.

ninth Ordinal Designates object or chunk number nine

within its enclosing set.

continued

607

APPENDIX

I

HyperTalk vocabulary (continued)

HyperTalk Vocabulary

Table I-1
Term Category
nunber Function
nunber Property
nunber For mat Property
nunroChar Function
of f set Function
on Keyword
one Constant
open Command

openBackgr ound

openCard

openFi el d

open file

openPal ette

608

System message
System message
System message
Command

System message

Meaning

Returns the number of buttons or fields on
the current card or background, the number
of marked cards, the number of HyperCard
menus, the number of menu items in

a menu, the number of windows in
HyperCard, or the number of a specified
type of chunk within a value.

Determines the number of a background,
card, field, or button.

Determines the precision with which
results of mathematical operations are
displayed.

Returns the character whose ASCII
equivalent value is that of the integer
passed to it.

Returns the number of characters from the
beginning of the source string.

Marks the beginning of a message handler
and connects it with a particular message.

String representation of the numerical
value 1.

Launches the specified application.

Sent to a card when you go to it and its
background is different from the one you
were formerly on.

Sent to a card when you go to it.

Sent to an unlocked field when you place
the insertion point in it for text editing.

Opents the specified file for ar ead or
wr i t e command operation.

Sent to the current card when a palette is
opened with the pal et t e command.

continued

APPENDIX I

HyperTalk Vocabulary

Table I-1

HyperTalk vocabulary (continued)

Term

openPi cture

open printing

open report

printing

openSt ack

opti onKey

oval

owner

pal ette

par am

par anCount

par ans

part Nurber

pass

pattern

Category

System message

Command

Command

System message

Function

Tool

Property

Command

Function

Function
Function

Property

Keyword

Property

Meaning

Sent to the current card when a palette is
opened with the pi ct ur e command.
Begins a print job.

Begins a print job for a specified report.

Sent to a card when you go to it and it’sina
stack different from the one containing the
card you were formerly on.

Returns the state of the Option key:
up or down.

Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

For a card, determines its background; for a
window, determines its creator.

Invokes the specified palette XCMD.

Returns a parameter value from the
parameter list passed to the currently
executing handler.

Returns the number of parameters passed
to the currently executing handler.

Returns the entire parameter list passed to
the currently executing handler.

Determines the position of a button or field
among all the buttons and fields of its
enclosing card or background.

Ends execution of a message handler or
function handler and sends the invoking
message or function call to the next object
in the hierarchy.

Determines the Paint pattern.

continued

609

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

penci | Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

pi Constant The mathematical value pi to 20 decimal
places, equal to the number
3.14159265358979323846.

picture Command Displays the specified picture file in an
external window.

pl ay Command Starts the HyperCard sound-playing
feature.

pol y[gon] Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

pol ySi des Property Determines the number of sides created by
the Regular Polygon tool.

pop card Command Returns you to last card saved with the
push card command.

power Keys Property Provides keyboard shortcuts of commonly
used painting actions.

prev[ious] Object modifier Used with car d or backgr ound to refer to
the one preceding the current one.

print Command Prints the specified file.

print card Command Prints the current card or a specified

pri nt Mar gi ns

print Text Align

pri nt Text Font

610

Property
Property

Property

number of cards beginning with the
current card.

Determines or sets the current page
print margin.

Determines or sets the text alignment for
fields when printing.

Determines or sets the text font for fields
when printing.

continued

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

pri nt Text Hei ght Property Determines or sets the line height for fields
when printing.

print Text Si ze Property Determines or sets the text size for fields
when printing.

print Text Style Property Determines or sets the text style for fields
when printing.

pr ogr ans Function Returns a list of the System 7—friendly
programs running on your machine.

properties Property Returns a list of the names of the palette
properties supported by a palette XCMD
displayed by the pal et t € command.

push Command Saves the identification of a specified card
in a LIFO memory stack for later retrieval.

put Command Copies the value of an expression into
a container.

qui t System message Sent to the current card when you choose
Quit HyperCard from the File menu (or
press Command-Q), just before HyperCard
goes away.

quot e Constant The straight double quotation mark
character.

random Function Returns a random integer between 1 and
the integer derived from a specified
expression.

read Command Reads a file previously opened with the
open fil e command into the local
variable | t . See alsowri te.

rect Property Determines the rectangle property for a
variable watcher window and for windows
created with the pi ct ur e command.

rect[angl e] Property Determines the rectangle occupied by a

specified window, field, or button.

continued

611

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

rect[angl e] Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

reg[ul ar] Tool Name of tool from Tools palette; used with

pol y[gon] choose command or returned by the t ool
function.

repeat Keyword Introduces a r epeat loop, an iterative
structure containing a block of one or more
statements executed multiple times.

reply Command Used to answer an incoming Apple event.

report Tenpl at es Property A read-only stack property that returns the
names of the report templates for a stack.

request Command Sends an “evaluate expression” Apple
event to another application.

reset nenubar Command Reinstates the default values of all the
HyperCard menus and removes any
user-defined menus.

reset paint Command Reinstates the default values of all the
painting properties.

reset printing Command Reinstates the default values of all the
printing properties.

resul t Function Returns the status of commands previously
executed in current handler.

resune System message Sent to the current card when HyperCard
resumes running after having been
suspended.

resunmesSt ack System message Sent to the current card when HyperCard
returns to a stack.

return Keyword Returns a value from a function handler or

message handler.

continued

612

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

returninField Command Enters a return character into a field that is
open for text editing.

returninField System message Sent to a field when the Return key is
pressed and there is an insertion point or
selection in the field.

r et ur nkey Command Sends any statement in the Message box to
the current card.

r et ur nkey System message Sent to current card when Return key
is pressed.

right Adjective Specifies right-justified alignment of text in
a field.

right Property Determines or changes the value of item 3
of the r ect angl e property when applied
to the specified object or window.

round Function Returns the number derived from
an expression, rounded off to the
nearest integer.

round rect[angl e] Tool Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

save Command Saves a copy of the specified stack with a
specified name.

screenRect Function Returns the size of the screen HyperCard’s
menu bar is in.

script Property Retrieves or replaces the script of the
specified stack, background, card, field,
or button.

scri pt Edi tor Property Determines the script editor to use.

scri ptingLanguage Property Used to set HyperCard objects to accept
scripts written in the scripting language
you choose.

continued

613

APPENDIX

I

HyperTalk Vocabulary

Table I-1

HyperTalk vocabulary (continued)

Term
scri pt Text Font

script Text Si ze

scrol | (fields)

scrol | (windows)

second

seconds

sel ect

sel ect

sel ect edBut t on

sel ect edChunk

sel ectedFi el d

sel ect edLi ne

sel ect edLoc

sel ect edText

614

Category
Property

Property

Property

Property
Ordinal

Function

Command

Tool

Function
Function
Function
Function
Function

Function

Meaning
Determines the font displayed in the
script editor.

Determines the size of text displayed in the
script editor.

Determines the amount of material that is
hidden above the top of the specified
scrolling field’s rectangle.

Determines the position of the window
over the card or picture.

Designates object or chunk number two
within its enclosing set.

Returns the number of seconds between
midnight, January 1, 1904, and the
current time.

Selects an object, a tool, a chunk of text, or a
line in a list field or pop-up button.

Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

Returns the descriptor of the currently
highlighted button.

Returns a chunk expression describing the
selected text in a field.

Returns an expression describing the field
the selected text is in.

Returns an expression describing the line in
a field where the selected text is.

Returns the point at which the selected
text begins.

Returns the selected text in a field.

continued

APPENDIX

I

HyperTalk vocabulary (continued)

HyperTalk Vocabulary

Table I-1
Term Category
sel ection Container
send Keyword
set Command
seven Constant
sevent h Ordinal
sharedHi lite Property
shar edText Property
shi f t Key Function
short Adjective
show Command
show car ds Command
showLi nes Property

show nmenubar

showNanme

System message

Property

Meaning
Currently selected area of text in a field.
Sends a specified message directly to a

specified object; sends a do scri pt Apple
event to another application.

Changes the state of a specified global,
painting, window, or object property.

String representation of the numerical
value 7.

Designates object or chunk number seven
within its enclosing set.

Determines or sets whether a background
button shares the same highlight state on
each card.

Determines or sets whether a background
field shares the same text on each card. If
settot r ue, it also sets the dont Sear ch
property of the field to t r ue.

Returns the state of the Shift key:
up or down.

Modifies value returned by dat e function
and by name and | D properties.

Displays a specified window or object.

Displays a specified number of cards in the
current stack.

Determines whether or not the text
baselines are visible in a field.

Displays the menu bar if it was hidden.

Determines whether or not the name of a
specified button is displayed in its rectangle
on the screen.

continued

615

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)
Term Category Meaning
showPi ct Property Determines whether or not a specified card
or background picture is displayed.
show titl ebar Command Shows the title bar of the current card
window if it was hidden.
sin Function Returns the sine of the angle that is passed
to it.
Si X Constant String representation of the numerical
value 6.
sixth Ordinal Designates object or chunk number six
within its enclosing set.
si ze Property Returns the size of a specified stack.

si zeW ndow

sort

sound

space

spray [can]

sqrt

st ack

st acks

st acksl nUse

st ackSpace

616

System message
Command
Function
Constant

Tool

Function

Object

Function

Property

Function

Sent to the current card when the card
window is resized.

Puts all of the cards in a specified stack in a
specified order.

Returns the name of the sound that is
currently playing.

The space character (ASCII 32); same as the
literal " "

Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

Returns the square root of a number.

Generic name of stack object; used with
specific name (go to stack "hel p").

Returns a list of the currently open stacks.

Determines the current list of stacks in the
message-passing hierarchy.

Returns the amount of space remaining on
the Macintosh Operating System stack.

continued

APPENDIX

I

HyperTalk vocabulary (continued)

HyperTalk Vocabulary

Table I-1
Term Category
startUp System message

start using
stop using
style
subtract

sum

suspend
suspendSt ack
syst enVer si on
tab

t abKey

t abKey

tan

t ar get

ten

Command
Command
Property
Command
Function
System message
System message
Function
Constant
Command
System message
Function

Function

Constant

Meaning

Sent to the current card (first card of the
Home stack) when HyperCard first
begins running.

Specifies a stack to add to the message-
passing hierarchy.

Specifies a stack to remove from the
message-passing hierarchy.

Determines the style of a specified field
or button.

Subtracts the value of an expression from
the value in a container.

Returns the sum of a list of numbers.

Sent to the current card when HyperCard is
suspended by launching another
application with the open command.

Sent to the current card when you leave an
open stack to go to another.

Returns a decimal string representing the
running version of system software.

The horizontal tab character (ASCII 9).

Places the insertion point in the next
unlocked field on the current background
or card.

