

ð

HyperCard
Script Language Guide

The HyperTalk Language

ð

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo (Option-
Shift-K) for commercial purposes
without the prior written consent of
Apple may constitute trademark
infringement and unfair competition
in violation of federal and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleCD SC, AppleLink,
AppleTalk, ImageWriter,
HyperCard, HyperTalk, LaserWriter,
Macintosh, MPW, MultiFinder,
PowerBook, SANE, and Stackware
are trademarks of Apple Computer,
Inc., registered in the United States
and other countries.
AppleScript, Chicago, Finder,
Geneva, Macintosh Quadra,
Monaco, New York, QuickDraw,
QuickTime, ResEdit, System 7, and
WorldScript are trademarks of
Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FileMaker, MacPaint, and MacWrite
are trademarks of Claris
Corporation.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Microsoft is a registered trademark
of Microsoft Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTA-
BILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY, MERCHANTA-
BILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures and Tables xiii

Preface About This Guide xix

What’s in This Book? xix
Notation Conventions xxi
Changes Since the First Edition of This Guide xxii
Apple Developer Programs xxiii

Chapter 1 What’s New Since 2.0? 1

HyperCard System Requirements 1
HyperCard Enhancements 2

WorldScript Compatibility 3
HyperCard and Other Scripting Systems 3
Open Scripting Architecture 4

AppleScript 5
Script Attachability 6

Script Editor Enhancements 7
Button Dialog Modifications 7
New Button Features 8
Field Dialog Modifications 12
New Field Features 13
Integrated Stand-Alone Application Builder 14
Enhanced HyperTalk 15

Chapter 2 HyperTalk Basics 23

What Is HyperTalk? 23
Objects 24

Buttons and Fields 24
Cards, Backgrounds, and Stacks 25
iii

Messages 25
Scripts 26

Message Handlers 26
Function Handlers 27

Windows 28
Card Windows 28
HyperCard’s Built-in External Windows 30

Menus 30
Chapter Summary 32

Chapter 3 The Scripting Environment 33

Getting to the Script 33
The Script Editor 35

Manipulating Text 37
Searching for Text 38
Replacing Text 39
Entering Comments 39
Formatting Scripts 40
Line Length and Script Size 41

Script Editor Command Summary 41
The Debugger Environment 43

Setting Checkpoints 45
HyperTalk Debugger Windows 45

Message Watcher 46
Variable Watcher 47
Custom Message Watcher and Variable Watcher XCMDs 48

Debugger Command Summary 49
Chapter Summary 50

Chapter 4 Handling Messages 51

The HyperCard Environment 51
Sending Messages 52

System Messages 52
Statements as Messages 53
iv

Message Box Messages 53
Messages Resulting From Commands 54

Receiving Messages 55
Message-Passing Hierarchy 56

Where Messages Go 56
Messages to Buttons and Fields 58
The Current Hierarchy 59
The Target 61

The User-Defined Hierarchy 62
The Dynamic Path 67

The Go Command and the Dynamic Path 67
The Send Keyword and the Dynamic Path 69

Handlers Calling Handlers 71
Subroutine Calls 71
Recursion 72

Using the Hierarchy 73
Sharing Handlers 73
Intercepting Messages 76

Parameter Passing 77
Chapter Summary 79

Chapter 5 Referring to Objects, Menus, and Windows 81

Names, Numbers, and IDs 81
Object Names 83
Object Numbers 84

Part Numbers 85
Button Families 87
Special Ordinals 87
Object Numbers and Tab Order 87

Object ID Numbers 88
Special Object Descriptors 89

Identifying a Stack 89
Naming a Stack 91

Combining Object Descriptors 92
Referring to Menus and Menu Items 93
v

Menu and Menu Item Names 93
Menu and Menu Item Numbers 93

Referring to Windows 96
Chapter Summary 97

Chapter 6 Values 99

Constants 99
Literals 100
Functions 100
Properties 101
Numbers 101

Standard Apple Numerics Environment 102
Precision 102
Number Handling 103

Containers 103
Fields 104
Buttons 104
Variables 105

Scope of Variables 106
Parameter Variables 106
The Variable It 106

Menus 107
The Selection 107
The Message Box 108

Chapter Summary 109

Chapter 7 Expressions 111

Complex Expressions 111
Factors 111
HyperTalk Operators 113

Operator Precedence 117
Operators and Expression Type 118

Chunk Expressions 118
Syntax of Chunk Expressions 119
vi

Characters 120
Words 120
Items 120
Lines 121
Ranges 121
Chunks and Containers 122

Chunks as Destinations as Well as Sources 123
Nonexistent Chunks 124

Chapter Summary 124

Chapter 8 System Messages 125

Messages and Commands 125
Messages Sent to a Button 126
Messages Sent to a Field 128
Messages Sent to the Current Card 131
Message Order 138

Chapter 9 Control Structures and Keywords 141

Keywords in Message Handlers 141
Message Handler Example 144

Keywords in Function Handlers 145
Function Handler Example 149

Repeat Structure 149
Repeat Statements 150

If Structure 155
Single-Statement If Structure 155
Multiple-Statement If Structure 156
Nested If Structures 157

Chapter 10 Commands 165

Redefining Commands 165
Syntax Description Notation 166
vii

System 7 Commands 167
Command Descriptions 167

Chapter 11 Functions 289

Function Calls 289
Syntax Description Notation 290
Function Descriptions 291

Chapter 12 Properties 357

Retrieving and Setting Properties 357
Object Properties 358

Stack Properties 359
Background Properties 360
Card Properties 361
Field Properties 362
Button Properties 365
Rectangle Properties 367

Environmental Properties 368
Global Properties 369
Painting Properties 372

Window Properties 374
Menu, Menu Bar, and Menu Item Properties 375
Message Watcher and Variable Watcher Properties 376

HyperCard Property Descriptions 377

Appendix A External Commands and Functions 503

Definitions, Uses, and Examples 503
XCMD and XFCN Resources 503
Uses for XCMDs and XFCNs 504

Using an XCMD or XFCN 504
Invoking XCMDs and XFCNs 505
Message-Passing Hierarchy 505
viii

Guidelines for Writing XCMDs and XFCNs 507
Attaching an XCMD or XFCN 508
Parameter Block Data Structure 509

Passing Parameters to XCMDs and XFCNs 510
ParamCount 510
Params 510

Passing Back Results to HyperCard 510
ReturnValue 510
PassFlag 511

Callbacks 511
EntryPoint 511
Request 511
Result 511
InArgs 512
OutArgs 512

Callback Procedures and Functions 512
HyperTalk Utilities 513
Memory Utilities 514
String Utilities 514
String Conversions 515
Field Utilities 518
Miscellaneous Utilities 519
Creating and Disposing of External Windows 522
Window Utilities 525
Text Editing Utilities 529
Script Editor Utilities 530
Variable Watcher Support 532
Debugger Support 533

External Windows 534
Events in External Windows 536

Handling Events 537
Closing an External Window 540
Special XCmdBlock Values 540

Message Watcher 541
Variable Watcher 541
Script Editor 541
Debugger 542
ix

XTalkObject 542
Window Layer Management 543

Flash: An Example XCMD 545
Flash Listing in MPW Pascal 546
Flash Listing in MPW C 548
Flash Listing in 68000 Assembly Language 550

Appendix B Constants 553

Appendix C Enhancing the Execution Speed of HyperCard 555

Change Stacks as Seldom as Possible 556
Use Variables, Not Fields, for Operations 556
Refer to a Remote Card Rather Than Going There 557
Migrate to XCMDs and XFCNs for Repetitive Tasks 558
Set LockScreen to True to Avoid Needless Redrawing 558
Set LockMessages to True During

Card-to-Card Data Collection 558
Combine Multiple Messages 558
Take Unnecessary Code Out of Loops 559
Use In-Line Statements Rather Than Handler Calls 559
Do Complex Calculations Once 560
Watch Overuse of Variable References 560
x

Appendix D Extended ASCII Table 561

Appendix E Operator Precedence Table 565

Appendix F HyperCard Synonyms 567

Appendix G HyperCard Limits 569

Appendix H HyperCard Syntax Summary 573

Syntax Description Notation 573

Appendix I HyperTalk Vocabulary 589

Glossary 623

Index 633
xi

Figures and Tables

Chapter 1 What’s New Since 2.0? 1

Figure 1-1 Two applications exchanging information using the AppleScript
capabilities of HyperCard 2.2 4

Figure 1-2 Button Info dialog box 8
Figure 1-3 The Button Contents dialog box 9
Figure 1-4 New button styles 10
Figure 1-5 Oval style button (shown in Button tool with Show Name

checked) 11
Figure 1-6 Field Info dialog box 13
Figure 1-7 List fields 13
Figure 1-8 Building a stand-alone application from your stack 14

Table 1-1 Enhanced HyperTalk commands 15
Table 1-2 Enhanced HyperTalk functions 16
Table 1-3 Enhanced HyperTalk properties 17
Table 1-4 Enhanced HyperTalk messages 20

Chapter 2 HyperTalk Basics 23

Figure 2-1 HyperCard objects 24
Figure 2-2 Relationship between the location of a card and a card

window 29

Chapter 3 The Scripting Environment 33

Figure 3-1 The Objects menu 33
Figure 3-2 Button Info dialog box 34
Figure 3-3 Script editor window 36
Figure 3-4 Script menu 37
Figure 3-5 Find dialog box 38
Figure 3-6 Replace dialog box 39
Figure 3-7 Nested control structures 40
Figure 3-8 The Debugger menu 44
Figure 3-9 The Message Watcher window 46
xiii

Figure 3-10 The Variable Watcher window 47
Figure 3-11 A selected variable in the Variable Watcher window 48

Table 3-1 Script editor command summary 41
Table 3-2 Debugger command summary 49

Chapter 4 Handling Messages 51

Figure 4-1 Handler that responds to message openStack 55
Figure 4-2 Message-passing hierarchy 57
Figure 4-3 Layered buttons and fields 58
Figure 4-4 Message traversing current hierarchy 59
Figure 4-5 Command sent as a message 60
Figure 4-6 The target 61
Figure 4-7 One stack added to the message-passing hierarchy 63
Figure 4-8 Two stacks added to the message-passing hierarchy 64
Figure 4-9 Removing a stack from the message-passing hierarchy 66
Figure 4-10 Static path before the go command executes 68
Figure 4-11 Dynamic path after the go command executes 69
Figure 4-12 Using the send keyword 70
Figure 4-13 Handler in a card script 74
Figure 4-14 Handler in a stack script 75
Figure 4-15 Intercepting a message 77
Figure 4-16 Parameter passing 79

Table 4-1 HyperTalk’s keywords 54

Chapter 5 Referring to Objects, Menus, and Windows 81

Figure 5-1 Card Info dialog box and descriptors for the same card 82
Figure 5-2 A pathname 90
Figure 5-3 New Stack dialog box 91
Figure 5-4 New Stack dialog card-size pop-up menu 92
Figure 5-5 A custom menu 95

Chapter 6 Values 99

Figure 6-1 Manipulating the selection 107
xiv

Figure 6-2 The Message box 109

Chapter 7 Expressions 111

Figure 7-1 Lines in a field 121
Figure 7-2 Chunk expressions 122
Figure 7-3 Combining chunks and objects 123

Table 7-1 HyperTalk operators 113
Table 7-2 Operator precedence 117

Chapter 8 System Messages 125

Table 8-1 Messages sent to a button 127
Table 8-2 Messages sent to a field 129
Table 8-3 Messages sent to the current card 132
Table 8-4 HyperCard message sending order 139

Chapter 10 Commands 165

Figure 10-1 Answer command dialog boxes 170
Figure 10-2 Answer command display of the standard file dialog box 171
Figure 10-3 The PPC Browser produced using the answer program

command 172
Figure 10-4 Ask command dialog box 176
Figure 10-5 Tools palette 179

Table 10-1 Effects of the arrowKey command 173
Table 10-2 ControlKey message parameter values 189

Chapter 12 Properties 357

Figure 12-1 An object’s Info dialog box 358
Figure 12-2 Brush Shape dialog box and property values 387
Figure 12-3 Patterns palette and pattern numbers 445
Figure 12-4 The scroll property 466

Table 12-1 Stack properties 359
xv

Table 12-2 Background properties 360
Table 12-3 Card properties 361
Table 12-4 Field properties 363
Table 12-5 Button properties 365
Table 12-6 Rectangle properties 367
Table 12-7 Global properties 369
Table 12-8 Painting properties 373
Table 12-9 Window properties 374
Table 12-10 Menu, menu bar, and menu item properties 376
Table 12-11 Message Watcher and Variable Watcher properties 377

Appendix A External Commands and Functions 503

Figure A-1 Message-passing hierarchy, including XCMDs and XFCNs 506
Figure A-2 HyperCard window layers 544

Appendix B Constants 553

Table B-1 HyperTalk constants 553

Appendix D Extended ASCII Table 561

Table D-1 Control character assignments 561
Table D-2 Character assignments in Macintosh Courier font 562

Appendix E Operator Precedence Table 565

Table E-1 Operator precedence 565

Appendix F HyperCard Synonyms 567

Table F-1 HyperTalk synonyms 567

Appendix G HyperCard Limits 569

Table G-1 HyperCard limits 569
xvi

Appendix H HyperCard Syntax Summary 573

Table H-1 HyperTalk command syntax 574
Table H-2 HyperTalk function syntax 581

Appendix I HyperTalk Vocabulary 589

Table I-1 HyperTalk vocabulary 589
xvii

P R E F A C E
About This Guide

This book provides detailed information about HyperTalk, the scripting
language of HyperCard. Even a little knowledge of HyperTalk enables you to
customize buttons and other parts of HyperCard stacks for your own purposes,
and you can use HyperTalk to make the stacks you create act the way you want.

While you’re using HyperCard, you can find information about HyperTalk in
the HyperCard Help stack and the HyperTalk Reference stack. These stacks
make use of some of HyperCard’s best features, such as multiple windows,
computer-supported cross-referencing, and fast text searching.

Some of the concepts in this book, such as message handling and objects,
may be new to you. Use this guide as it suits your own style of learning: you
might be the kind of person who understands best by thoroughly studying the
explanations, or you might be the kind who learns by skimming the material
and then playing with HyperTalk—writing scripts or copying the examples
and trying them out.

Reference material for beginning scriptors can be found in the HyperCard
Reference and the HyperTalk Beginner’s Guide, which are available in the
HyperCard software package.

What’s in This Book? 0

Here’s a brief description of the contents of this book:

Chapter 1, “What’s New Since 2.0?” discusses the differences between earlier
versions of HyperCard and HyperCard 2.2. If you are already familiar with
HyperTalk as described in the original edition of this book, you can use
this chapter as a guide to new information in this edition. If you’re new to
HyperTalk, however, and haven’t used the original edition, you’ll probably
want to skip Chapter 1 initially and come back to it later.

Chapter 2, “HyperTalk Basics,” introduces the basic concepts of HyperTalk,
showing how it is used in the HyperCard environment.
xix

P R E F A C E
Chapter 3, “The Scripting Environment,” explains how to create and modify
scripts in HyperCard objects.

Chapter 4, “Handling Messages,” describes how HyperTalk works, how it
carries out actions, and how it responds to events in the HyperCard
environment.

Chapter 5, “Referring to Objects, Menus, and Windows,” explains how to refer
to objects—the parts of HyperCard that contain HyperTalk scripts and that
respond to and initiate actions. It describes how you can use names, numbers,
and ID numbers to identify and work with objects, menus, and windows.

Chapter 6, “Values,” explains the elements within HyperTalk that contain
values.

Chapter 7, “Expressions,” describes HyperTalk’s operators and explains how
HyperTalk evaluates expressions—the descriptions of how to get a value.

Chapter 8, “System Messages,” describes the messages that HyperCard
generates in response to events (such as mouse clicks) that happen in its
environment.

Chapter 9, “Control Structures and Keywords,” describes the handlers within
which you write all HyperTalk scripts to enable objects to respond to messages
and function calls. It also describes the control structures of HyperTalk that let
you specify how and when sections of scripts execute, and it describes the
keywords that you use in control structures.

Chapter 10, “Commands,” describes each of HyperTalk’s built-in commands—
the action statements that make HyperCard do things.

Chapter 11, “Functions,” describes HyperTalk’s built-in functions—named
values that reflect conditions in the HyperCard environment.

Chapter 12, “Properties,” describes the properties of HyperCard objects—
characteristics that determine how objects look and act.

Appendix A, “External Commands and Functions,” contains general
information about XCMDs and XFCNs, extensions to HyperTalk that can
be written by expert programmers to increase the power of HyperCard.

Appendix B, “Constants,” describes HyperTalk’s built-in constants—named
values that don’t change.
xx

P R E F A C E
Appendix C, “Enhancing the Execution Speed of HyperCard,” provides some
helpful hints for scriptors who want to increase the efficiency of HyperCard.

Appendix D, “Extended ASCII Table,” lists the decimal values of the standard
Macintosh character set used by HyperCard.

Appendix E, “Operator Precedence Table,” summarizes the order in which
HyperTalk performs operations when it evaluates expressions.

Appendix F, “HyperCard Synonyms,” lists the abbreviations and alternate
spellings for HyperTalk terms.

Appendix G, “HyperCard Limits,” lists various minimum and maximum sizes
and numbers of elements defined in HyperCard.

Appendix H, “HyperTalk Syntax Summary,” shows the syntax of HyperTalk’s
command and function parameters in abbreviated form.

Appendix I, “HyperTalk Vocabulary,” lists alphabetically each of the primary
HyperTalk terms that HyperCard understands, names the category it’s in, and
provides a brief description of its meaning.

This book also contains a glossary of terms commonly associated with the
HyperCard environment and an index to help you quickly find specific
information contained in this guide.

Notation Conventions 0

Before you read this guide, you should know about a few typographic conven-
tions. Words or phrases in a monospaced font like this are HyperTalk
language elements or are to be typed exactly as shown. New terms are shown
in boldface type when they are first introduced and defined. The glossary
contains definitions of these terms and other related technical terms.

In descriptions of HyperTalk syntax for commands and other language
elements, words in italic type describe general elements, not specific names—
you must substitute the actual instances. (These elements are called metasymbols
in this book.) Brackets ([]) enclose optional elements, which may be included
if you need them. (Don’t type the brackets.) In some cases, optional elements
change what the message does; in other cases they are helper words that have
xxi

P R E F A C E
no effect except to make the message more readable. The vertical bar symbol
(|) indicates a choice of elements: the syntax accepts either the element to the
left or the element to the right of the vertical bar. Syntax descriptions for some
language elements have a particular format, which is explained at the begin-
ning of the chapter about that language element.

It doesn’t matter whether you use uppercase or lowercase letters in commands
or variable names; message names that are formed from two words are shown
in small letters with a capital in the middle (likeThis) merely to make them
more readable.

Changes Since the First Edition of This Guide 0

This edition of the HyperCard Script Language Guide is different from the first
edition in several ways. Of course, it has new information in it that reflects
the new features of HyperCard. In addition, the page format and design are
different, and to make finding information easier, a few chapters have been
divided into smaller chapters and others have been reorganized.

Chapter 1, “HyperTalk Basics,” is now two chapters: Chapter 2, “HyperTalk
Basics,” which describes HyperTalk, and Chapter 3, “The Scripting Environ-
ment,” dedicated to the script editor. Chapter 4, “Values,” is now Chapter 6,
“Values,” and Chapter 7, “Expressions.” Chapter 5, “Keywords,” is now
Chapter 9, “Control Structures and Keywords.”

Chapter 12, “Properties,” now has one main alphabetical list of properties,
rather than having the properties grouped by the object or environment to
which they can apply. For each property, the objects or environments to which
it can apply are listed on the first line after the heading. Also, at the beginning
of the chapter, there are tables that list properties by object or environment
(button properties, field properties, painting properties, and so forth).
xxii

P R E F A C E
Apple Developer Programs 0

Apple’s goal is to provide developers with the resources they need to create
new Apple-compatible products. Apple offers two programs: the Partners
Program, for developers who intend to resell Apple-compatible products, and
the Associates Program, for developers who don’t intend to resell products and
for other people involved in the development of Apple-compatible products.

As an Apple Partner or Associate, you will receive monthly mailings including
a newsletter, Apple II and Macintosh Technical Notes, pertinent Developer
Program information, and all the latest news relating to Apple products. You
will also receive Apple’s Technical Guide Book and automatic membership in
APDA. You’ll have access to developer AppleLink and to Apple’s Developer
Hotline for general developer information.

As an Apple Partner, you’ll be eligible for discounts on equipment, and you’ll
receive technical assistance from the staff of Apple’s Developer Technical
Support department.

For more information about Apple’s developer support programs, contact
Apple Developer Programs at the following address:

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, M/S 75-2C
Cupertino, CA 95014
xxiii

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0
What’s New Since 2.0? 1
This chapter is most useful for those who are already familiar with HyperCard
because it describes the enhancements made to HyperCard since HyperCard
2.0. If you haven’t done any scripting with HyperCard before, you should start
with Chapter 2, “HyperTalk Basics,” and work your way through the rest of
the book. If you are already familiar with HyperCard, you can use this chapter
as a guide to locations in the book that cover the new features of HyperTalk in
more detail.

HyperCard 2.2 provides more power and flexibility across the entire range of
Macintosh computers, starting with the Macintosh Plus. It incorporates features
that improve the use of any HyperCard application on the smaller screen of the
Macintosh PowerBook, Macintosh Plus, and Macintosh SE and on larger screens
commonly used on the Macintosh II and other modular Macintosh computers.

Most of the new features of this HyperCard release are transparent and cannot
be seen in the user interface. However, there have been several changes to the
dialog boxes and their associated functioning. (For a more detailed description
of the user interface, see the HyperCard Reference.) In addition, HyperCard 2.2
stacks are now globally localizable and can be scripted with scripting languages
like AppleScript so that stacks can easily exchange information with other
programs.