Sent to the current card or a field when Tab
key is pressed.

Returns the tangent of an angle.

Indicates the object that initially received
the message that initiated execution of the
current handler.

String representation of the numerical
value 10.

continued

617

APPENDIX

I

HyperTalk Vocabulary

Table I-1

HyperTalk vocabulary (continued)

Term
tenth

t ext

text Align

t ext Arrows

t ext Font

t ext Hei ght

textSi ze

textStyle

t he

t hen

third

this

618

Category
Ordinal

Tool

Property

Property
Property

Property

Property

Property

Special

Keyword
Ordinal

Modifier

Meaning

Designates object or chunk number ten
within its enclosing set.

Name of tool from Tools palette; used with
choose command or returned by the t ool
function.

Determines the alignment of characters
created with the Paint Text tool, or those in
a field, or those in the name of a button.

Determines the functions of the arrow keys.

Determines the font of characters created
with the Paint Text tool, or those in a field,
or those in the name of a button.

Determines the space between the baseline
and characters created with the Paint Text
tool or those in a field.

Determines the size of Paint text, or text in
a field, or text in the name of a button.

Determines the style of Paint text, text in a
field, text in the name of a button, or text of
a menu item.

Precedes a function name to indicate a
function call to one of the built-in functions
of HyperCard. You can’t call a user-defined
function with t he. Also allowed, but not
required, preceding special container names
(the Message box)and properties.

Follows the conditional expressionin an i f
structure to introduce the action clause.

Designates object or chunk number three
within its enclosing set.

Used with car d, backgr ound, or st ack
to refer to the current one.

continued

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

three Constant String representation of the numerical
value 3.

ticks Function Determines the number of ticks since the
Macintosh was turned on or restarted.

tinme Function Returns the current time as a text string.

titleWdth Property Determines or changes the width of the
area in a pop-up button which displays
its name.

to Preposition Used to specify ranges (3 t 0 5), connect
a message to its destination when used
with send, specify a format for the
convert command, assign a container
for the add command, and connect values
to object properties.

t ool Function Returns the name of the currently
chosen tool.

top Property Determines or changes the value of item 2
of the r ect angl e property when applied
to the specified object or window.

topLeft Property Determines or changes items 1 and 2 of the
value of the r ect angl e property when
applied to the specified object or window.

traceDel ay Property Determines or changes the delay between
the execution of lines of HyperTalk during
a debugger trace.

true Constant Boolean value resulting from evaluation of
a comparative expression and returned
from some functions.

trunc Function Determines the integer part of a number.

t wo Constant String representation of the numerical

value 2.

continued

619

APPENDIX I

HyperTalk Vocabulary
Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning

type Command Inserts the specified text at the insertion
point.

unl ock Command Allows updating of the screen.

unmar k Command Unmarks the specified marked card.

up Constant Value returned by various functions to
describe the state of a key or the mouse
button.

user Level Property Determines the user level from 1 to 5.

user Modi fy Property Determines or changes whether or not the
user can type into fields or use Paint tools
on a stack that has been write-protected.

val ue Function Evaluates an expression.

vari abl eWat cher Property Determines the variable watcher to use.

vBar Loc Property Determines the location of the vertical bar
in the Variable Watcher window.

version Property Returns the version number of the
currently running HyperCard application.

visible Property Determines whether or not a window, field,
or button appears on the screen.

vi sual Command Sets up a specified visual transition to the
next card opened.

wai t Command Causes HyperCard to pause before
executing the rest of the current handler.

wi deMar gi ns Property Determines whether or not additional
space is displayed in the margins of a
specified field.

Wi dt h Property Determines or changes the horizontal

distance in pixels occupied by the rectangle
of the specified button or field.

continued

620

APPENDIX

I

HyperTalk vocabulary (continued)

HyperTalk Vocabulary

Table I-1
Term Category
wi ndows Function
within Operator
wor d Chunk
wor ds Chunk type
wite Command
zero Constant
zoom Property

Meaning

Returns a list of the windows currently
available to HyperCard.

Tests whether or not a point lies inside a
specified rectangle.

Piece of text delimited by spaces in any
container or expression.

Specifies words as type of chunk to the
number function.

Copies specified text into a specified disk
file starting at a specified point.

String representation of the numerical
value 0.

Zooms a window created with the
pi ct ur e command in or out.

621

Glossary

actual parameters See parameters.

" aet e' resource Apple event terminology
extension resource. This resource includes
the “grammar” for a scriptable application,
including the events that the application can
respond to and the classes of objects that

it supports, with their relevant properties
and their default data types. The ' aet e
resource allows scripting components to
map scripts written in human terms to the
corresponding Apple events understood by
the application.

algorithm A step-by-step procedure for
solving a problem or accomplishing a task.
Writing HyperTalk handlers or programs in
other languages often begins with figuring
out a suitable algorithm for a task.

Apple event A high-level event that
adheres to the Apple Event Interprocess
Messaging Protocol. An Apple event
consists of attributes (including the event
class and event ID, which identify the event
and its task) and, usually, parameters
(which contain data used by the target
application of the event). See also Apple
event attribute, Apple event parameter.

Apple event attribute A keyword-
specified descriptor record that identifies
the event class, event ID, target application,
or some other characteristic of an Apple
event. Taken together, the attributes of an
Apple event identify the event and denote
the task to be performed on the data

specified in the Apple event’s parameters.
Compared to parameters (which contain
data used only by the target application of
the Apple event), attributes contain
information that can be used by both the
Apple Event Manager and the target
application. See also Apple event
parameter.

Apple Event Interprocess Messaging
Protocol (AEIMP) A standard defined by
Apple Computer, Inc., for communication
and data sharing among applications.
High-level events that adhere to this
protocol are called Apple events.

Apple event parameter A keyword-
specified descriptor record that contains
data that the target application of an Apple
event must use. Compared to attributes
(which contain information that can be used
by both the Apple Event Manager and the
target application), parameters contain data
used only by the target application of the
Apple event. See also Apple event
attribute, direct parameter, optional
parameter, required parameter.

AppleScript Component A scripting
system integrated at the system level that
utilizes the Component Manager. This
technology, through the use of its scripting
language, AppleScript, enables users to
create scripts to control applications and the
system.

623

GLOSSARY

background A type of HyperCard object;
a template shared by a number of cards.
Each card with the same background has
the same background picture, background
fields, and background buttons in its
background layer. Like other HyperCard
objects, every background has a script. You
can place handlers in a background script
that you want to be accessible to all the
cards with that background.

background button A button that is
common to all cards sharing a background.
Compare with card button.

background field A field that is common
to all cards sharing a background; its size,
position, and default text format remain
constant on all cards associated with that
background, but its text can change from
card to card. Compare with card field.

background picture The graphics in the
background layer; the entire picture that is
common to all cards sharing a background.
You see the background picture by choosing
Background from the Edit menu. Compare
with card picture.

Browse tool The tool you use to click
buttons and to set the insertion point
in fields.

button A type of HyperCard object; a
rectangular “hot spot” on a card or
background that responds when you click it
according to the instructions in its script.
For example, clicking a right arrow button
with the Browse tool can take you to the
next card. See also background button,
card button.

624

Button tool The tool you use to create,
change, and select buttons.

card A type of HyperCard object; a
rectangular area that can hold buttons,
fields, and graphics. All cards in a stack are
the same size. Each layer can contain its
own buttons, fields, and graphics.

card button A button that belongs to a
card; it appears on, and its actions apply to,
a single card. Compare with background
button.

card field A field that belongs to a card; its
size, position, text attributes, and contents
are limited to the card on which the field is
created. Compare with background field.

card picture A picture that belongs to
and applies only to a specific card. Compare
with background picture.

chunk A piece of a character string
represented as a chunk expression. Chunks
can be specified as any combination of
characters, words, items, or lines in a
container or other source of value.

chunk expression A HyperTalk
description of a unique chunk of the
contents of any container or other source
of value.

coercion handler A routine that coerces
data from one Apple event descriptor type
to another.

command A response to a particular
message; a command is a built-in message
handler residing in HyperCard. See also
external command.

GLOSSARY

Command key The key at the lower-left
side of the keyboard that has a
propeller-shaped symbol. This key also has
an Apple symbol and is sometimes called
the Apple key.

comments Descriptive lines of text in a
script or program that are intended not as
instructions for the computer but as
explanations for people to read. Comments
are set off from instructions by symbols
called delimiters, which vary from language
to language. In HyperTalk, two hyphens

(- -) indicate the beginning of a comment.

Component Manager The Component
Manager provides a database service that
classifies software objects by function. In
much the same way that the Resource
Manager allows applications that are
running to access data objects dynamically,
the Component Manager provides services
that allow run-time location of and access to
functional objects.

constant A named value that never
changes. For example, the constant enpt y
stands for the null string, a value that can
also be represented by the literal expression
"" . Compare with variable.

container A place where you can store a
value (text or a number). Examples are
fields, the Message box, the selection, and
variables.

control structure A block of HyperTalk
statements defined with keywords that
enable a script to control the order or
conditions under which specific statements
execute.

Core suite The suite of core Apple event
constructs that are common to all or nearly
all applications. These definitions form the
basic vocabulary for interapplication
communication. Using only the constructs
defined in the Core suite, applications can
perform a wide range of useful tasks. This
suite includes such events as Get Data, Set
Data, and Count Elements. The Core suite
of Apple events is described in the Apple
Event Registry. Apple Computer, Inc.,
recommends that all applications support
the core Apple events.

current (adj.) Applies to the card,
background, or stack you're using now. For
example, the current card is the one you can
see on your screen.

debug To locate and correct an error or
the cause of a problem or malfunction
in a computer program, such as a
HyperTalk script.

delimiter A character or characters used
to mark the beginning or end of a sequence
of characters; that is, to define limits. For
example, in HyperTalk double quotation
marks act as delimiters for literals, and
comments are set off with two hyphens at
the beginning of the comment and a return
character at the end.

descriptor The combination of an object’s
generic name, immediately followed by its
particular name, number, or ID number.

direct parameter The parameter in an
Apple event that contains the data to be
used by the server application. For
example, a list of documents to be opened is

625

GLOSSARY

specified in the direct parameter of the
Open Documents event. See also Apple
event parameter.

dynamic path A series of extra objects
inserted into the path through which a
message passes when its static path does
not include the current card. The dynamic
path comprises the current card, current
background, and current stack. Compare
static path.

event handler Any part of an application
that deals with any event. Sometimes the
term event handler is used to refer to any
object that is eligible to handle menu
commands.

expression A description of how to get
a value; a source of value or complex
expression built from sources of value
and operators.

external command (XCMD) A command
written in a computer language other than
HyperTalk but made available to
HyperCard to extend its built-in command
set. External commands can be attached to a
specific stack or to HyperCard itself. See
also external function.

external function (XFCN) A function
written in a computer language other than
HyperTalk but made available to
HyperCard to extend its built-in function
set. External functions can be attached to a
specific stack or to HyperCard itself. See
also external command.

factor A single element of value in an
expression. See also value. Factoring is the
separation of the interface links to the
application and the core functionality. By

626

factoring an application, all features are
accessed through event handlers via
Apple events.

field A type of HyperCard object; a
container in which you type field text
(as opposed to Paint text). HyperCard
has two kinds of fields—card fields and
background fields.