HyperCard System Requirements 1

HyperCard version 2.0 and later requires system software version 6.0.5 or later.
Stacks created with earlier versions of HyperCard are opened as read-only in
HyperCard version 2.0 or later. The earlier version stacks are write-protected
until converted to the 2.0 format by choosing the Convert Stack command from
the File menu.
HyperCard System Requirements 1

C H A P T E R 1

What’s New Since 2.0?

Stacks that wish to take advantage of WorldScript features, open scripting, and
the stand-alone application building capabilities of HyperCard 2.2 require
system software version 7.1.

HyperCard Enhancements 1

HyperCard 2.2 provides several feature enhancements that make scripting
easier and that enable your HyperCard stacks to be more flexible, robust, and
powerful. You have always been able to use HyperTalk scripts to automate
and customize your HyperCard application, but now, with Apple’s Open
Scripting Architecture (OSA) extensions to HyperCard 2.2, you can use scripts
to integrate HyperCard with other applications so that you can use features of
other applications in your stacks by exchanging data with those applications.

Most of the features of this release are controllable from the HyperTalk script
language and can be easily used from any existing HyperCard script. Almost
all of the improvements of this release are transparent, but are nonetheless
important in making your stacks increase the execution speed of HyperCard.
The following list summarizes the new features of HyperCard 2.2.

■ WorldScript compatibility, which makes it easy to produce localizable stacks

■ support for Apple’s Open Scripting Architecture and communication
between applications, including
n support for the AppleScript script language and other OSA-compliant

scripting languages
n script attachability so that you can choose the scripting language you

wish to use in the HyperCard environment
n HyperTalk equivalents to some AppleScript commands
n HyperTalk support for embedded AppleScript instructions

■ support for new button styles and features, including
n standard buttons (rounded rectangle style without a shadow); similar to

those found in most dialog boxes for the Cancel button
n default buttons (with the additional 3-pixel-wide outline); similar to the

OK button found in most standard dialog boxes
n oval buttons (transparent, to overlay circular and oval shapes); HyperCard

respects the actual shape of the button when tracking mouse actions
2 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?

n pop-up menu buttons, which include a resizable title field and a
menu area

n behavior conforming to the standards of Macintosh Human Interface
Guidelines built into checkbox and radio button styles

n the family, partNumber, and enabled properties

■ fields that behave as lists, including highlighting of list items when clicked

■ an integrated stand-alone application builder

■ miscellaneous improvements to HyperTalk made in response to developer
requests; some examples are
n mouseDoubleClick system message
n script-controlled enabling and disabling of buttons
n text sorting by sort keys

WorldScript Compatibility 1

Software and Stackware are more commonly distributed worldwide now
than when HyperCard was created, and the Macintosh system is now easily
localized. Modifications have been made throughout HyperCard 2.2 to make
it sensitive to the current key script or the current font script, as appropriate,
in determining whether to invoke its special-case code for handling non-Roman
text characteristics.

Also, the convert command now works with dates and times written in any
format supported by any script installed in your system. See the convert
command in Chapter 10, “Commands.”

HyperCard and Other Scripting Systems 1

Using any scripting system that’s compliant with Apple’s Open Scripting
Architecture (defined in the next section), like AppleScript, you can write
scripts that extend the functionality of your stacks by integrating them with
other scriptable applications, such as Claris FileMaker Pro 2.0 and Microsoft
Excel 4.0. For example, you might want to store records detailing a large
library of films and film clips in a database program like Claris’s FileMaker
Pro, which is built to handle large amounts of data efficiently.
HyperCard Enhancements 3

C H A P T E R 1

What’s New Since 2.0?
The stack in Figure 1-1 uses AppleScript statements to request the FileMaker
Pro Films database to look up a film (Vertigo) and send all the information it
contains about the film to the HyperCard stack. The HyperCard stack then
adds the information to its Hitchcock films stack, which is a smaller subset of
all the films in the larger database.

The HyperCard stack also contains a script that examines the information sent
back from the database to determine if a QuickTime clip of that movie exists.
The HyperCard films stack then takes the information sent back from the Trailer
cell in the films stack to look up the film clip and play it.

By working with another application, this HyperCard stack has extended what
both applications can accomplish.

Open Scripting Architecture 1

Apple System software’s Open Scripting Architecture (OSA) provides a
standard mechanism that allows users to control multiple applications with
scripts written in a variety of scripting languages.

Figure 1-1 Two applications exchanging information using the AppleScript
capabilities of HyperCard 2.2
4 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?
Each scripting language that utilizes OSA has a corresponding scripting compo-
nent within its own application. When an application’s scripting component
executes a script, it performs the actions described in the script, much like
HyperCard executes HyperTalk scripts.

HyperCard 2.2 users can now use its AppleScript extensions to communicate
with applications and objects that are outside of HyperCard. This process is
enabled by sending and receiving OSA-defined messages called Apple events.

Applications typically use Apple events to request services and information
from other applications or to provide services and information in response to
such requests.

AppleScript 1

The AppleScript component of the OSA, which implements the AppleScript
scripting language, is the implementation provided by Apple that allows
applications to exchange information and data.

AppleScript has a number of features that set it apart from other
scripting systems:

■ The AppleScript language makes it easy to refer to data within applications.
Scripts refer to objects that closely correspond to familiar objects in applica-
tions. For example, a script can refer to paragraph, word, and character
objects in a word-processing document and to row, column, and cell objects
in a spreadsheet.

■ You can script many different applications. Although there are applications
that include built-in scripting or macro languages, most of these languages
work for only one application. In contrast, you can use AppleScript to
control any of the applications that support it. You don’t have to learn a new
language for each application.

■ You can write scripts that control applications on more than one computer. A
single script can control any number of applications, and the applications
can be on any computer within a given network.

■ AppleScript supports multiple dialects. These additional dialects can use
words from another human language, such as Japanese, and have a syntax
that resembles a specific human language or programming language. You
can convert a script from one dialect to another without changing what
happens when you run the script.
HyperCard Enhancements 5

C H A P T E R 1

What’s New Since 2.0?
Comparing AppleScript and HyperTalk 1

AppleScript and HyperTalk are fairly similar. They both work by sending
messages to objects within their systems. The major difference is that the system
encompassing HyperTalk is the HyperCard application, whereas the system
for the AppleScript language is the Macintosh system software. Essentially,
this means that whereas HyperTalk instructions can be understood only by
HyperCard, any application could potentially understand and act on a set of
AppleScript instructions.

AppleScript works by sending messages, called Apple events, from scripts in
one application to an object. An example could be an application within the
environment of your Macintosh. HyperTalk works by sending messages, called
system messages, commands, and functions, to HyperCard objects, like stacks,
cards, backgrounds, buttons, and fields.

HyperCard 2.2 supports AppleScript by implementing a set of related Apple
events called Apple event suites, as defined in the Apple Event Registry,
including the Required suite, the Core suite, and the Text suite. It adds to these
suites the HyperCard suite, an extension to the Apple events understood by
AppleScript that exposes the functionality of HyperTalk to external scripting
systems. The HyperCard suite includes AppleScript equivalents for most of
the commands, functions, and properties defined in this book.

You can learn more about the AppleScript language and its tools from the
AppleScript Language Guide.

Script Attachability 1

In HyperCard 2.2, scripts of HyperCard objects can be written either in
HyperTalk or in a language defined by any external scripting system, such as
AppleScript, that implements the optional attachability interface defined by
the Open Scripting Architecture.

When HyperCard 2.2 passes a message to an object, it checks to see whether
the script attached to that object is a HyperTalk script or a script belonging to
an external scripting system, such as AppleScript.

If the script is a HyperTalk script, HyperCard uses its built-in mechanism for
invoking HyperTalk message handlers. However, if the script is from an
external scripting system like AppleScript, then HyperCard translates the
message into an Apple event and uses a system software extension to invoke
the relevant message handler.
6 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?
A script attached to a HyperCard object receives HyperCard system messages
according to its position in the inheritance hierarchy, regardless of its language.
For example, a card script can handle the standard openCard message whether
it’s written in HyperTalk, AppleScript, or UserTalk.

Scripts can also pass messages to other scripts without regard to their language.
When HyperCard receives an OSA-defined event, it translates the event to a
message and sends it along the current message path.

Script Editor Enhancements 1

The script editor in HyperCard 2.2 is capable of editing text-based scripts
belonging to any OSA-compliant scripting system, such as AppleScript. The
script editor now has a pop-up menu that lists the available scripting systems,
including HyperTalk, and lets you select the scripting system you want to
use for the currently displayed script. You can also use the global property
scriptingLanguage to set the scripting language you want to use for a stack
in a startUp script. See the scriptingLanguage property in Chapter 12,
“Properties.”

Button Dialog Modifications 1

The Button Info dialog box contains these new items:

■ a Preview area displaying a picture of the button with its currently selected
attributes

■ static text displaying the button’s part number

■ a checkbox for setting the button’s enabled property

■ a pop-up menu for selecting a number for the button’s family property

■ a Contents button for editing the contents of the button

■ a Text Style button for setting the text font, size, and style of the button’s
name (and contents for pop-up buttons)

■ a pop-up menu for selecting the button’s style property (this replaces
the set of radio buttons for button styles used by previous versions of
HyperCard)

■ a text-entry area, displayed only for pop-up buttons, for setting the button’s
titleWidth property
HyperCard Enhancements 7

C H A P T E R 1

What’s New Since 2.0?
In addition, the Button Info dialog box is now a movable modal dialog box and
can be dragged to new positions by the user. HyperCard 2.2 remembers the
positions of movable modal dialog boxes while running; it does not remember
their positions after you quit the program. Figure 1-6 shows the new Button
Info dialog box.

Figure 1-2 Button Info dialog box

New Button Features 1

In HyperCard 2.2, buttons are now valid HyperTalk containers; thus, they
can contain data. The contents of buttons can be edited in a dialog box that’s
accessible from the Button Info dialog box (see the Contents button in
Figure 1-6). A button on the Clipboard can be pasted along with its contents
by holding down the Shift key (the same as pasting a field and its contents).
In HyperTalk, button expressions are now valid; they evaluate to the contents
of the specified button (the same as field expressions evaluating to the specified
field’s contents).
8 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?
The contents of a pop-up button have a special purpose. You use them to create
the menu that pops up when the user clicks the pop-up button. Each line
within the contents of the button becomes a menu item in the menu. Figure 1-3
shows the Button Contents dialog box containing the list of menu items for the
SodaPopup button in Figure 1-6.

Figure 1-3 The Button Contents dialog box

Scripts can determine the number and text of the pop-up menu item that is
currently selected by using the selectedLine and selectedText functions,
described in Chapter 11, “Functions.” You can use the contents of other types
of buttons for any purpose.

Support for new styles of buttons in HyperCard 2.2 makes it easier to create
stacks that comply with the Macintosh Human Interface Guidelines. For instance,
you can now easily create the standard default buttons that appear in many
Macintosh dialog boxes. HyperCard 2.2 also makes it easier to create radio
HyperCard Enhancements 9

C H A P T E R 1

What’s New Since 2.0?
buttons and checkboxes that behave according to Macintosh Human Interface
Guidelines standards without requiring a lot of scripting to get the standard
behavior. Some of these buttons are shown in Figure 1-4.

Figure 1-4 New button styles

In Figure 1-4, the Cancel button, shown in the standard button style; the OK
button, shown in the default button style; and the Test Popup button, shown in
the pop-up button style, illustrate three of the new styles.

As shown in Figure 1-4, pop-up buttons have both a title area and a menu area.
The title of the button is drawn to either the right or the left of the menu area,
depending on the script system of the button’s font. If the script system is a
left-to-right script system, the title is drawn on the left; otherwise, it is drawn
on the right.

When the user resizes the pop-up button by dragging it from one of its corners,
the width of the title area remains fixed. The user can drag the dividing line
between these areas to widen one and narrow the other. You also can change
the title area’s width either by changing the Title Width value in the Button Info
dialog box, or by setting the titleWidth property of the button from a script.

The default button style does not automatically provide the behavior a user
expects from clicking a default button. You can provide that behavior by
including a returnKey handler and an enterKey handler in the card, back-
ground, or stack script. Here is an example:

on returnKey

if the selection is empty then pressDefaultBtn

else pass returnKey

end returnKey

on enterKey

if the selection is empty then pressDefaultBtn

else pass enterKey

end enterKey
10 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?
on pressDefaultBtn

-- click the default button

put the number of buttons into btnCount

repeat with i = 1 to btnCount

if the style of button i is default then

click at the loc of button i

exit pressDefaultBtn

end if

end repeat

end pressDefaultBtn

Also new is the oval style button, which is transparent. In the Button tool, both
the rectangular and oval frames are visible, as shown in Figure 1-5.

Figure 1-5 Oval style button (shown in Button tool with Show Name checked)

The transparency of oval buttons makes them useful for overlaying oval or
circular shapes. HyperCard respects this oval shape when tracking the mouse
above it for highlighting or for sending messages. For example, mouseWithin
messages aren’t sent until the pointer enters the oval, and mouse clicks must
be within the oval to count as clicks within the button. The shape of an oval
button is defined by its rect property. Oval buttons whose rect property is a
square are, not surprisingly, circular.

There are other less visible changes that have been made to buttons. For
instance, there are five new button properties:

■ The family property, which you can use to group buttons, makes it easy to
get the behavior Macintosh users expect from a group of radio buttons.

■ The partNumber property, which was invented specifically to give you
read/write access to a property that represents the ordering of buttons and
fields within their backgrounds and cards. The partNumber property of a
HyperCard Enhancements 11

C H A P T E R 1

What’s New Since 2.0?
button or field represents the ordinal position of the button or field among the
objects of both kinds—buttons and fields—of the same card or background.

■ The enabled property determines whether the button appears and behaves
in an enabled or a disabled state. When a button is enabled, it appears and
behaves normally. When it is disabled, the button is dimmed and it ignores
mouse clicks—it neither highlights nor receives mouse messages.

■ The scriptingLanguage property determines the scripting system of
the button’s script. For example, you can use the scriptingLanguage
property to set a button to accept scripts written in AppleScript.

■ The titleWidth property determines the width of the title area of a pop-
up button. You can change the title area’s width by changing the Title Width
value in the Button Info dialog box, or by setting the titleWidth property
of the button from a script.

You can read more about these properties in Chapter 12, “Properties.”

Field Dialog Modifications 1

The Field Info dialog box contains these new items:

■ a Preview area displaying a picture of the field with its currently selected
attributes

■ static text displaying the field’s part number

■ checkboxes for setting the field’s autoHilite and multipleLines
properties (described in the section “New Field Features”)

■ a pop-up menu for selecting the field’s style property (this replaces the set
of radio buttons for field styles used by previous versions of HyperCard)

In addition, the Field Info dialog box is now a movable modal dialog box and
can be dragged to new positions by the user. HyperCard 2.2 remembers the
positions of movable modal dialog boxes while running; it does not remember
their positions after you quit the program. Figure 1-6 shows the new Field Info
dialog box.
12 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?
Figure 1-6 Field Info dialog box

New Field Features 1

HyperCard 2.2 lets you create fields that behave as lists. When the lockText
and autoHilite properties of a field are set to true, the field responds to
mouse clicks by highlighting the line that was clicked. If the multipleLines
property is true, the user can hold down the Shift key and click again to
extend the range of highlighted lines. Scripts can determine the range of lines
that are currently selected in a list field by using the selectedLine
function, and they can get the text of the selected lines by using the
selectedText function, described in Chapter 11, “Functions.” Figure 1-7
shows two list field examples.

Figure 1-7 List fields
HyperCard Enhancements 13

C H A P T E R 1

What’s New Since 2.0?
The scrolling list field allows the user to click an item in the list to select it or to
scroll through the list to peruse its contents without selecting anything. You can
read more about the standard behavior of scrolling lists in the Macintosh Human
Interface Guidelines.

Like buttons, fields also have a partNumber property and a scriptingLanguage
property. See the discussion in the previous section for more information. You
can read more about these properties in Chapter 12, “Properties.”

Integrated Stand-Alone Application Builder 1

HyperCard 2.2 enables you to build a stand-alone application without the
use of specialized external tools. This capability requires system software
version 7.0 or later.

The standard file dialog box, shown in Figure 1-8, appears when you choose
Save a Copy from the File menu. This dialog box contains a pop-up menu from
which you can choose a file format. The choices in the pop-up menu are, at a
minimum, Stack and Application, representing the standard stack and
application formats, respectively. Third-party developers can add more file
format choices by creating additional file translation modules for use with
HyperCard 2.2, such as a stack-to-ScriptX translator or a stack-to-text translator.

Figure 1-8 Building a stand-alone application from your stack
14 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?
Enhanced HyperTalk 1

The HyperTalk vocabulary has been enlarged to accommodate the new
features within HyperCard. Table 1-1 describes the enhanced HyperTalk
commands. Table 1-1 also includes the enhanced keword do. Table 1-2
describes the enhanced HyperTalk functions. Table 1-3 describes the enhanced
HyperTalk properties. Note that the information in the “Definition” column of
Tables 1-2 and 1-3 describes only new functionality. Table 1-4 describes the
enhanced HyperTalk messages. See the appropriate chapters for syntax,
definitions, and examples of items in these tables.

Table 1-1 Enhanced HyperTalk commands

Command

answer program promptText [of type processType]

close [docPathname with|in] appPathname

convert [chunk of] container|literal [[from format][and format]]¬
 to format [and format]

delete part

disable menu
disable menuItem of menu
disable button
do expression as scriptingLanguage

doMenu itemName [,menuName][without dialog]¬
[with modifierKey [,modifierKey]]

enable button

find [international] text [in field][of marked cards]
find chars [international] text [in field][of marked cards]
find string [international] text [in field][of marked cards]
find whole [international] text [in field][of marked cards]
find word [international] text [in field][of marked cards]

lock error dialogs|messages|recent

open [fileName with] application

picture [fileName,fileType,windowStyle,visible,depth,floatingLayer]

continued
HyperCard Enhancements 15

C H A P T E R 1

What’s New Since 2.0?
put text into button

read from file fileName [at [-]start]¬
for numberOfChars|until char|constant

reply expression[with keyword expression]
reply error expression

request expression from program
request appleEvent class|id|sender|data

select line number [to number] of field
select line number of button

sort [lines|items of] container [sortDirection] ¬
[sortStyle] [by sortKey]

unlock error dialogs|messages|recent

visual [effect] push left|right|up|down [speed] [to image]

write text to file fileName [at [-]start|end|eof]

Table 1-2 Enhanced HyperTalk functions

Function Definition

destination Returns the full pathname of the destination stack when
HyperCard is in the process of going to another stack.

diskSpace Returns the amount of free space on any mounted
volume.

number Returns the number of menu items in a specified menu
or the number of parts of a card or background.
(These are new features of the number function. For
a complete description of the number function, see
Chapter 11, “Functions.”)

programs Returns a return-delimited list of all the System 7–
friendly processes currently running on your machine.

continued

Table 1-1 Enhanced HyperTalk commands (continued)

Command
16 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?
selectedButton Returns the name of the button that is highlighted in a
family of buttons.

selectedLine Returns the line number of the selected line (or lines) in
a list field or pop-up style button.

selectedText Returns the text of the selected line (or lines) in a list
field or pop-up style button.

sum Returns the sum of a list of comma-delimited numbers.

systemVersion Returns a decimal string that represents the running
version of system software.

Table 1-3 Enhanced HyperTalk properties

Property Definition

address Global; determines where HyperCard is running—
that is, the full path, including network zone and
machine name. This property works only in
System 7.

autoHilite Fields; defines a list field if the lockText property
is also set to true.

bottom Menu bar; determines the value of item four of the
rectangle property (left, top, right, bottom) when
applied to the menu bar.

bottomRight Menu bar; determines the value of items three and
four of the rectangle property (left, top, right,
bottom) when applied to the menu bar.

dialingTime Global; determines how long HyperCard waits
before closing the serial connection to a modem
after dialing.

dialingVolume Global; sets the volume of the touch tones
generated through the Macintosh speaker by
the dial command.

continued

Table 1-2 Enhanced HyperTalk functions

Function Definition
HyperCard Enhancements 17

C H A P T E R 1

What’s New Since 2.0?
enabled Buttons; determines or changes whether the
specified button appears and behaves in an enabled
or a disabled state.

environment Global; determines the environment of the
currently running HyperCard application;
returns development if it is the fully enabled
development version and returns player if the
HyperCard player is running.

family Buttons; groups two or more buttons together into
a family specified by the numbers 1 to 15, inclusive.
If the button is part of a button family, clicking one
of the buttons highlights it and unhighlights the
rest of the buttons in that family.

height Menu bar; determines the vertical distance, in
pixels, occupied by the rectangle of the menu bar.

hilite Buttons; determines whether the specified button is
highlighted (displayed in inverse video). If the
hilite property of a button in a family is set to
true, the hilite property of the other buttons is
automatically set to false.

ID Windows, menus, and applications; determines
the permanent ID number of a window or menu
and determines the application signature of an
application.

itemDelimiter Global; determines what delimiter is used to
separate a list of items. HyperCard resets the
delimiter to its default, the comma, when the
computer is idle.

left Buttons, fields, and windows; determines the value
of item one of the rectangle property (left, top,
right, bottom) when applied to the specified object
or window.

continued

Table 1-3 Enhanced HyperTalk properties (continued)

Property Definition
18 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?
lockErrorDialogs Global; determines or changes whether HyperCard
displays an error dialog box in response to an error
while executing a script.

lockText Fields; defines a list field if the autoHilite
property is also set to true.

name Windows and HyperCard itself; determines the
name of the specified object.