Field tool The tool you use to create,
change, and select fields.

formal parameters See parameter
variables.

function A named value that HyperCard
calculates each time it is used. The way in
which the value is calculated is defined
internally for HyperTalk’s built-in
functions, and you can define your own
functions with function handlers.

function call The use of a function name
in a HyperTalk statement or in the Message
box, invoking either a function handler or a
built-in function.

function handler A handler that executes
in response to a function call matching
its name.

generic scripting component A special
scripting component that establishes
connections dynamically with the
appropriate scripting component for each
script that a client application attempts to
manipulate or execute.

global properties The properties that
determine aspects of the overall HyperCard
environment. For example, user Level isa
global property that determines the current
user level setting.

GLOSSARY

global variable A variable that is valid for
all handlers in which it is declared. You
declare a global variable by preceding its
name with the keyword gl obal . Compare
with local variable.

handler A block of HyperTalk statements
in the script of an object that executes in
response to a message or a function call.
The first line in a handler must begin with
the word on, and the last line must end
with the word end. Both on and end must
be followed by the name of the message or
function. HyperTalk has message handlers
and function handlers.

hierarchy See message-passing hierarchy.

HyperTalk HyperCard’s built-in script
language for HyperCard users.

identifier A character string of any length,
beginning with an alphabetic character; it
can contain any alphanumeric character
and the underscore character. Identifiers are
used for variable and handler names.

keyboard equivalent key A key you press
together with the Command key to issue a
menu command.

keyword Any one of the 14 words that
have a predefined meaning in HyperTalk.
Examples of keywords are on, i f, do,
and r epeat .

layer The order of a button or field
relative to other buttons or fields on the
same card or background. The object
created most recently is ordinarily the
topmost object (that is, on the front layer).

literal A string of characters intended to
be taken literally. In HyperTalk, you use
quotation marks (" ") as delimiters to set
off a string of characters as a literal, such as
the name of an object or a group of words
you want to be treated as a text string.

local variable A variable that is valid only
within the handler in which it is used (local
variables need not be declared). Contrast
with global variable.

loop A section of a handler that is
repeated until a limit or condition is met,
such as in a repeat structure.

message A string of characters sent to an
object from a script or the Message box, or
that HyperCard sends in response to an
event. Messages that come from the
system—from events such as mouse clicks,
keyboard actions, or menu commands—
are called system messages. Examples of
HyperTalk messages are mouseUp, go, and
push car d. See also handler.

Message box A container that you use to
send messages to objects or to evaluate
expressions.

message handler A handler that executes
in response to a message matching its name.

message-passing hierarchy The ordering
of HyperCard objects that determines the
path through which messages pass.

metasymbol A word used in a syntax
statement as a placeholder for an element
that is different for each specific use of the
statement. For example, the metasymbol
filename is used to show where you put the
name of a file you want a command to act
on. In this book, metasymbols are shown
as italics.

627

GLOSSARY

number A character string consisting of
any combination of the numerals 0 through
9, optionally including one period (.)
representing a decimal value. A number can
be preceded by a hyphen or a minus sign to
represent a negative value.

object An element of the HyperCard
environment that has a script associated
with it and that can send and receive
messages. There are five kinds of
HyperCard objects: buttons, fields, cards,
backgrounds, and stacks.

object class An application defines
specific objects as distinct classes. In
HyperCard, each of its objects (stack,
background, card, button, and field) can be
an individual class.

object descriptor Designation used to
refer to an object. An object descriptor is
formed by combining the name of the type
of object with a specific name, number, or
ID number. For example, backgr ound
button 3isan object descriptor. Stacks do
not have a number or ID number, so only
the name can be used for a stack descriptor.

object properties The properties that
determine how HyperCard objects look and
act. For example, the | ocat i on property
of a button determines where it appears on
the screen.

object specifier A specific data type that
contains references to specific classes
(objects) and their relating specifiers (such
as names, indexes, or IDs). For HyperCard,
the metaphor that chunk expressions
describe is an example of an object specifier.

628

online help Assistance you can get from
an application program while it’s running.
In HyperCard, online help refers to the
HyperCard disk-based Help system.

Open Scripting Architecture (OSA) A
standard proposed by Apple Computer,
Inc., to provide a uniform way for
applications to provide or utilize scripting
functionality.

operator A character or group of
characters that causes a particular
calculation or comparison to occur. In
HyperTalk, operators operate on values. For
example, the plus sign (+) is an arithmetic
operator that adds numerical values.

optional parameter A supplemental
parameter in an Apple event used to specify
data that the server application should use
in addition to the data specified in the
direct parameter. Optional parameters are
listed in the attribute identified by the
keyOpt i onal Keywor dAtt r keyword.
Applications use this attribute to specify or
determine whether data exists in the form
of optional parameters. Optional
parameters need not be included in an
Apple event; default values for optional
parameters are part of the event definition.
It is the responsibility of the server
application that handles the event to supply
values if optional parameters are omitted.
See also Apple event attribute, Apple
event parameter.

painting properties The properties that
control aspects of the HyperCard painting
environment, which is invoked when

GLOSSARY

you choose a Paint tool. For example, the
br ush property determines the shape of
the Brush tool.

Paint text Text you type using the Paint
Text tool. Paint text can appear anywhere,
while regular text must appear in a field
created with the Field tool. Paint text is part
of a card or background picture.

Paint tool Any HyperCard tool you use to
make pictures. Paint tools include Lasso,
Brush, Spray, Eraser, and many others.

palette A small window that displays
icons or patterns you can select by clicking.
You can see two of HyperCard’s palettes,
the Tools palette and the Patterns palette,
simply by “tearing off” their respective
menus. To see the Navigator palette, type
pal ette "navigator" in the Message
box. See also tear-off menu.

parameters Values passed to a handler by
a message or function call. Any expressions
after the first word in a message are
evaluated to yield the parameters; the
parameters to a function call are enclosed in
parentheses, or, if there is only one, it can
follow of .

parameter variables Local variables
in a handler that receive the values of
parameters passed with the message or
function call initiating the handler’s
execution.

picture Any graphic or part of a graphic,
created with a Paint tool or imported from
an external file, that is part of a card or
background.

pixel Short for “picture element”; the
smallest dot you can draw on the screen.
The position of the pointer is often
represented by two numbers separated by
commas. These numbers are horizontal and
vertical distances of the pointer from the
left and top edges of the card window,
measured in pixels. The upper-left corner of
the screen has the coordinates 0O, 0.

point (1) A location on the screen
described by two integers, separated by a
comma, representing horizontal and
vertical offsets, measured in pixels from the
top-left corner of the card window or (in the
case of the card window itself) of the screen.
(2) In printing, the unit of measurement of
the height of a text character; one point is
about Y72 of an inch. When you select a font,
you can also select a point size, such as 10
point, 12 point, and so on.

power key One of a number of keys on
the Macintosh keyboard you can press to
initiate a menu action when a Paint tool is
active. Power keys are enabled when you
choose Power Keys from the Options menu
or you check Power Keys on the Preferences
card in the Home stack.

properties The defining characteristics of
any HyperCard object and of HyperCard'’s
environment. For example, setting the user
level to Scripting changes the user Level
property of HyperCard to the value 5.
Properties are often selected as options in
dialog boxes or on palettes, or they can be
set from handlers.

Recent A special dialog box that holds
pictorial representations of the last 42
unique cards viewed. Choose Recent from

629

GLOSSARY

the Go menu to get the dialog box. Also, an
adjective describing the card you were on
immediately prior to the current card, as in
recent card

recursion The repetition of an operation
or group of operations. Recursion occurs
when a handler calls itself.

regular text Text you type in a field. You
use the Browse tool to set an insertion point
in a field and then type. Regular text is
editable and searchable, while Paint text

is not.

required parameter A keyword-specified
descriptor record in an Apple event that
must be specified. For example, a list of
documents to open is a required parameter
for the Open Documents event. Direct
parameters are often required, and other
additional parameters may be required.
Optional parameters are never required.

Required suite The smallest of the
standard Apple event suites, it includes
definitions of four Apple events and four
descriptor types. The Apple events defined
in this suite, known as required Apple
events, are sent to all applications that
support high-level events and all
applications that call the new Standard File
routines under system software version 7.0
and later. All applications that support
system software version 7.0 and later
should support the Required suite. The
events in this suite are the Open
Application, Open Document, Print
Document, and Quit Application events.

resource fork The part of a file that
contains resources such as fonts, icons, and
sounds, and so on.

630

script A collection of handlers written in
HyperTalk and associated with a particular
object. You use the script editor to add to
and revise an object’s script. Every object
has a script, even though some scripts are
empty: that is, they contain nothing.

scriptable The capability of an application
to respond to Apple events sent to it by a
scripting component. To qualify as
scriptable, an application is required to
respond to appropriate standard Apple
events and include an ' aet &' resource.

script editor A window in which you can
type and edit a script. The title bar of the
script editor describes the object to which
the script belongs. You can use the Edit
menu, the Script menu, and keyboard
commands to edit text in the script editor.
See also handler, object, and script.

scripting component A program that
responds appropriately to calls made to the
standard scripting component routines.
Most scripting components implement
scripting languages—for example, the
AppleScript component implements the
AppleScript scripting language.

search path When you open a file from
within HyperCard, HyperCard attempts to
locate the stack, document, or application
you want by searching the folders listed on
the appropriate Search Paths card in the
Home stack. Each line on a Search Paths
card indicates the location of a folder,
including the disk name (and folder and
subfolder names, if any). This information
is called a search path. Items in a search path
are separated by a colon, like this: nmy

di sk: Hyper Card fol der: ny stacks:

GLOSSARY

Search Path cards Three cards in the
Home stack used to store information about
the location of stacks, documents, and
applications that you open while
HyperCard is running. See also search path.

selection A container that holds the
currently selected area of text. Note that text
found by the f i nd command is not selected.

shared text Field text that appears on
every card in a background. Shared text can
be edited only from the background layer.
Text in shared fields cannot be searched.

source of value HyperTalk’s most basic
expressions; the language elements from
which values can be derived: constants,
containers, functions, literals, and
properties.

stack A type of HyperCard object that
consists of a collection of cards; a
HyperCard document.

statement A line of HyperTalk code inside
a handler. A handler can contain many
statements. Statements within handlers

are first sent as messages to the object
containing the handler and then to
succeeding objects in the message-passing
hierarchy.

static path The message-passing route
defined by an object’s own hierarchy. For
example, the static path followed by a
message sent to (but not handled by) a
button would include the card to which the
button belongs, the background associated
with that card, and the stack containing
them. Compare dynamic path.

string A sequence of characters. You can
compare and combine strings in different
ways by using operators. In HyperTalk, for
example, 23 + 23 will result in 46; but 23
& 23 will result in 2323.

suite A group of Apple event constructs
that define an area of functionality. Suites
provide the common vocabulary for
applications. A suite can define constructs
such as Apple events, Apple event object
classes, descriptor types, key forms,
comparison operators, or constants.

syntax A description of the way in which
language elements fit together to form
meaningful phrases. A syntax statement
for a command shows the command

in its most generalized form, including
placeholders (sometimes called
metasymbols) for elements you must fill
in as well as optional elements.