[english] name Menus and menu items; the adjective english
lets your code test for the names of menus and
menu items.

number Windows; determines the number within the
window layer of any window on your screen.

owner of card Cards; returns the name or ID of the background
shared by this card.

owner of window Windows; returns the name of the entity that
created the window; this could be HyperCard or
the name of an XCMD like Picture, for example.

partNumber Buttons and fields; determines or changes the
number that represents the ordering of the
buttons and fields within their enclosing card or
background. Setting this property can have the
effect of either bringing the object closer or moving
it farther (behind) other buttons and fields.

rect[angle] Menu bar; reports the size of the menubar
rectangle. This is a read-only property.

right Menu bar; determines the value of item three of the
rectangle property (left, top, right, bottom) when
applied to the menu bar.

scriptingLanguage Objects that can have a script and HyperCard itself;
the scripting system used for the scripts of objects.

continued

Table 1-3 Enhanced HyperTalk properties (continued)

Property Definition
HyperCard Enhancements 19

C H A P T E R 1

What’s New Since 2.0?
style of button Buttons; new button styles are standard,
default, oval, and popup.

titleWidth Pop-up buttons; determines or changes the width
of the title field for a pop-up button.

top Menu bar; determines the value of item two of the
rectangle property (left, top, right, bottom) when
applied to the menu bar.

topLeft Menu bar; determines the value of items one and
two of the rectangle property (left, top, right,
bottom) when applied to the menu bar.

visible Menu bar; determines or changes whether the
menu bar is shown or hidden on the screen.

width Menu bar; determines the horizontal distance, in
pixels, occupied by the rectangle of the menu bar.

Table 1-4 Enhanced HyperTalk messages

Message Definition

appleEvent class, id, sender Sent to the current card when an Apple event
is received.

closePalette paletteWindowName,
paletteWindowID

Sent to the current card when a palette that was
opened with the palette command is closed.

closePicture pictureWindowName,
pictureWindowID

Sent to the current card when a window that was
created with the picture command is closed.

errorDialog Sent to the current card when a script execution
error occurs and lockErrorDialogs is set
to true.

continued

Table 1-3 Enhanced HyperTalk properties (continued)

Property Definition
20 HyperCard Enhancements

C H A P T E R 1

What’s New Since 2.0?
mouseDoubleClick Sent to a button, field, or card after a second mouse
click is released, when all of the following
conditions are true:

■ The second click is within the double-click time
interval set in the Mouse control panel.

■ The second click is at a location within 4 pixels
of the first click.

■ The second click is within the same object as the
first click.

openPalette
paletteWindowName,
paletteWindowID

Sent to the current card when a palette is opened
with the palette command.

openPicture
pictureWindowName,
pictureWindowID

Sent to the current card when a window is created
with the picture command.

Table 1-4 Enhanced HyperTalk messages (continued)

Message Definition
HyperCard Enhancements 21

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0
HyperTalk Basics 2
This chapter explains HyperTalk’s place in the HyperCard system and
describes some of HyperTalk’s characteristics.

Most concepts are discussed only briefly in this chapter, with more detailed
discussion left for later chapters.

What Is HyperTalk? 2

HyperTalk is the scripting language of the HyperCard environment. It allows
you to perform actions on HyperCard objects: buttons, fields, cards, back-
grounds, and stacks as well as other elements of HyperCard, such as menus
and windows.

You use HyperTalk to send messages to and from HyperCard objects. You
generate a message by (among other means) clicking the mouse, opening a
card, typing a statement into the Message box, or choosing a menu item.
Or you can generate a message by sending an Apple event message from a
program—or process—outside HyperCard.

How a given object responds to a particular message depends on the object’s
script, or in the case of menu items, the menu message for that menu item.
Most HyperCard scripts are written in HyperTalk, though version 2.2 of
HyperCard makes AppleScript another scripting option.
What Is HyperTalk? 23

C H A P T E R 2

HyperTalk Basics
Objects 2

There are five kinds of objects in HyperCard: buttons, fields, cards, back-
grounds, and stacks. (See Figure 2-1.)

Buttons and Fields 2

Buttons are action objects or “hot spots” on the screen. For example, clicking
a button with the Browse tool can take you to the next card in a stack.
Clicking a pop-up button lets you choose an action from a menu.

Figure 2-1 HyperCard objects

Background

Field

Button

Card

Stack

Push

Push
24 Objects

C H A P T E R 2

HyperTalk Basics
Fields contain editable text. The Browse tool pointing hand changes to an
I-beam when it’s over an unlocked field. (The card or background might
also contain Paint text characters. Such characters are not editable once they
are placed; they become part of the picture on the card or background.)

Cards, Backgrounds, and Stacks 2

The basic unit of information is the card: when you look at the screen of a
Macintosh computer running HyperCard, what you see foremost is a card.
Cards are viewed through card windows. Cards can be larger than the card
window and can be scrolled in the card window with the Scroll command in
the Go menu. The background is where you place elements that you want a
group of cards to have in common. Each card has one background. The card
overlays the background; both are the same size. What you see in the card
window belongs to the card or to the background. Both the card and back-
ground can contain buttons, fields, and pictures. Cards are grouped in stacks;
each stack is a Macintosh file. Each stack can have multiple backgrounds.

The card that is currently displayed, the background associated with it, and
the stack they are in are termed the current card, background, and stack.
The concept of being current doesn’t apply to buttons or fields. Chapter 5,
“Referring to Objects, Menus, and Windows,” contains details about referring
to objects.

Messages 2

HyperCard objects interact with each other, with the user, with HyperCard,
and with the Macintosh environment by sending messages. Some messages are
descriptions of things that happen in the environment, such as that the mouse
has been clicked or a card opened: these are system messages. They are like
news flashes announced to the community of objects. For example, if you press
the mouse button down, HyperCard sends the message mouseDown; when you
let the mouse button up, HyperCard sends the message mouseUp. Chapter 8,
“System Messages,” contains more information about system messages.

Messages are sent to various objects in a particular order. For example, system
messages generated by the mouse go first to the topmost button or field (if any)
under the pointer on the screen. Next those messages go to the card, then to
Messages 25

C H A P T E R 2

HyperTalk Basics
the background, then the stack, then the Home stack, and finally to HyperCard
itself. (You’ll find a detailed discussion of this hierarchical sequence in
Chapter 4, “Handling Messages.”)

HyperTalk commands are also messages—orders to do some particular thing,
like add two numbers or go to another card. A command, whether executed in
a script or typed into the Message box, is sent as a message.

Scripts 2

Every HyperCard object has a script (although the script can be completely
empty). A script is a collection of any number of handlers. A handler is a
collection of HyperTalk statements; each statement ends with a return
character. Any part of a statement following HyperTalk’s double-hyphen
comment character (--) is ignored by HyperCard.

A handler is invoked when a particular message is received by the object
whose script contains the handler. A simple handler looks like this:

on mouseUp

go to next card

end mouseUp

The first line of a handler always begins with one of two words—either on or
function. The last statement of a handler always begins with the keyword
end. All HyperTalk statements always appear within handlers in a script.

You must place handlers in the scripts of objects that will receive the messages
you want the handlers to respond to. The message-passing hierarchy, which
determines where messages are sent, is described in Chapter 4, “Handling
Messages.”

Message Handlers 2

A handler that begins with on is called a message handler. The example in the
previous section is a message handler. This particular message handler is in
the script of a button; it handles the message mouseUp, and then goes to the
next card.
26 Scripts

C H A P T E R 2

HyperTalk Basics
The message to which a handler responds begins with the word following the
word on. In this case, the message is mouseUp. When you release the mouse
button while the Browse tool is inside a button’s rectangle on the screen,
HyperCard sends the message mouseUp to the button. HyperCard looks in
the button’s script for a handler matching the message mouseUp. If it finds a
match, it executes the HyperTalk statements between on mouseUp and end
mouseUp—in this case, go to next card.

Function Handlers 2

In addition to message handlers, scripts can contain user-defined function
handlers. Function handlers begin with the word function instead of the
word on; the name of the function they handle is the second word. A function
handler looks like this:

function day

return first item of the long date

end day

This function handler responds to a HyperTalk statement containing the func-
tion’s name followed by parentheses—a function call. Here’s an example:

put day() into message box

The function call is day()—the rest of the line and the function call together
form a statement. When the function call is made, HyperCard looks for the
matching function handler. If it finds one, it executes the lines between
function day and end day. The value derived from the expression
first item of the long date is returned to the put statement in
place of day(). In the example, the value returned by the function (Friday,
for example) is put into the Message box.

Function calls use the same message-passing hierarchy as messages; it’s
described in Chapter 4, “Handling Messages.” Message and function
handler structures are described in detail in Chapter 9, “Control Structures
and Keywords.”
Scripts 27

C H A P T E R 2

HyperTalk Basics
Windows 2

Windows are another HyperCard element that you can control with the
HyperTalk language. Windows share many properties with objects but
are not HyperCard objects because they do not have scripts or respond to
messages. (Scripts and messages are described earlier in this chapter; see
the section “Properties” in Chapter 6, “Values,” for an introduction to
HyperCard properties.)

HyperCard windows include card windows, the FatBits window, the Tools
palette, the Patterns palette, the Scroll window, the Message box window,
and external windows.

HyperCard’s built-in external windows include the script editor, the Message
Watcher, the Variable Watcher, and the Navigator palette. User-defined external
windows include windows created with the picture command and windows
created with external commands. (The picture command is described in
Chapter 10, “Commands,” and external commands, which control external
windows, are described in Appendix A, “External Commands and Functions.”)

Card Windows 2

You view the cards in a HyperCard stack through a card window. Card
windows have a title bar, a zoom box, and if there is more than one stack open
at the same time, a close box. A stack’s card window can be the same size as
or smaller than the current card size. You can reposition card windows by
dragging them or setting HyperTalk properties.

HyperTalk allows you to control the following features of a stack’s card
window:

■ the current size of the card window

■ the current location of the card window

■ the type of title shown in the title bar of the card window

■ the current position or scroll of the card within the card window

Card windows are resized automatically when the card is resized from either
the Stack Info dialog box or with HyperTalk. You can resize card windows
28 Windows

C H A P T E R 2

HyperTalk Basics
independently of the card. Card windows are located within the global
coordinates of the screen. Cards are located within the card window’s local
coordinates. The representation of the relationship between the location of
the card window and a larger card is shown in Figure 2-2. You can scroll
the contents of a card that is larger than the current card window with the

Figure 2-2 Relationship between the location of a card and a card window

Card window

coordinates

Evergreen Deciduous

File Edit Go Tools Objects StyleFont Home

Default value for origin

of card window is 0,0

Card coordinates

Card window

Card

0,0

260,65

Evergreen Deciduous

Trees

Card coordinates

Card window

Card

0,200

0,0

Trees

File Edit Go Tools Objects StyleFont Home

Set scroll of card window

to 0,200
Windows 29

C H A P T E R 2

HyperTalk Basics
scroll property. See the location, rectangle, and scroll properties in
Chapter 12, “Properties,” for more information about moving and sizing
card windows and cards.

To find out how to refer to HyperCard card windows with the HyperTalk
language, see Chapter 5, “Referring to Objects, Menus, and Windows.”

HyperCard’s Built-in External Windows 2

HyperCard has several built-in external windows. They are the script editor
windows, the Message Watcher window, and the Variable Watcher window.
You can control the following properties of these windows with HyperTalk:

■ the current font and style of text to use in the script editor window

■ the current location of the Message Watcher window

■ the current location of the Variable Watcher window

■ the current size of the Variable Watcher window

■ the positions of the horizontal and vertical bars of the Variable Watcher
window

For more information about the script editor window, the Message Watcher
window, and the Variable Watcher window, see Chapter 3, “The Scripting
Environment.”

Menus 2

You can also control the behavior of HyperCard menus with HyperTalk
commands. Menus are not, however, HyperCard objects either, because
like windows, they do not have a script and can’t respond to messages.
(Messages and scripts are described earlier in this chapter.)
30 Menus

C H A P T E R 2

HyperTalk Basics
Menus are containers. They contain menu items. Menu items can send
messages to HyperCard objects with menu messages. If a menu item has a
menu message, the menu message is sent to the current card or specified
object when the menu item is chosen.

HyperTalk allows you to perform the following actions on menus:

■ create new menus in the HyperCard menu bar with the create menu
command

■ add menu items to menus with the put command

■ change the behavior of menu items by modifying a menu item’s menu
message with the menuMsg property

■ change the style of menu item text with the textStyle property

■ assign Command-key equivalents to menu items with the commandChar
property

■ assign checkmarks for menu items (to show they are chosen) with the
checkMark and markChar properties

■ determine the name of menus or menu items with the name property

■ disable menus and menu items with the disable command

■ enable menus and menu items with the enable command and enabled
property

■ delete menu items with the delete command (except in the Font, Tools,
and Patterns menus)

■ delete entire menus with the delete command (once deleted, they’re gone,
unless you recreate them)

■ reset the HyperCard menu bar with the reset menubar command
(once reset, all custom menus created with the create menu command
are deleted)

To find out how to refer to HyperCard menus and menu items with the
HyperTalk language, see Chapter 5, “Referring to Objects, Menus, and
Windows.”
Menus 31

C H A P T E R 2

HyperTalk Basics
Chapter Summary 2

Here is a summary of the material covered in this chapter:

■ HyperTalk controls the properties of HyperCard objects: buttons, fields,
cards, backgrounds, and stacks.

■ HyperTalk also controls the properties of HyperCard windows and
HyperCard menus, although these elements do not have scripts as
objects do.

■ HyperCard objects interact by sending and receiving messages.

■ How an object responds to a message is specified by its script, which is
written in HyperTalk or another HyperCard-compatible language like
AppleScript.

■ Scripts are collections of message handlers and function handlers.
32 Chapter Summary

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
The Scripting Environment 3
This chapter describes the environment for creating and editing the scripts of
HyperCard objects. It also describes the built-in script debugger that is part of
the scripting environment.

Getting to the Script 3

You can get to an object’s script through the Objects menu, shown in Figure 3-1.
The Objects menu has five object Info items, one for each of the five types
of objects: the buttons and fields belonging to the current card and back-
ground, the current card, its background, and the stack to which the current
card belongs.

Figure 3-1 The Objects menu
Getting to the Script 33

C H A P T E R 3

The Scripting Environment
You must be at level 5
The user level must be set to 5 for you to be able to look at
scripts. To change the user level, choose Preferences from
the Home menu and select Scripting on the Preferences
card, or set the user level to 5 from the Message box with
this statement:

set userLevel to 5 ◆

To edit the script of the current card, background, or stack, choose the appro-
priate Info menu item for the object whose script you want. This action brings
up information about the object in an Info dialog box (see Figure 3-2). To open
the object’s script, click the Script button in that object’s Info dialog box.

To get to the script of a button or field, first select the button or field (with the
Button tool or Field tool), then choose the appropriate Info item from the
Objects menu. It is not necessary to be working in the background to open the
script of an existing background button or field. You must be working in the

Figure 3-2 Button Info dialog box
34 Getting to the Script

C H A P T E R 3

The Scripting Environment
background, however, to create new background buttons and fields. (Working
in the background may also help you to select background buttons and fields,
because when you’re in the background, HyperCard doesn’t display card
buttons and fields.)

Shortcuts
To get to the Info dialog box of a button or field quickly,
double-click the button or field with the Button or Field
tool chosen.

To open a button script directly, hold down Command-
Option while you click anywhere inside the object’s
surrounding rectangle. To open a field script directly, hold
down Command-Option-Shift while you click anywhere
inside the object’s surrounding rectangle. To open the
script of the current card, press Command- Option-C.
To open the script of the current background, press
Command-Option-B. To open the script of the current
stack, press Command-Option-S. ◆

You can close a script by choosing the Close Script command in the File menu,
by pressing Command-W, or by clicking the close box in the upper-left corner.
You can save a script by choosing the Save Script command in the File menu or
pressing Command-S. To close the script without saving changes, press
Command-period.

Shortcut
To save and close a script quickly, press the Enter key. ◆

The Script Editor 3

The HyperCard script editor lets you create and modify handlers in an object’s
script. You can have more than one script open at a time. The scripts may be
from within the same stack or from different stacks (see Figure 3-3). The
number of possible open scripts depends on the available memory in the
Macintosh computer. When you work on a script, you are working in a script
window. You can resize script windows and drag them to any position on
the screen.
The Script Editor 35

C H A P T E R 3

The Scripting Environment
Figure 3-3 Script editor window

Note
The script editor is implemented as an external window;
you can replace it with a custom script editor that you
define as an external command. See Appendix A, “External
Commands and Functions,” for information on external
commands and external windows; see the scriptEditor
property in Chapter 12, “Properties,” for how to change to
a custom script editor. ◆
36 The Script Editor

C H A P T E R 3

The Scripting Environment
While a script window is active, the script editor menu bar, which includes a
menu called Script, is accessible (see Figure 3-4). The commands in the Script
menu are described later in this chapter.

Figure 3-4 Script menu

When you have a script window open, you can still use the regular HyperCard
menu bar by making a card window, rather than a script window, active. If any
part of a card window is visible, you can make it active by clicking it. You can
also use the Next Window command from the Go menu or press Command-L
to bring a card window to the front.

Manipulating Text 3

Many standard text editing features are available in the script window. You can
use the arrow keys to move the text insertion point around in the script. If your
script extends beyond the right border of the script window, you can scroll
horizontally by using the scroll bar at the bottom of the script window. You can
save the current script with Command-S and close it with Command-W. You
can also print the current script with Command-P.
The Script Editor 37

C H A P T E R 3

The Scripting Environment
The mouse manipulates an I-beam pointer with which you can place an
insertion point or select text. You can double-click to select a word or
triple-click to select a whole line. You can perform cut, copy, and paste
operations using Command-X, Command-C, and Command-V, respectively.
The selection that you’ve cut or copied remains in the Clipboard until you cut
or copy again, in case you want to paste the material more than once. You can
also paste it into a field as regular text or on a card or background as Paint text.
You can undo a cut, copy, clear, or paste or any typing operation with
Command-Z or by choosing Undo from the Edit menu.

You can change the font or size in which script text is displayed with
the properties scriptTextFont and scriptTextSize. See Chapter 12,
“Properties,” for more information about these properties.

Searching for Text 3

The Find command in the Script menu is different from the HyperCard
Find command in the regular HyperCard Go menu. If you choose Find
from the Script menu (or press Command-F), you get the dialog box shown
in Figure 3-5. The script editor locates and selects the first occurrence, following
the current insertion point, of a string you type into the Find field. You can
search for a whole word or a partial word. If you don’t check Case Sensitive,
Find ignores whether the letters in the word are uppercase or lowercase. If you
check Case Sensitive, the case of each letter in the search string and the target
string must match exactly. If you check Wraparound Search, Find searches for
a string starting from the current insertion point to the end of the script, and
then wraps around to the beginning of the script to continue the search. If
Wraparound Search isn’t checked, Find locates a string only if it is after the
current insertion point.

Figure 3-5 Find dialog box
38 The Script Editor

C H A P T E R 3

The Scripting Environment
Replacing Text 3

Choosing Replace in the Script menu or pressing Command-R brings up
the dialog box shown in Figure 3-6. Replace locates and replaces the first
occurrence, following the current insertion point, of a string you type into the
Find field with the string you type into the “Replace with” field. For locating
the string to be replaced, you have the same options as for the Find command:
whole or partial word, case sensitive or not, and wraparound search or not.
You can also specify that HyperCard replace the string, replace every occur-
rence of the string, or just find and highlight the string.

Figure 3-6 Replace dialog box

Entering Comments 3

You can put comments in your script by preceding the comment text with two
hyphens (--). HyperCard ignores any text on a line after the double hyphen. If
a comment wraps to the next line in a script, it must have a double hyphen at
the beginning of that line, too. You can insert a double hyphen at the insertion
point by choosing Comment from the Script menu, by pressing Command-
hyphen, or by typing two hyphens.

You can remove the double hyphen from a line with Command–equal sign or by
choosing Uncomment from the Script menu. For the Uncomment command to
work properly, you must place the insertion point next to one of the hyphens,
or select any part of the line, as long as the selection includes the hyphens.
The Script Editor 39

C H A P T E R 3

The Scripting Environment
The double hyphen is also useful when debugging or trying to improve the
syntax in your scripts. You can precede statements in a handler with the double
hyphen to prevent them from executing. To have HyperCard ignore an entire
handler, you need to add the double hyphen to just the first line. This allows
you to comment out a part of your script to see if that part is causing a problem.

Formatting Scripts 3

The HyperCard script editor indents control structures for you. It automatically
indents all of the lines inside a handler structure when you finish typing a
statement and press the Tab key, press the Return key at the end of the last line,
or close its script window. (See Figure 3-7.) When if and repeat structures
are nested inside each other or within handlers, the lines are indented further.
(You can’t nest handler structures inside each other or any other structure.)

Error checking
Automatic formatting provides some degree of error
checking while you write a script: if you press the Tab key
and the ending line in your handler isn’t flush with the left
margin of the script editor window, you probably left
something out or made a syntax error in a HyperTalk
command. ◆

Figure 3-7 Nested control structures
40 The Script Editor

C H A P T E R 3

The Scripting Environment
Line Length and Script Size 3

The script editor doesn’t wrap lines that are too long to fit in a script window.
Lines too long to fit in the script window simply extend out of sight. Line
length is, however, limited to 255 characters. A single script cannot exceed
30,000 characters, including spaces, return characters, and other invisible
characters. If you reach this limit, think about moving some of your handlers
to another object, such as a hidden field or button, and send messages to it as
required. If you don’t want statements to extend beyond the right boundary
of the script window, you can break a single statement into multiple lines by
pressing Option-Return where you want a line to break. This “soft” return
appears in HyperCard scripts as a logical NOT symbol (¬). HyperCard treats
lines broken in this way as single HyperTalk statements continuing to the next
actual return character.