System file Software a Macintosh
computer uses to perform its basic
operations.

system message A message sent by
HyperCard to an object in response to an
event such as a mouse click, keyboard
action, or menu command. Examples of
HyperCard system messages are mouseUp,
doMenu, and newCar d.

target The object that first receives
a message.

tear-off menu A menu that you can
convert to a palette by dragging the pointer
beyond the menu’s edge. HyperCard has
two tear-off menus—Tools and Patterns.
When torn off, these menus are referred to
as palettes.

631

GLOSSARY

text field See field.

text property A quality or attribute of a
character’s appearance. Text properties
include style, font, and size.

tick Approximately one-sixtieth (160) of a
second. The wai t command assumes a
value in ticks unless you specify seconds by
adding secs or seconds.

tool Animplement you use to do work.
HyperCard has tools for browsing through
cards and stacks, creating text fields, editing
text, making buttons, and creating and
editing pictures.

user level A property of HyperCard,
ranging from 1 to 5, that determines which
of HyperCard’s capabilities are available.
You can select the user level on the
Preferences card in the Home stack. Each
user level makes all the options from the
lower levels available, and also gives you
additional capabilities. The five user levels
are Browsing, Typing, Painting, Authoring,
and Scripting.

632

value A piece of information on which
HyperCard operates. All HyperCard values
can be treated as strings of characters—they
are not formally separated into types. For
example, a numeral could be interpreted as
a number or as text, depending on what
you do with it in a HyperTalk handler.

variable A named container that can hold
a value consisting of a character string of
any length. You can create a variable to hold
some value (either numbers or text) simply
by using its name with the put command
and putting the value into it. HyperCard
has local variables and global variables.
Compare with constant.

window properties The properties that
determine how the Message box and the
Tools and Patterns palettes are displayed.
For example, the vi si bl e property
determines whether or not the specified
window is displayed on the screen.

Index

Symbols

306-307, 307
&& (ampersand, double) operator 113
& (ampersand) operator 113
& operator 118
() (parentheses) operator 114
() parentheses operator 114
* (asterisk) operator 114
(chunk) 120
- - (double hyphen) comment character 26, 112
- (minus sign) operator 114
(not equal sign) operator 115
| (slash) operator 113
+ (plus sign) operator 115
< (less than sign) operator 114
<= (less than or equal to sign) operator 114
= (equal sign) operator 113
> (greater than sign) 113
>= (greater than or equal to sign) operator 114
N (caret) operator 113
(not equal sign) operator 114
< (less than or equal to sign) operator 114

2, >= (greater than or equal to sign) operator 114

A

abbr dat e format 191

abbr ev dat e format 191

abbr evi at ed (adjective) 84
abbrevi at ed dat e format 191
abbrevi ated ti me format 191
abbrev tinme format 191

abbr ti nme format 191

abs function 291

accessing XCMDs and XFCNs 504

char 120
actual parameters 78
add command 167-168
addr ess property 17, 378
af t er (prepositon) 251
al | (preposition) 271
ambiguous stack descriptors 91
ampersand, double operator (&&) 113
ampersand operator (&) 113
and operator 115
annui t y function 291-292
annui ty. See also compound
answer
It as destination 106
answer command 168-172
answer filecommand 168-172
answer for ask command 176
answer programcommand 15, 168-172
any (ordinal) 87
appl eEvent message 20
appl eEvent system message 132
AppleScript 5
and HyperTalk, comparing 6
application, stand-alone, building 14
arithmetic operators 113, 118
arrow cursor 395
ar r owKey command 173-174
ar r owkey system message 132, 173-174
ASCII codes 561-564
ask
It as destination 106
ask command 174-176
ask filecommand 174-176
ask passwor d command 174-176
assigning menu names 93
asterisk (*) operator 114
at an function 292-293
aut oHi | i t e property 17, 379

633

INDEX

aut oSel ect property 380-381
aut oTab property 381-382
aver age function 293-294

B

backgr ound (object) 82
background button properties
sharedHi | i t e 468-469
background field properties
shar edText 469-470
showlLi nes 470471
background properties 360-361
cant Del et e 388-389
cant Modi fy 389-390
dont Sear ch 398-399
I D 416-418
name 439-441
nunber 441
scri pt 460-461
scriptingLanguage 462-463
showPi ct 472
backgrounds
current 25
defined 25
descriptors for 82-87
beep command 177
bef or e (preposition) 251
bkgnd (object) 82
bl i ndTypi ng property 382
bot t omproperty 17, 383-384
bot t onRi ght property 17, 384-385
br ush property 386
br ush tool name 178
bt n (object) 82
bucket tool name 178
built-in functions 100
busy cursor 395
but t onCount palette property 237
button dialog modifications 7-8
Button Info dialog 7-8
button Info dialog box 35

634

button properties 365-367
autoH lite 379
bot t om 383-384
bot t onRi ght 384-385
enabl ed 402-403
fam |y 404-406
hei ght 411
hilite 414415
i con 415416
I D 416-418
| eft 421-422
| ocati on 423-425
name 439-441
nunber 441
part Nunber 444
rect angl e 455-458
ri ght 459-460
scri pt 460-461
scriptingLanguage 462-463
sharedHi | i te 468-469
showName 471
style 475
styl e 475
text Align 477
t ext Font 479-480
t ext Hei ght 480481
t ext Si ze 481-482
text Styl e 482-484
titleWwdth 486
t op 486488
topLeft 488-489
versi on 496-497
wi deMar gi ns 499

buttons
as containers 105
defined 24
descriptors for 82-87
editing scripts of 3341
messages to 58
new features 8-12
system messages and 126-128

button text
text alignment 477
but t on tool name 178

INDEX

C

cant Abort property 387-388
cant Del et e property 388-389
cant Modi fy property 389-390
cant Peek property 390-391

Can' t under st and error message 56

car d (object) 82
card fields 82
Card Info dialog box 82
card properties 361-362
cant Del et e 388-389
cant Modi fy 389-390
dont Sear ch 398-399
I D 416-418
mar ked 432
nanme 439441
nunber 441
owner 443
rectangl e 455-458
ri ght 460-461
scri pti ngLanguage 462-463
showPi ct 472
wi deMar gi ns 499
cards
current 25
defined 25
descriptors for 82-87
editing scripts of 3441
system messages and 131-138
card window
current 96
card window properties
scrol | 466-467
card windows 28
defined 28
cd (object) 82
cent er ed property 391
characters as chunk expressions 120
char ToNumfunction 294
checkMar k property 392-393
checkpoints 43, 45, 196-197
choose command 178-179
chunk

defined 118
as a destination 123
chunk expression 118-124
ranges in 121
syntax of 119
cl i ckChunk function 295-296
cli ck command 180-181
location 180
cl i ckHfunction 296, 299-300
cli ckLi ne function 296-297
cli ckLoc function 297-298
clickText function 298-299

cl oseBackgr ound system message 133

cl oseCar d system message 133
cl ose command 15, 181-??
cl oseFi el d system message 129
close fil ecommand 183-184
cl osePal et t e message 20
cl osePal et t e system message 133
cl osePi ct ur e message 20
cl osePi ct ur e system message 133
cl ose printing command 185,233
cl oseSt ack system message 133
cl ose system message 132
cl ose wi ndowcommand 186
closing external windows 540
cndChar property 393-394
Command-hyphen 39
commandKeyDown command 187-188
conmmandKey function 300
conmandKey system message 133
commands 165-287

add 167-168

answer 168-172

answer file 168-172

answer program 15, 168-172

arrowKkey 173-174

ask 174-176

ask file 174-176

ask password 174-176

beep 177

choose 178-179

click 180-181

cl ose 15,181-??

635

INDEX

close file 183-184

cl ose printing 185,233
cl ose wi ndow 186
comuandKeyDown 187-188
cont r ol Key 188-190
convert 3,15,191-194
create nmenu 194-195
create stack 195-196
debug checkpoi nt 196-197
defined 165

del et e 15, 197-200, 575

di al 200-201

di sabl e 15,201-202

di vi de 202-203

doMenu 15, 203-205

drag 205-207

edit script 207

enabl e 15,208
enterlnField 209

ent er Key 209-210
export paint 210-211
find 15,211-214

find chars 15

find string 15

find whole 15

find word 15

functi onKey 215-216
get 216-217

go 218-219

hel p 219

hi de 220-222

i mport paint 223
keyDown 224-??

I ock 225

lock error dialogs 15
| ock recent 225

l ock recent 15

| ock screen 225

I ock 15

mar k 226-227,228-229
open 229-231

open file 231-232

open printing 232-233
open report printing 234-235

636

open 15

overriding 142

pal ette 235-237

pal et t e property 237

pi cture 15,238-242

pl ay 243-245

pl ay stop 243-245

pop card 245-246
print 246-248

print card 248-250
push card 250-251

put 16,251-254

read 254-256

read fromfile 16
reply 16,256-??
request 258-260
request from 16
reset nenubar 260-261
reset paint 261-262
reset printing 262
returnlnFi el d 262-263
returnKey 263

save stack 264

sel ect 264-266

send ??-162

set 266-267

show 268-270

show cards 271-272
sort 272-274

sort 16-7?

start using 274-275
stop using 275,276
subtract 277

syntax notation 166-167
syntax summary 574-581
t abKey 277-278

type 278-279

unl ock 279-280

unl ock error dial ogs 279-280
unl ock recent 279-280
unl ock screen 279-280
unmar k 281-282

vi sual 16,282-284
wai t 284-285

INDEX

write 285-287
wite to file 16
comment character 112
comment character (- -) 26
comment command 39
commenting scripts 39
comparison operators 113-118
complex expressions 111-112
conmpound function 301-302
conpound function. See also annui t y function
constant, defined 99
constants 553-554
containers 103-109
chunk expressions and 122-124
defined 103
fields 104
Message box 108-109
t he sel ection 107
variables 78, 105
cont ai ns operator 115
cont r ol Key command 188-190
cont r ol Key system message 133, 189
control structures 141-163
convert command 3,15,191-194
cos function 302
create menu command 194-195
creat e. See also di sabl e, di sabl ed, enabl e,
enabl ed, t ext,t ext Styl e, mar kChar,
cmdChar, , and put
create stack command 195-196
creating menus 194
cross cursor 395
current hierarchy 59-60
current objects 25
cur sor property 394-395
cursors 395
cur ve tool name 178
cut Car d system message 139

D

dat e function 302-304

dat el t ens format 191
debug checkpoi nt command 196-197
debugger 4349
command summary 49
defined 43
exiting 45
stepping through scripts 44
tracing through scripts 45
debugger checkpoints 45
Debugger menu 43
debugger property 396
debugger tools 45
debugger windows 45-48
debugging environment 43
del et eBackgr ound system message 133, 139
del et eBut t on system message 127
del et eCar d system message 133, 139
del et e command 15, 197-200
del et eFi el d system message 129
del et eSt ack system message 134, 139
desti nati on function 16, 304
di al command 200-201
di al i ngTi me property 17, 397
di al i ngVol une property 17, 398
dialog modifications
button 7-8
field 12
dialog window layer 544
di sabl e command 15, 201-202
. See also enabl e command
disabling background buttons 201-202
disabling card buttons 201-202
disabling menu items 201-202
disabling menus 201-202
di skSpace function 16, 305
di vi de command 202-203
di v operator 115
document window layer 544
do keyword 158-159
doMenu command 15, 203-205
intercepting 166
intercepting handler 204
doMenu system message 134
dont Sear ch property 398-399

637

INDEX

dont W ap property 399-400
double hyphen (- -) 26, 39, 40, 112
down constant 553
dr ag command 205-207
dr agSpeed property 400-401
Draw Centered setting 373, 391
Draw Filled setting 373
Draw Multiple setting 373, 436
dynamic path 67-71

go command and 67

invoking 67

send keyword and 67, 69-??, 70, ??-71

E

edi t Bkgnd property 402
edit script command 207
ei ght h (ordinal) 84
el se keyword 155-158
enpty (constant) 105, 553
enabl e command 15, 208

. See also di sabl e command
enabl ed property 18, 402-403

. See also di sabl e command, enabl e

command

end keyword 26, 143, 154
end repeat statement 154
end statement 147
enhancements

HyperTalk 15-21
ent er I nFi el d command 209
enter | nFi el d system message 129
ent er Key command 209-210
ent er Key message 209, 210
ent er Key system message 134
environmental properties 368
envi ronnment property 18, 404
equal sign (=) 113
eraser tool name 178
example XCMD 545
exi t Fi el d system message 129
exit keyword 72,143, 153

638

exit repeat statement 153
exit statement 147
exp function 306
expl function 306-307
export paint command 210-211
expressions 99-109, 111-124
complex 111-118
exp2 function 307
external commands and functions 503-552
external window callbacks 522-529
external window events 536-540
xCl oseEvt 537
xCursorWthin 539
xDebugError Evt 540
xDebugFi ni shedEvt 540
xEdi t O ear 538
xEdi t Copy 538
xEdi t Cut 538
xEdi t Past e 538
xEdi t Undo 538
xGet PropEvt 538
xG veUpEdi t Evt 537
xG veUpSoundEvt 538
xMBar C i ckedEvt 540
xMenuEvt 539
xQOpenEvt 537
xScri pt Error Evt 540
xSendEvt 538
xSet PropEvt 538
xShowwat chl nf oEvt 540
external windows 522-529, 534-545
closing 540
event handling 528

F

factors 111-112

false constant 554

fam |y property 18, 404-406
field dialog modifications 12
Field Info dialog 12

field properties 362-364

INDEX

aut oSel ect 380-381
aut oTab 381-382

bot t om 383-384

bott onRi ght 384-385
dont Sear ch 398-399
dont Wap 399-400

fi xedLi neHei ght 407-408
hei ght 411

1 D 416418

| eft 421-422

| ocati on 423-425

| ockText 429-430
nane 439-441

new features 13-14
nunber 441

part Nunber 444

rect angl e 455-458
ri ght 459-460

scri pt 460-461

scri ptingLanguage 462-463
scrol | 465-466

styl e 475

text Align 477

t ext Font 479-480

t ext Hei ght 480-481
text Si ze 481-482
text Styl e 482-484

t op 486488

topLeft 488489

ver si on 496497

wi deMar gi ns 498, 499

fields 104

as containers 104

descriptors for 82-89

system messages and 128-131
fields properties

mul ti pl eLi nes 437-??

field text 477
fi el d tool name 178

fifth (ordinal) 84
fill ed property 406

find chars command 15
find command 15,211-214

dont Sear ch property 399

find stringcommand 15
find whol e command 15
find word command 15
first (ordinal) 84
five (constant) 84
fixedLi neHei ght property 407-408
f or nFeed constant 554
f oundChunk function 307-308
. See also f i nd command
f oundFi el d function 308-309
f oundLi ne function 309-310
f oundText function 310
f our (constant) 84
fourth (ordinal) 84
freeSi ze property 408-409
function 100
redefining 290
function calls 27, 289
function handlers 27-32, 146-149
example 149
keywords in 145-149
overriding 146
parameter passing into 78
user-defined 146
functi onKey command 215-216
functi onKey system message 134
functi on keyword 146
functions 289-355
abs 291
annui ty 291-292
at an 292-293
aver age 293-294
char ToNum 294
cl i ckChunk 295-296
cl i ckH 296, 299-300
cli ckLi ne 296-297
clickLoc 297-298
clickText 298-299
commandKey 300
conpound 301-302
cos 302
dat e 302-304
defined 289
desti nati on 16,304

639

INDEX

di skSpace 16, 305

exp 306

expl 306-307

exp2 307

f oundChunk 307-308

f oundFi el d 308-309

f oundLi ne 309-310

f oundText 310
heapSpace 310-311

| engt h 311-312

I'n 312

I nl 313

| 0g2 313

max 314

menus 315

m n 315-316

nmouse 316-317

noused i ck 317-318
mouseH 318

mouselLoc 319

mouseV 320

nunber 16, 320-322
nunToChar 322-323
of f set 323-324

opti onKey 324-325

par am 325-326, ??-328
par anCount 326-327
parameters of 289

par ans 327-2?
prograns 16,328
random 329

result 330-331

round 332

screenRect 333
seconds 333-334

sel ect edBut t on 17,334-335
sel ect edChunk 335-336
sel ect edFi el d 336-337
sel ect edLi ne 17, 337-339
sel ect edLoc 339-340
sel ect edText 17,340-341
shi ft Key 341-342

sin 343

sound 343-344

640

sqrt 345

st acks 345-??

st ackSpace 346
sum 17, 346

syntax notation 290
syst enVer si on 17,347
tan 347-348
target 348-349
ticks 349-350
time 350-351

t ool 351-352
trunc 353-354
val ue 354-355

wi ndows 355

G

get command 216-217
It as destination 106
gl obal keyword 106, 159
global properties 369-372
addr ess 378
bl i ndTypi ng 382
cursor 394-395
debugger 396
di al i ngTi me 397
di al i ngVol urme 398
dr agSpeed 400-401
edi t Bkgnd 402
envi ronment 404
itenDel i mter 418-419
Language 420
| ockErrorDi al ogs 425-426
| ockMessages 426-427
| ockRecent 427-428
| ockScreen 428-429
| ongW ndowTi t | e 430
messageWat cher 435
nunber For mat 442443
power Keys 447
print Margi n 448
print Text Align 449

INDEX

print Text Font 450-??
print Text Hei ght ??-450, 451
print Text Si ze 452-453
print Text Styl e 453
script Edi tor 461-462
scri pt Text Font 463-464
scri pt Text Si ze 464-465
st acksl nUse 474

text Arrows 478

t ext Font 479-480
traceDel ay 489-490

user Level 490-491

user Modi fy 491-492

vari abl eWat cher 492-493
gl obal statement 159-160
global variables 47, 106, 159-160
go command 218-219

greater than (>) operator 113
gri d property 409

Grid setting 373

H

hi de (object) 221
hi de command 220-222
hi del dI e property 412
hi de menuBar system message 135
hi deUnused property 413
hiding card windows 220
hiding objects 221-222
hiding picture windows 220
hiding stack windows 220
hierarchy, message-passing 56-70, 73-76
current 56
defined 56
objects in 58
hi | i t edBut t on palette property 237

hand cursor 395

handler 126

handlers 26-27, 62

calling 71-73

defined 26

function 27-32, 78, 145-149
intercepting commands 78, 166
intercepting messages 76
message 27

nesting 72

recursion 72-73

sharing 74-75

statements within 26

as subroutines 71

hBar Loc property 410
heapSpace function 310-311
hei ght property 18, 411

hel p command 219

hel p system message 134

hi | i t e property 18, 414-415

. See also aut oHi | i t e property,and f ani | y

property, shar edHi | i t e property

HyperCard

enhancements since HyperCard 2.0 1-21
and Open Scripting Architecture 4-7
and other scripting systems 3-4

performance hints 555-560
system requirements 1-2

and WorldScript compatibility 2, 3

HyperCard properties
| D 416418
versi on 494495

HyperTalk, enhancements 15-21
hyphen (-) as minus arithmetic operator 112
hyphen, double (- -) comment character 112