You can’t break a literal
You can’t put a “soft” return inside a quoted literal
expression. (Chapter 6, “Values,” describes literals.) ◆

Script Editor Command Summary 3

Table 3-1 is a summary of the script editor commands you can invoke from
the keyboard.

Table 3-1 Script editor command summary

Key press Action

Command-A Select all

Command-C Copy selection to Clipboard

Command-D Set or clear temporary checkpoint at selected line (for
debugger)

Command–equal
sign

Uncomment selected line

Command-F Display Find dialog box

continued
Script Editor Command Summary 41

C H A P T E R 3

The Scripting Environment
Command-G Find again

Command-H Find the string currently selected elsewhere in the
script

Command-hyphen Comment selected line

Command-K Check syntax (enabled only when
scriptingLanguage is AppleScript)

Command-L Next window to front

Command-Option-B Open the script of the current background

Command-Option-C Open the script of the current card

Command-Option-S Open the script of the current stack

Command-P Print script or selection

Command-period Close script without saving changes

Command-R Display the Replace dialog box

Command-S Save script

Command-T Replace again

Command-V Paste Clipboard contents at insertion point

Command-W Close script

Command-X Cut selection to Clipboard

Command-Z Undo last operation

Enter Save changes and close script

Option-click Set or clear temporary checkpoint at selected line
(for debugger)

Option–click
close box

Close all open scripts

Option-Return Carry statement onto new line (“soft” return ¬)

Tab Format script

Table 3-1 Script editor command summary (continued)

Key press Action
42 Script Editor Command Summary

C H A P T E R 3

The Scripting Environment
The Debugger Environment 3

This section describes the HyperTalk script debugger. The script debugger is
integrated with the script editor to provide a set of easy-to-use debugging
tools. You may find it easier to understand the features of the script debugger
after learning more about HyperTalk, so you may want to skip this section and
return to it later.

The HyperTalk script debugger has the following features:

■ integration with the script editor for setting checkpoints within scripts

■ debugging tools in the Debugger menu

■ two windows for watching the progress of a script while it executes or while
you step through the statements in a handler

In HyperTalk, a checkpoint serves the same purpose as a breakpoint in tradi-
tional development environments. You set a checkpoint at the location
in a script at which you want to enter the debugger. You can also enter the
debugger with the Command-Option-period key combination anytime
while a script is executing. For example, you can get to the debugger by
pressing Command-Option-period right after clicking a button that goes to
another stack.

When HyperTalk enters the debugger, it pauses execution of the script, displays
the script in a window, puts a box around the next line of the script to be
executed, and displays a Debugger menu at the right end of the HyperCard
menu. The Debugger menu, shown in Figure 3-8, has several menu items you
can use to debug your scripts.

You can step through the remaining statements in the script with Command-S
or by choosing Step from the Debugger menu. Each step executes the statement
with a box around it, then moves the highlight to the next statement in
that handler.
The Debugger Environment 43

C H A P T E R 3

The Scripting Environment
Figure 3-8 The Debugger menu

You can step into the trail of subhandlers with Command-I or by choosing Step
Into from the Debugger menu. Step Into allows you to follow execution among
multiple handlers when one handler calls another. When you choose Step Into
and a message is sent from the currently executing handler, you go to the
location in the current object’s script or any object’s script in the message-
passing hierarchy that has a handler for that message. That message handler
becomes a subhandler to the originally executing handler. You can then
continue to step through the subhandler until its completion. After completion
of the subhandler and any of its subhandlers, you go back to the line in your
original handler following the statement that sent the message to the first
subhandler. Subhandlers could be in any object script within the current
message-passing hierarchy. (See Chapter 4, “Handling Messages,” for
information about handlers calling handlers and the message-passing
hierarchy.)

You can trace the current handler to completion by choosing Trace from the
Debugger menu. When you choose Trace, HyperCard executes each line in the
current handler. Use Command-T or choose Trace Into in the Debugger menu
to execute each line of the current handler including all of the subhandlers until
the script’s completion without having to manually step through the handlers.
You can set the amount of time HyperCard waits between execution of the lines
in a handler during a trace by choosing Trace Delay in the Debugger menu. The
44 The Debugger Environment

C H A P T E R 3

The Scripting Environment
trace delay value can also be set with the global property traceDelay. See
Chapter 12, “Properties,” for information about the traceDelay property.

You can exit the debugger with Command-G or by choosing Go from the
Debugger menu.

Setting Checkpoints 3

You can set temporary and permanent checkpoints in a script. To set a
temporary checkpoint in a HyperTalk script, set the insertion point anywhere
in a line of a handler at which you want to enter the debugger and choose Set
Checkpoint from the Script menu or press Command-D. You can also click
anywhere in the line while pressing the Option key. A temporary checkmark
appears in the margin to the left of the chosen location. To remove a temporary
checkpoint, perform any one of the previously mentioned operations on the
line with the checkmark. You can clear all the checkpoints in a script by clicking
any checkpoint in the script while pressing Shift-Option.

You can have up to 16 temporary checkpoints per script in a maximum of 32
scripts. Temporary checkpoints are not saved with the script when you quit
HyperCard.

You set permanent checkpoints in a script by inserting the HyperTalk statement
debug checkpoint anywhere within a handler. There is no practical limit to
the number of permanent checkpoints in a script. Permanent checkpoints are
permanent in that they are saved with the script—they can be removed by
deleting the debug checkpoint statement.

Checkpoints are ignored by HyperCard when userLevel is set lower than
Scripting (user level 5).

HyperTalk Debugger Windows 3

The debugger windows are named the Message Watcher and the Variable
Watcher. You can display one or both of these windows in two ways. They can
be called by HyperTalk commands in a script or the Message box, or they can
be displayed by choosing Variable Watcher or Message Watcher from the
Debugger menu while you’re in the debugger environment.
The Debugger Environment 45

C H A P T E R 3

The Scripting Environment
Message Watcher 3

The Message Watcher, shown in Figure 3-9, is an external window. It appears
as a floating movable window that displays both HyperTalk messages and
XCMD-generated messages as they are sent. You can display the Message
Watcher window with either of these HyperTalk statements:

show Message Watcher

set the visible of window "Message Watcher" to true

When you’re in the debugger, you can also display the Message Watcher
window by choosing Message Watcher from the Debugger menu.

Figure 3-9 The Message Watcher window

The Message Watcher window is always in front of the active window, which
may be a card window or script window. (If you call the Message box, it
appears in front of the Message Watcher.) You can close the Message Watcher
window by clicking the close box or with either of these statements:

hide Message Watcher

set the visible of window "Message Watcher" to false

When you’re in the debugger, you can close the window by choosing Message
Watcher from the Debugger menu.

When “Hide unused messages” is checked, the Message Watcher displays only
those messages that are handled by scripts. If “Hide unused messages” is not
checked, you see all messages that are sent whether or not they are intercepted
46 The Debugger Environment

C H A P T E R 3

The Scripting Environment
by a handler. Each message that isn’t handled in the message-passing hierarchy
is displayed in parentheses. For example, (mouseWithin) displayed in the
list indicates that there was no handler for the mouseWithin message in the
message-passing hierarchy.

When “Hide idle” is checked, the Message Watcher doesn’t display idle
messages. If “Hide idle” isn’t checked, idle messages are displayed.

The Message Watcher stores the last 150 lines of messages. Older messages are
removed as the new messages fill the buffer.

Variable Watcher 3

The Variable Watcher, shown in Figure 3-10, is an external window. It appears
as a floating window that displays the HyperTalk global variables and local
variables set by the current script. (Variables are explained in Chapter 6,
“Values.”) Variables are displayed in a two-column format with the variable
name in the left column and the current values in the right column. You can
display the Variable Watcher window with either of these HyperTalk
statements:

show Variable Watcher

set the visible of window "Variable Watcher" to true

When you’re in the debugger, you can also display it by choosing Variable
Watcher from the Debugger menu.

Figure 3-10 The Variable Watcher window
The Debugger Environment 47

C H A P T E R 3

The Scripting Environment
The Variable Watcher window is always in front of the active window, which
may be a card window or a script window. You can close the Variable Watcher
window by clicking the close box or with either of these statements:

hide Variable Watcher

set the visible of window "Variable Watcher" to false

When you’re in the debugger, you can close the window by choosing Message
Watcher from the Debugger menu.

You can temporarily modify the values of global and local variables to see how
they affect your stack application or scripting environment with the Variable
Watcher. Drag the Variable Watcher size box to expand the window so that you
can see the area below the thick horizontal line in the window. Click the
variable name that you want to modify. The variable value is highlighted and
placed in the field below the horizontal bar, as shown in Figure 3-11. You can
edit the variable value by typing into the field. When you have finished
changing the value, press the Enter key. The value for that variable is changed.

Figure 3-11 A selected variable in the Variable Watcher window

Custom Message Watcher and Variable Watcher XCMDs 3

The Message Watcher and Variable Watcher are implemented as external
windows, so they can be replaced with custom external commands written in
a programming language such as Pascal.
48 The Debugger Environment

C H A P T E R 3

The Scripting Environment
To replace either the Message Watcher or Variable Watcher window with
your own custom tools, set the global property messageWatcher or
variableWatcher to the name of your tool with a HyperTalk statement like

set variableWatcher to "MyToolWindow"

For more information about creating external windows, see Appendix A,
“External Commands and Functions.”

Debugger Command Summary 3

Table 3-2 is a summary of the debugger commands you can invoke from
the keyboard.

Table 3-2 Debugger command summary

Key press Action

Command-A Stop the handler

Command-D Clear the current checkpoint

Command-G Go back to application

Command-I Step into and follow the path through any subhandlers

Command-Option-
period

Open the debugger while a script is running

Command-period Stop the handler

Command-S Step to the next line in current handler; step through
any subhandler

Command-T Trace the handler and its subhandlers to completion;
same as Step Into, but user interaction isn’t required
Debugger Command Summary 49

C H A P T E R 3

The Scripting Environment
Chapter Summary 3

Here is a summary of the material covered in this chapter:

■ You can create and edit scripts with the HyperCard script editor.

■ You can debug scripts with the built-in debugger.
50 Chapter Summary

C H A P T E R 4

Figure 4-0
Listing 4-0
Table 4-0
Handling Messages 4
This chapter explains how HyperCard objects send and receive messages and
how HyperCard executes scripts.

The HyperCard Environment 4

HyperCard provides the environment in which HyperTalk scripts execute. The
HyperCard environment consists of objects connected by a message-passing
hierarchy and the HyperTalk language through which they communicate.

Although you could write a stand-alone program in a single HyperTalk script,
you would not be making use of the power and flexibility of the HyperCard
environment. Instead, you use HyperTalk to define the ways in which objects
interact with each other and with the user.

HyperCard is user oriented. When using HyperCard, the user opens and closes
cards, reads and changes text in fields, draws pictures on cards, and so on.
HyperCard constantly sends messages to objects in response to these actions
(and to the user’s inactivity when doing nothing), and the objects in turn
respond with other messages and other actions. The basic purpose of
HyperTalk scripts is to enable objects to handle those messages and to specify
succeeding actions by sending further messages.