[, J

I-beam cursor 395

i con property 415-416

identifying a stack 90-91

i dl e system message 52,135

| Dproperty 18, 88, 416-418

i f structure 155-158
multiple-statement 156-158
single-statement 155-156

importing paint files 223

641

INDEX

i mport pai nt command 223 L
i n (preposition) 92,119, 166
Info menu 34 Language property 420
intercepting messages 76-77, 433 | asso tool name 178
doMenu 433 | ast (ordinal) 87
menu 433 layered buttons and fields 58
interrupting executing handlers 72 | ef t property 421-422
i nt o (preposition) 251 | engt h function 311-312
i s an operator 115 less than (<) operator 114
i s aoperator 115 less than or equal to (<=) operator 114
i s inoperator 115 less than or equal to (<) operator 114
i s not an operator 115 lineFeed constant 554
i's not aoperator 115 lines as chunk expressions 121
i's not inoperator 115 l'i neSi ze property 422-423
i s not operator 115 line tool and 422
i s operator 115 shape tool and 422
It (container) 106 | i ne tool name 178
i temDel i mi t er property 18,418-419 literal strings 100
items as chunk expressions 120 I n1 function 313
| t variable 106 I n function 312

local variables 47, 106
location 180
| ocat i on property 423-425
K point 424
| ock command 15, 225
| ock error dial ogs command 15
| ockEr ror Di al ogs property 19, 425-426
| ockMessages property 426-427
| ock recent command 15,225
| ockRecent property 427-428
| ock screencommand 225
| ockScr een property 428-429
| ockText property 19, 429-430
| 0g2 function 313

keyDown command 224-??
keyDown system message 135
keywords 53, 59, 141-163

defined 141

do 158-159

el se 155-158

end 143,154

exit 143,153

function 145,146

gl obal 159 | ong (adjective) 84

next 154 ong dat e format 191

on 142-143 ong ti ne format 192

pass 143 | ongW ndowTi t | e property 430
repeat 150

return 144

send 160

M

mar kChar property 431

642

INDEX

mar k command 226-227, 228-229
mar ked property 432
max function 314
e (special object descriptor) 89
menu
di sabl e command 202
enabl e command 208
number of 320
menu bar properties
rect angl e 455-458
vi si bl e 496497
menu command 204
menu commands 126
menu item names 93, 94
menu item properties 375-376
checkMar k 392-393
checkMar k. See also put
cmdChar 393-394
. See also menuMsg command; put command
enabl ed 402-403
mar kChar 431
menuMsg 433-434
nane 439-441
text Styl e 484-485
t ext Syl e. See also put
menu items 31, 251
adding messages for 251
defined 31
disabling 201-202
enable 208
referring to by number 94
nmenuMessage property 434
menu messages 31, 251
defined 31
intercepting 433
nmenuMsg property 433-434
. See also doMenu command; put command
menu names 93, 94
menu numbers 93
menu properties
enabl ed 402-403
name 439-441
menus 30, 81
controlling through HyperTalk 93-95

creating 94
defined 30
disabling 201-202
enabling 208
number of 321
referring to by number 93
nmenus function 315
Message box 53, 108
message handlers 26, 141-144
example 144
keywords in 142-145
syntax of 141
message name 77
message-passing hierarchy
current 59-60
user-defined 62-65
using 73-76
messages 51-79
appl eEvent 20
to a button 53, 58
to a card 52
cl osePal ette 20
cl osePicture 20
commands 26
from external commands 54
handling 51
intercepting 76
keywords in 53

matching message names 55-56

nmouseDoubl ed i ck 21
openPal ette 21
openPi cture 21
receiving 55
resulting from commands 54
sending 52
sent to a field 128-131
sent to a locked field 53
sent to buttons 126
sent to current card 131-138
system 52
system messages in 56
to fields 58
message sending order 26
Message Watcher 4647

643

INDEX

messageWat cher property 435
Message Watcher window properties 376-377
hi del dl e 412
hi deUnused 413
m ddl e (ordinal) 87
m n function 315-316
miniwindow layer 544
minus sign (-) operator 114
modems, di al command and 200-201
nod operator 116
moused i ck function 317-318
mouseDoubl ed i ck message 21
nmouseDoubl ed i ck system message 127, 129,
136
nmouseDownl nPi ct ur e system message 136
nouseDown message 53
nouseDown system message 127, 130, 136
nmouseEnt er message 52
nmouseEnt er system message 127, 130
nmouse function 316-317
nouseH function 318
nouselLeave message 52
nouseleave system message 127, 130
nmouseloc function 319
mouseSt i | | Down system message 127, 130, 136
mouseUpl nPi ct ur e system message 136
nouseUp message 53
nouseUp system message 128, 130, 136
nmouseV function 320
nmouseW t hi n message 52
mouseW t hi n system message 128, 130
moveW ndowsystem message 136
nmul ti pl eLi nes property 437-??
mul ti pl e property 436
mul ti Space property 438-439

N

name property 19, 84, 439441
naming menus 93

naming objects 82-83, 91
naming stacks 91

644

newBackgr ound system message 137, 139
newBut t on system message 128
newCar d system message 137, 139
newFi el d system message 130
newSt ack system message 137, 139
next keyword 154
next repeat statement 154
next special object descriptor 89
ni ne (constant) 84
ni nt h (ordinal) 84
nonexistent chunks 124
not equal sign () operator 115
not equal sign (<>, #) operator 114
not operator 116
nurber For mat property 442-443
nunber function 16, 320-322
number handling 103
nurber property 19, 441
number property. See also nunber function
numbers 101-103
decimal string precision 102
nunber For mat property and 102
SANE numeric values 102
. See also nunber property
nunroChar function 322-323
. See also char ToNumfunction

@)

object
ID number 88-89
script 26

object descriptors 82
combining 92
descriptor phasing 83

object hierarchy 56
message-passing 56?7
message-passing in ?7?-78

object ID number 88-89

object names 83

object numbers 84
integer 84

INDEX

numeric constants 84

ordinal constants 84

reassigning 87

special ordinals 87

tab order 87
object properties 358

ID 88

name 84
objects 24, 81

background buttons 82

backgrounds 25

buttons 24

cards 25

fields 24, 81

generic names 82

referring directly to 92

stacks 25
Objects menu 33
of (preposition) 92, 119, 166
of f set function 323-324
one (constant) 84
on keyword 26, 142-143
open

document with application 229
openBackgr ound system message 137
openCar d message 52
openCar d system message 137
open command 15, 229-231
openFi el d message 53
openFi el d system message 130
open filecommand 231-232
opening

documents 231

files for reading or writing 232
openPal et t e message 21
openPal et t e system message 137
openPi ct ur e message 21
openPi ct ur e system message 137
open printing command 232-233
open report printingcommand 234-235
Open Scripting Architecture (OSA) 4-7

and AppleScript 5
openSt ack system message 137
operator precedence 565

operators 113-118
ampersand (&) 113
ampersand, double (&&) 113
and 115
asterisk (*) 114
caret () 113
comparison 113
contai ns 115
div 115
equal sign (=) 113
and expression type 118
greater than (>) 113
greater than or equal to sign (2, >=) 114

is 115

a 115

in 115

not 115

not a 115

not an 115
is not in 115
less than or equal to sign (<, <=) 114
less than sign (<) 114
minus sign (-) 114
nod 116
not 116
not equal sign () 115
not equal sign (<>, #) 114
numeric values 118
or 116
parentheses () 114
plus sign (+) 115
precedence of 117-118
slash (/) 113
there is a 116
there is an 116
there is not a 116
there is not an 116
wi thin 116

opt i onKey function 324-325
. See also conmandKey function

ordinal constant 119

or operator 116

oval tool name 178

overriding commands 142

n nu un non

645

INDEX

owner of card property 19 part properties
owner of window property 19 scriptingbanguage 462-463
owner property 443 pass keyword 55, 67, 143

pass statement 147
past eCar d system message 139
patt er n property 445-446

P Patterns palette 445

penci | tool name 178

pi constant 554

painting properties 372-373

brush 386 pi ct ur e command 15, 238-242
cent ered 391 gl obal Rect 239,240
fl!led406 | oc 240

gri d 409 rect 239

I ne_Sl ze 422423 scal e 241

mul ti pl e 436 scrol | 240

mul ti Space 438-439 picture window properties
pattern 445446 rect 454455

pol ySi des 446 scrol | 466-467

text Align 477
t ext Font 479480
t ext Hei ght 480-481
t ext Si ze 481-482
text Styl e 482-484
Paint text 104, 477
Pai nt Text tool 477
pal ett e command 235-237
palette properties
properties 237
pal et t e properties
but t onCount 237

pl ay command 243-245
playing notes 243
playing sound 244
pl ay stop command 243-245
plus cursor 395
plus sign (+) operator 115
pol ygon tool name 178
pol ySi des property 446
pop card command 245-246
. See also push car d command
pop-up button properties, ti t| eW dt h 486
power Keys property 447

cotm ands 237 pr evi ous special object descriptor 89
hilitedButton 237 print

par amCount function 326-327 marked cards 248

parameter list 78, 142

parameter passing 78
to handlers 78

print cardcommand 248-250
print command 246248
document with application 247

paé‘larflfletzf 577 expression 247
efine i
field 247
in function handlers 78 printing cards 248-250
parameter variables 78 printing fields 246-248

par amfunction 325-326, ??-328

par am See also par amCount , par ans
par ans function 327-??

part Nunber property 19, 444

printing marked cards 248-250
printing reports 235

pri nt Mar gi n property 448
print Text Al i gn property 449

646

INDEX

pri nt Text Font property 450-??
pri nt Text Hei ght property ??-450, 451
print Text Si ze property 452-453

pri nt Text Styl e property 453
pr ogr ans function 16, 328
properties 357499
20
addr ess 17,378
autoHi lite 17,379
aut oSel ect 380-381
aut oTab 381-382
bl i ndTypi ng 382
bott om 17, 383-384
bot t onRi ght 17, 384-385
brush 386
but t onCount 237
cant Abort 387-388
cant Del et e 388-389
cant Modi fy 389-390
cant Peek 390-391
centered 391
checkMar k 392-393
cndChar 393-394
conmands 237
cur sor 394-395
debugger 396
defined 101
di al i ngTi ne 17,397
di al i ngVol unme 17,398
dont Sear ch 398-399
dont W ap 399-400
dr agSpeed 400-401
edi t Bkgnd 402
enabl ed 18, 402-403
envi ronnment 18,404
fam |y 18,404-406
fill ed 406
fi xedLi neHei ght 407-408
freeSi ze 408-409
grid 409
hBar Loc 410
hei ght 18, 411
hi del dl e 412
hi deUnused 413

hilite 18,414-415
hilitedButton 237

i con 415416

1 D 18,416-418

itenDel i mter 18,418-419
Language 420

| eft 421-422

lineSize 422-423

| ocati on 423-425

| ockErrorDi al ogs 19,425-426

| ockMessages 426-427
| ockRecent 427-428

| ockScr een 428-429

| ockText 19,429-430

| ongW ndowTi t | e 430
mar kChar 431

mar ked 432

menuMsg 433-434
nessageWat cher 435
nmul ti pl e 436

mul ti pl eLi nes 437-??
mul ti Space 438-439
name 19, 439-441
nunber 19,441

nunber For mat 442-443
owner 443

owner of card 19
owner of window 19
part Nunber 19, 444
pattern 445-446

pol ySi des 446

power Keys 447

print Margin 448
print Text Align 449
print Text Font 450-??
print Text Hei ght ??-450, 451
print Text Si ze 452-453
printText Styl e 453
properties 237

rect 19,454-455
rectangl e 455-458
report Tenpl at es 458-459
ri ght 19,459-460
script 460461

647

INDEX

script Editor 461-462
scri ptingLanguage 19, 462-463
scri pt Text Font 463-464
scri pt Text Si ze 464-465
scrol | (fields) 465-466
scrol | (windows) 466467
sharedH | it e 468-469
shar edText 469-470
showLi nes 470-471
showNane 471
showPi ct 472
si ze 473-474
st acksl nUse 474
styl e 475
styl e of button 20
text Ali gn 477
text Arrows 478
t ext Font 479-480
t ext Hei ght 480-481
t ext Si ze 481-482
t ext St yl e (buttons, fields, painting
environment) 482-484
t ext Styl e (menu items) 484-485
titl eWdth 20,486
t op 486488
t opLeft 20,488-489
traceDel ay 489-490
user Level 490-491
user Modi fy 491-492
vari abl eWat cher 492-493
vBar Loc 493494
ver si on 494-495
vi si bl e 20,496-497
wi deMar gi ns 498
wi dt h 20, 499
properties syntax 377
property name 101
Protect Stack dialog box 389, 390
push card command 250-251
put command 16, 124, 251-254
. See also cmdChar property; enabl ed
property; menuMsg property; t ext
property; and t ext St y| e property

648

Q

qui t system message 137
quote constant 554

R

r andomfunction 329
ranges of chunks 121
r ead command 106, 254-256

| t as destination 106, 255

limits 255

until character 255
read fromfilecommand 16
reading files 254-256
reassigning object numbers 87
recent special object descriptor 89
rectangle 364
rectangle properties 367

bot t om 383-384

bot t onRi ght 384-385

constant 488

hei ght 411

| eft 421-422

ri ght 459-460

t op 486488

t opLeft 488-489
rect angl e property 455-458
rect angl e tool name 178
rect property 19,454-455
recursion 72
redefining

commands 165-166
redefining commands 165-166

hints 166
redefining functions 290
referring to card windows 96
referring to external windows 97
referring to fields 104
referring to menu items 94
referring to menus 93
referring to windows 97

INDEX

repeat forever statement 150
repeat for statement 151
repeat keyword 150
repeat statement 150-??

forms of 150-153

repeat for 151

repeat forever 150

repeat until 151

repeat while 152

repeat wth 152-153

repeat with...down to 152-153

repeat with...to 152
repeat statements ??-154
repeat structure 149-154
repeat until statement 151
repeat whil e statement 152
repeat with...down to statement 152-153
repeat Wit h statement 152-153
repeat with...tostatement 152
reply command 16, 256-??
report Tenpl at es property 458-459
request command 258-260
request fromcommand 16
reserved words (keywords) 141-163
reset nenubar command 260-261
reset paint command 261-262
reset printingcommand 262
resul t function 330-331
resumeSt ack system message 137
r esune system message 137, 139
retrieving properties 357-376
return, soft 41
return constant 554
returnl nFi el d command 262-263
r et ur nl nFi el d system message 131
r et ur nKey command 263
r et ur nKey system message 137
returnkeyword 144
r et ur n statement 148
ri ght property 19, 459-460
round function 332
round rectangl e tool name 178

S

save stack command 264
screen rectangles 367, 457
screenRect function 333
script attachability 6-7
script comments 26
script debugger 43
script editor 35-42
automatic formatting 40
breaking long line statements 41
command summary 41
comments 40
enhancements 7
formatting scripts 40
manipulating text 37, 38
opening multiple scripts 35
replacing text 39
saving a script 35
script size 41
searching 38
shortcuts 35
scri pt Edi t or property 461-462
scri pti ngLanguage property 19, 462—463
scripting systems, other 3—4
scripting user Level 34
scri pt property 460-461
scripts 26
attachability 6-7
background, editing the script of 34
background buttons 35
background fields 35
button, editing the script of 35
closing 35
current card, editing the script of 34
fields, editing the script of 35
function handlers within 27
getting to object scripts 33
opening 33-35
saving 35
scripting shortcuts 35
shortcuts for opening 35
stack, editing the script of 34
scri pt Text Font property 463-464

649

INDEX

scri pt Text Si ze property 464465
scrol | (fields) property 465-466
scrol | (windows) property 466—467
searching, f i nd command 212
second (ordinal) 84
seconds format 192
seconds function 333-334
secondsfunction
. See also convert command
sel ect command 264-266
sel ect edBut t on function 17, 334-335
sel ect edChunk function 335-336
sel ect edFi el d function 336-337
sel ect edLi ne function 17, 337-339
sel ect edLoc function 339-340
selected text 108
sel ect edText function 17, 340-341
sel ect tool name 178
send command 53, ??-162
send keyword 73, 160
send statement 160-163
set command 266-267
set . See also properties
setting properties 266, 357-376
seven (constant) 84
sevent h (ordinal) 84
sharedHi | i t e property 468-469
shar edText property 469-470
sharing handlers 74
shi f t Key function 341-342
short (adjective) 84
shortcuts
closing scripts 35
opening scripts 35
short dat e format 192
short tine format 192
show
picture 269
show car ds command 271-272
mar ked cards form 271
showcommand 268-270
background pi cture form 268
card picture form 268
gr oups form 268

650

obj ect form 268

pi cture of background form 268

pi cture of card form 268

. See also hi de command; set command
titlebar form 268

wi ndowstackName form 268

w ndowwindowName form 268

showing card windows 268
showing picture windows 268
showing stack windows 268
showLi nes property 470-471
show mar ked cards 271
showNarme property 471
showPi ct property 472
showsystem message 137

si n function 343

Si X (constant) 84

si xt h (ordinal) 84

Si ze property 473-474

si zeW ndowsystem message 138
slash (/) operator 113

soft return 41

sort command 16-??,272-274
sound function 343-344

. See also pl ay command

sources of value

constants 99
functions 100
literals 100
numbers 101
properties 101

space constant 554
special object descriptors 89

me 89

next 89
prev 89
previ ous 89
recent 89
this 89

special ordinals 87, 119
spray can tool name 178
sqrt function 345

stack

identifying 90

INDEX

naming 91
referring to 90
stack builder, integrated stand-alone 14
stack name 90
stack properties 359-360
cant Abort 387-388
cant Del et e 388-389
cant Modi fy 389-390, 390-391
freeSi ze 408-409
nanme 439-441
report Tenpl at es 458459
script 460461
scri ptingLanguage 462-463
si ze 473-474
ver si on 494-495
stacks
current 25
defined 25
descriptors for 90, 91
st acks function 345-??
st acksl nUse property 474
st ackSpace function 346
stack window properties
rect 454455
scrol | 466-467
stand-alone application, building 14
st art Up system message 138, 139
start usi ng command 274-275
statements 26
defined 26
end 147
end repeat 154
exit 147
exit repeat 153
formatting 40
gl obal 159-160
as messages 53
next repeat 154
pass 147
repeat 150-154
return 148
send 160-163
static path 67
stepping through scripts 44

st op usi ng command 275, 276
structures

i f 155-158

multiple-statement 156-158
single-statement 155-156

styl e of button property 20
st yl e property 475
subroutine calls 71-72

calling handler 72

subroutine handler 72
subt ract command 277
sumfunction 17, 346
suspendSt ack system message 138
suspend system message 138
syntax

notation for commands 166-167

notation for functions 290

summary for commands 574-581

summary for functions 581-587
system message order 138-139
system messages 52, 125-139

appl eEvent 132

arrowKey 132

cl ose 132

cl oseBackground 133

cl oseCard 133

cl oseField 129

cl osePal ette 133

cl osePicture 133

cl oseStack 133

comuandKey 133

control Key 133

cutCard 139

del et eBackgr ound 133, 139

del et eButton 127

del et eCard 133, 139

del eteFi el d 129

del et eSt ack 134,139

doMenu 134

enterinField 129

ent er Key 134

entry point in hierarchy 58

exitField 129

functi onkKey 134

651

INDEX

hel p 134

hi de nmenuBar 135
idle 135

is an 115
keyDown 135

nmouseDoubl ed i ck 127,129, 136

mouseDown 127, 130, 136
nouseDownl nPi ct ure 136
mouseEnt er 127,130
nouseleave 127,130
mouseSti |l | Down 127,130, 136
mouseUp 128,130, 136
nmouseUpl nPi cture 136
nmouseW t hi n 128,130
noveW ndow 136
newBackgr ound 137,139
newButton 128

newCar d 137,139

newri el d 130

newsSt ack 137,139
openBackgr ound 137
openCard 137

openFi el d 130
openPal ette 137
openPi cture 137
openSt ack 137
pasteCard 139

quit 137

resunme 137,139
resunmeSt ack 137
returnlnField 131
returnkKey 137

show 137

si zeW ndow 138
startUp 138,139
suspend 138
suspendSt ack 138

t abKey 131,138

syst enVer si on function 17, 347

652

T

tab constant 554
t abKey command 277-278
t abKey. See also t abKey system message
t abKey system message 131, 138
tab order 87
t an function 347-348
t ar get function 61, 348-349
temporary checkpoints 45
t en (constant) 84
t ent h (ordinal) 84
t ext Al i gn property 477
t ext Arr ows property 478
t ext Font property 479-480
t ext Hei ght property 480-481
text operators 118
t ext Si ze property 481-482
t ext St yl e property (buttons, fields, painting
environment) 482-484
t ext St yl e property (menu items) 484485
t ext tool name 178
there is an operator 116
there is aoperator 116
there is not an operator 116
there is not aoperator 116
the result function 144
the sel ecti on container 107
t hi rd (ordinal) 84
This 561
t hr ee (constant) 84
ti cks function 349-350
ti me function 350-351
titl eW dth property 20,486
t o (preposition) 121
t ool function 351-352
. See also choose command
t opLef t property 20, 488-489
t op property 20, 486488
t raceDel ay property 489-490
tracing through scripts 45
true constant 554
t runc function 353-354
t WO (constant) 84

INDEX

t ype command 278-279

U

unl ock command 279-280

unl ock error dial ogs command 279-280

unl ock recent command 279-280
unlock screen

with visual effect 280
unl ock screen command 279-280
unmar k command 281-282
up constant 554
user-defined (custom) menus 93

user-defined message-passing hierarchy 62-65

adding stacks 275

deleting stacks 276

handlers in 65
user Level property 490-491
user Modi fy property 491-492

Vv

val ue function 354-355
values 99-109
variable name 105
variables 105-106
as containers 105
defined 105
global 106
It 106
local 106
and numbers 102
parameter variables 78, 106
values stored in 102
Variable Watcher 47-48
Variable Watcher properties 376-377
vari abl eWat cher property 492-493
Variable Watcher window properties
hBar Loc 410
rect 454-455
vBar Loc 493-494

vBar Loc property 493-494
ver si on property 494-495

vi si bl e property 20, 496-497
vi sual command 16, 282-284
visual effects 283

vocabulary list 589-621

w

wai t command 284-285
watch cursor 395
wi deMar gi ns property 498
wi dt h property 20, 499
window layers defined 543
window properties 374-375
bot t om 383-384
bot t onRi ght 384-385
hei ght 411
| D 416418
| eft 421-422
| ocati on 423-425
owner 443
rect angl e 455-458
ri ght 459-460
t op 486488
topLeft 488-489
vi si bl e 496497
windows 28, 81
wi ndows function 355
Wi t hi n operator 116
words as chunk expressions 120
wri t e command 285-287

.Seealsocl ose fil ecommand;open file

command; r ead command
wite to fil ecommand 16

XY

XCmdBl ock parameter block 509
XCMDs and XFCNs 503
accessing 504

653

INDEX

attaching the resource 508 SaveXWscri pt 531
callback fields 511 ScanToRet urn 514
callback procedures and functions 512-534 ScanToZero 514
Abor t Scri pt 533 SendCar dMessage 513
Begi nXSound 520 SendHCEvent 521
Begi nXWEdi t 529 SendHCMessage 513
Bool ToStr 515 SendW ndowiMessage 522
Cl oseXW ndow 524 Set CheckPoi nts 532
Count Handl ers 532 Set Fi el dByl D 519
EndXSound 520 Set Fi el dByNane 519
EndXWEdi t 530 Set Fi el dByNum 519
Eval Expr 513 Set Fi el dTE 519
Ext ToStr 515 Set d obal 514
For mat Scri pt 530 Set Cbj ect Scri pt 532
Fr ont DocW ndow 520 Set Var Val ue 533
Get CheckPoi nts 531 Set XW dl eTi ne 526
CGet Fi el dByl D 518 ShowHCPal et t es 526
CGet Fi el dByNane 518 St ackNarmeToNum 522
Get Fi el dByNum 518 St epScri pt 534
CGet Fi el dTE 519 StringEqual 515
Get Fi | ePat h 521 StringLength 515
Get d obal 514 StringMatch 515
Get Handl er I nfo 533 St r ToBool 517
Get NewXW ndow 522 St r ToExt 517
Get Cbj ect Nane 532 StrToLong 517
Get Cbj ect Scri pt 532 Str ToNum 517
Get St ackCrawl 534 Str ToPoi nt 517
Get Var Val ue 533 StrToRect 517
Get XResl nf o 521 TraceScri pt 534
GoScri pt 534 XWAI | owReENt r ancy 528
HCWor dBr eakPr oc 530 XWAl waysMoveH gh 527
H deHCPal ett es 525 XWHas| nt er r upt Code 526
LongToStr 516 Zer oByt es 514
NewXW ndow 523 Zer oTer mHandl e 515
Noti fy 521 Zer oToPas 518
NuniToHex 516 debugger callbacks 533
NunmroStr 516 entryPoi nt 511
PasToZero 516 external window callbacks 522-529
Poi nt ToStr 516 field callbacks 518-519
Pri nt TEHandl e 530 guidelines for writing 507
Rect ToStr 516 HyperTalk callbacks 513
Regi st er X\Wenu 525 i nArgs 512
Ret urnToPas 517 invoking 505
RunHandl er 513 maximum parameters 505

654

INDEX

memory callbacks 514
in the message-passing hierarchy 505
miscellaneous utility callbacks 520-522
out Args 512
par anCount field 510
parameter block 509
par ans array 510
passFl ag 511
passing back results 510
passing information 509
passing parameters 510
request 511
result 511
returnVal ue 510
script editor callbacks 530-532
special XCndBl ock values 540
Debugger 542
Message Watcher 541
script editor 541
Variable Watcher 541
string callbacks 514-515
string conversion callbacks 515-518
text editing callbacks 524-??, 529-530
uses for 504
Variable Watcher callbacks 533
XCndBl ock 509
XTal kObj ect fields
bkgndl D 542
buttonl D 543
cardl D 543
fieldl D543
obj ect Ki nd 542
st ackNum 542
XTal kObj ect structure 542-543

Z

zer 0. .t en constant 554

655

T H E A PPLE PUBLISHTING

SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from
the text and graphic files. Line art was
created using Adobe " Tllustrator.
PostScript' ", the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as

program listings, are set in Apple Courier.

WRITERS
Julie Callahan, Cheryl Chambers,
Steve Schwander, and Alan Spragens

DEVELOPMENTAL EDITORS
Jeanne Woodward and Beverly Zegarski

ILLUSTRATOR
Barbara Carey

PRODUCTION EDITOR
Rex Wolf

COVER DESIGNER
Barbara Smyth

PROJECT MANAGER
Patricia Eastman

	HyperCard Script Language Guide
	About This Guide
	What’s in This Book?
	Notation Conventions
	Changes Since the First Edition of This Guide
	Apple Developer Programs

	What’s New Since 2.0?
	HyperCard System Requirements
	HyperCard Enhancements
	WorldScript Compatibility
	HyperCard and Other Scripting Systems
	Open Scripting Architecture
	AppleScript
	Script Attachability

	Script Editor Enhancements
	Button Dialog Modifications
	New Button Features
	Field Dialog Modifications
	New Field Features
	Integrated Stand-Alone Application Builder
	Enhanced HyperTalk

	HyperTalk Basics
	What Is HyperTalk?
	Objects
	Buttons and Fields
	Cards, Backgrounds, and Stacks

	Messages
	Scripts
	Message Handlers
	Function Handlers

	Windows
	Card Windows
	HyperCard’s Built-in External Windows

	Menus
	Chapter Summary

	The Scripting Environment
	Getting to the Script
	The Script Editor
	Manipulating Text
	Searching for Text
	Replacing Text
	Entering Comments
	Formatting Scripts
	Line Length and Script Size

	Script Editor Command Summary
	The Debugger Environment
	Setting Checkpoints
	HyperTalk Debugger Windows
	Message Watcher
	Variable Watcher
	Custom Message Watcher and Variable Watcher XCMDs

	Debugger Command Summary
	Chapter Summary

	Handling Messages
	The HyperCard Environment
	Sending Messages
	System Messages
	Statements as Messages
	Message Box Messages
	Messages Resulting From Commands

	Receiving Messages
	Message-Passing Hierarchy
	Where Messages Go
	Messages to Buttons and Fields
	The Current Hierarchy
	The Target

	The User-Defined Hierarchy
	The Dynamic Path
	The Go Command and the Dynamic Path
	The Send Keyword and the Dynamic Path

	Handlers Calling Handlers
	Subroutine Calls
	Recursion

	Using the Hierarchy
	Sharing Handlers
	Intercepting Messages

	Parameter Passing
	Chapter Summary

	Referring to Objects, Menus, and Windows
	Names, Numbers, and IDs
	Object Names
	Object Numbers
	Part Numbers
	Button Families
	Special Ordinals
	Object Numbers and Tab Order

	Object ID Numbers
	Special Object Descriptors

	Identifying a Stack
	Naming a Stack

	Combining Object Descriptors
	Referring to Menus and Menu Items
	Menu and Menu Item Names
	Menu and Menu Item Numbers

	Referring to Windows
	Chapter Summary

	Values
	Constants
	Literals
	Functions
	Properties
	Numbers
	Standard Apple Numerics Environment
	Precision
	Number Handling

	Containers
	Fields
	Buttons
	Variables
	Scope of Variables
	Parameter Variables
	The Variable It

	Menus
	The Selection
	The Message Box

	Chapter Summary

	Expressions
	Complex Expressions
	Factors
	HyperTalk Operators
	Operator Precedence
	Operators and Expression Type

	Chunk Expressions
	Syntax of Chunk Expressions
	Characters
	Words
	Items
	Lines
	Ranges
	Chunks and Containers
	Chunks as Destinations as Well as Sources
	Nonexistent Chunks

	Chapter Summary

	System Messages
	Messages and Commands
	Messages Sent to a Button
	Messages Sent to a Field
	Messages Sent to the Current Card
	Message Order

	Control Structures and Keywords
	Keywords in Message Handlers
	Message Handler Example

	Keywords in Function Handlers
	Function Handler Example

	Repeat Structure
	Repeat Statements

	If Structure
	Single-Statement If Structure
	Multiple-Statement If Structure
	Nested If Structures

	Commands
	Redefining Commands
	Syntax Description Notation
	System 7 Commands
	Command Descriptions

	Functions
	Function Calls
	Syntax Description Notation
	Function Descriptions

	Properties
	Retrieving and Setting Properties
	Object Properties
	Stack Properties
	Background Properties
	Card Properties
	Field Properties
	Button Properties
	Rectangle Properties

	Environmental Properties
	Global Properties
	Painting Properties

	Window Properties
	Menu, Menu Bar, and Menu Item Properties
	Message Watcher and Variable Watcher Properties

	HyperCard Property Descriptions

	External Commands and Functions
	Definitions, Uses, and Examples
	XCMD and XFCN Resources
	Uses for XCMDs and XFCNs

	Using an XCMD or XFCN
	Invoking XCMDs and XFCNs
	Message-Passing Hierarchy

	Guidelines for Writing XCMDs and XFCNs
	Attaching an XCMD or XFCN
	Parameter Block Data Structure
	Passing Parameters to XCMDs and XFCNs
	ParamCount
	Params

	Passing Back Results to HyperCard
	ReturnValue
	PassFlag

	Callbacks
	EntryPoint
	Request
	Result
	InArgs
	OutArgs

	Callback Procedures and Functions
	HyperTalk Utilities
	Memory Utilities
	String Utilities
	String Conversions
	Field Utilities
	Miscellaneous Utilities
	Creating and Disposing of External Windows
	Window Utilities
	Text Editing Utilities
	Script Editor Utilities
	Variable Watcher Support
	Debugger Support

	External Windows
	Events in External Windows
	Handling Events

	Closing an External Window
	Special XCmdBlock Values
	Message Watcher
	Variable Watcher
	Script Editor
	Debugger

	XTalkObject
	Window Layer Management

	Flash: An Example XCMD
	Flash Listing in MPW Pascal
	Flash Listing in MPW C
	Flash Listing in 68000 Assembly Language

	Constants
	Enhancing the Execution Speed of HyperCard
	Change Stacks as Seldom as Possible
	Use Variables, Not Fields, for Operations
	Refer to a Remote Card Rather Than Going There
	Migrate to XCMDs and XFCNs for Repetitive Tasks
	Set LockScreen to True to Avoid Needless Redrawing...
	Set LockMessages to True During Card-to-Card Data ...
	Combine Multiple Messages
	Take Unnecessary Code Out of Loops
	Use In-Line Statements Rather Than Handler Calls
	Do Complex Calculations Once
	Watch Overuse of Variable References

	Extended ASCII Table
	Operator Precedence Table
	HyperCard Synonyms
	HyperCard Limits
	HyperCard Syntax Summary
	HyperTalk Vocabulary
	Glossary
	Index