Most of the time, scripts carry out specific actions for the user: setting properties
of objects, going to other cards, and so on. HyperTalk can do automatically
almost everything the user can do manually with the mouse and keyboard.
The HyperCard Environment 51

C H A P T E R 4

Handling Messages
Sending Messages 4

All HyperCard actions are initiated by messages sent to objects. Messages are
sent to objects in four ways:

■ An event (such as a mouse click or a key pressed on the keyboard) can cause
HyperCard to send a system message.

■ Handler statements (other than keywords) are sent as messages when a
handler executes.

■ HyperCard sends the contents of the Message box as a message when the
user presses Return or Enter.

■ HyperCard sometimes sends a message when it executes a command.

System Messages 4

HyperCard sends system messages constantly in response to events in the
Macintosh environment. For example, if you move the pointer so that it’s over
a button on the screen, as soon as the pointer enters the button’s rectangle,
HyperCard sends the message mouseEnter to the button. As long as the
pointer remains inside the button rectangle, HyperCard continuously sends the
message mouseWithin to the button. As soon as you move the pointer outside
the button area, HyperCard sends the message mouseLeave to the button.

HyperCard sends other system messages when you press certain keys on the
keyboard, close a field, choose a menu item, or quit HyperCard. When you
open a card, HyperCard sends the message openCard to the card itself; when
you leave the card, it sends closeCard. Similar messages are sent to cards
when their backgrounds and stacks are opened and closed. If nothing at
all is happening, HyperCard continuously sends the message idle to the
current card.

One of the most commonly used messages is mouseUp. Buttons often contain
handlers that respond to the mouseUp message; the mouseUp message
is sent to a particular button when you click it. (HyperCard actually sends
two messages to a button when it is clicked: mouseDown and mouseUp. The
52 Sending Messages

C H A P T E R 4

Handling Messages
mouseUp message is sent only if you release the mouse button with the pointer
over the same screen button it was over when you pressed it down.)

HyperCard also sends mouse messages to a locked field when you click it. If
the field isn’t locked, mouseDown and mouseUp aren’t sent—the click opens
the field for text editing and HyperCard sends the message openField to the
field. (You can send mouse messages to an unlocked field, however, by holding
down the Command key while you click the field.)

Clicking outside all buttons and fields sends mouseDown and mouseUp directly
to the current card.

Chapter 8, “System Messages,” describes all of HyperCard’s system messages.

Statements as Messages 4

When a handler executes, its statements are sent as messages, first to the object
that contains that handler, then to succeeding objects in the message-passing
hierarchy (described later in this chapter). When an object gets a message it
can handle—that is, for which it has a handler in its script—the statements
contained in the handler are in turn sent as messages. When all statements in
the handler (and in any other handlers invoked along the way) have executed,
the action stops.

Message Box Messages 4

When you type something into the Message box and press Return or Enter,
HyperCard does one of these things: evaluates a valid expression and puts the
result into the Message box, sends what you typed as a message to the current
card, or sends a message to another destination if you use the send command.
(See Chapter 7, “Expressions,” for an explanation of evaluating expressions.)

You use send to direct a message to a specific object rather than sending it to
the current card. Send is one of the HyperTalk keywords. You can use the
keywords do, if...then...else, and send in the Message box. If you try
to use a keyword other than these in the Message box, HyperCard displays an
error dialog box. Table 4-1 contains all of HyperTalk’s keywords.

Chapter 9, “Control Structures and Keywords,” contains explanations of
HyperTalk’s keywords.
Sending Messages 53

C H A P T E R 4

Handling Messages
Messages Resulting From Commands 4

HyperCard sometimes sends a system message to the current card while
executing a command. For example, when you create a card with the New
Card menu command, HyperCard sends the message newCard to the card as
soon as it’s created; when you delete a card, it sends deleteCard. Similar
messages are sent when other objects are created and deleted. These messages
are among the results of commands executing, rather than commands
themselves—they are like announcements of what is happening.

External commands can send messages
Experienced programmers can write definitions for new
commands in development languages such as Pascal, C,
and 68000 assembly language. Such external commands
act much like built-in HyperTalk commands. External
commands can send messages to the current card when
they execute. See Appendix A, “External Commands and
Functions,” for information about external commands. ◆

Table 4-1 HyperTalk’s keywords

do next

else on

end pass

exit repeat

function return

global send

if then
54 Sending Messages

C H A P T E R 4

Handling Messages
Receiving Messages 4

As senders and receivers of messages, objects all work exactly the same way.
Every object has a script, and the type of object makes no difference to the
execution of its handlers.

How objects differ
As elements of the HyperCard user interface, objects
differ according to their function: buttons share a set
of properties or characteristics that determine how they
look and act; fields also share a set of properties, but it is
different from the set of button properties. (See Chapter 12,
“Properties,” for a description of object properties.) ◆

When a message is sent to an object, HyperCard checks the object’s script for
a handler whose name—the second word on the first line of the handler—
matches the message name—the first word of the message. If it finds a match, it
executes each statement in the handler. (See Figure 4-1.) After the handler has
run, the message is sent no further, unless it is explicitly passed with the pass
keyword (discussed in Chapter 9).

Figure 4-1 Handler that responds to message openStack

If handler name

matches message

name,

on openStack

 global userName

 if userName is empty then

 ask "Please enter your name"

 if it is not empty then put it into userName

 end if

 pass openStack

end openStack

then lines in

that handler

execute.
Receiving Messages 55

C H A P T E R 4

Handling Messages
If the object has no handler for the message, the message passes to the next
object in the hierarchy, and the process repeats. The message-passing hierarchy
is explained in the next section.

If no object in the hierarchy has a handler matching a message name, HyperCard
looks for a command by that name. Commands are like built-in handlers that
cause some action to take place; mouseUp and most other system messages have
no built-in handlers and cause no action. If a message gets all the way through
the hierarchy and is not a system message or a command, HyperCard displays
an error dialog box with the words Can't understand followed by the name
of the message.

External commands can be in stacks
External commands can exist in stack files, as well as
in the HyperCard application itself. See Appendix A,
“External Commands and Functions,” for information
about external commands. ◆

Message-Passing Hierarchy 4

Messages are passed to objects according to a message-passing hierarchy. The
message-passing hierarchy determines the path by which messages are passed
from one object to another: buttons and fields are at the same level, followed
(in order) by card, background, stack, the Home stack (the one stack that
HyperCard requires), and HyperCard.

HyperCard allows you to add stacks to the message-passing hierarchy so you
can use their scripts as shared-code libraries. More about the user-definable
message-passing hierarchy is explained later in this chapter.

Where Messages Go 4

The position of an object in the message-passing hierarchy determines whether
or not the object receives a given message and where subsequent messages that
the object sends go. Most system messages are initially sent by HyperCard to
the current card, as shown in Figure 4-2.
56 Message-Passing Hierarchy

C H A P T E R 4

Handling Messages
Figure 4-2 Message-passing hierarchy

Message box

HyperCard

Home stack

Stack

Background

Card

Buttons

and

fields

Menu

Keyboard

Mouse

newButton and

other events

openCard and

other events
Message-Passing Hierarchy 57

C H A P T E R 4

Handling Messages
Messages to Buttons and Fields 4

Any mouse message (for example, mouseEnter) is sent initially to the topmost
button or field, if there are any, under the pointer. Any buttons or fields that are
layered farther under the one initially receiving the message are ignored.
Figure 4-3 shows layered buttons and fields. If the topmost button or field
doesn’t have a handler for the mouse message, the message is passed to the
current card.

Figure 4-3 Layered buttons and fields

Background buttons and fields come before cards
HyperCard first sends mouse messages to the topmost
button or field under the pointer, whether the button
or field belongs to the card or the background, before
passing the message on to the card. Background buttons
and fields, however, are always farther away than card
buttons and fields. ◆

Other than mouse messages, the only system messages that are sent first to
buttons are deleteButton and newButton; system messages sent first to
fields are closeField, commandKeyDown, deleteField, enterInField,
exitField, keyDown, newField, openField, returnInField, and
tabKey. The entry point in the hierarchy for all other system messages is
the current card.

For a complete list of all system messages, see Chapter 8, “System Messages.”

Card button

Card field

Background field

Background button
58 Message-Passing Hierarchy

C H A P T E R 4

Handling Messages
The Current Hierarchy 4

The current hierarchy consists of the buttons and fields belonging to the
current card and its background, the card and background themselves, their
stack, the Home stack, and HyperCard. System messages and those typed
directly into the Message box always traverse the current hierarchy. Messages
sent from executing handlers traverse the hierarchy in which their containing
object belongs—in most cases, the current one. Figure 4-4 shows how a
message traverses the current hierarchy.

Figure 4-4 Message traversing current hierarchy

When a handler executes, HyperCard sends each statement as a message,
unless it begins with a keyword. It sends the message first to the object
containing that handler, as shown in Figure 4-5. If that object doesn’t have a

Buttons

and

fields

Backgrounds

HyperCard

Home stack

Stacks

mouseUp message sent

by mouse to button

Current

card

Cards
Message-Passing Hierarchy 59

C H A P T E R 4

Handling Messages
handler for the message, the message is passed down the object hierarchy; if
none of the succeeding objects has a handler for it, the message ends up at
HyperCard itself.

Function calls use the message-passing hierarchy
Function calls work like messages in the way they traverse
the object hierarchy. When you make a function call with
the syntax that uses parentheses, HyperCard looks in the
script of each object in the hierarchy for a matching
function handler. If none is found, the function call is
passed to HyperCard itself. See Chapter 11, “Functions,”
for information about functions. ◆

Figure 4-5 Command sent as a message

Buttons

and

fields

Cards

Backgrounds

HyperCard

Home stack

Stacks

on mouseUp

 go to next card

end mouseUp
60 Message-Passing Hierarchy

C H A P T E R 4

Handling Messages
The Target 4

The object to which the message is first sent is the target. If HyperCard finds a
handler in the target that matches the message name, the handler’s statements
start executing. If, however, the target has no matching handler, the message
is passed down the hierarchy. HyperCard may find a matching handler in
another object, which then begins executing, as shown in Figure 4-6.

The function the target returns the name of the original target, so that
handlers in succeeding objects can determine where a message was originally
sent. In Figure 4-6, although the executing handler is in the background script,
target, used in the background handler, results in identifying the new button
that originally received the system message newButton.

Figure 4-6 The target

Buttons

and

fields

Cards

HyperCard

Home stack

Stacks

on newButton

 set autoHilite of the target to true

end newButton

Backgrounds
Message-Passing Hierarchy 61

C H A P T E R 4

Handling Messages
The User-Defined Hierarchy 4

HyperCard allows you to add stacks to the message-passing hierarchy, thereby
extending the current hierarchy. Stacks added to the message-passing hierarchy
act as shared code libraries. The code that they share is their script.

HyperTalk’s message-passing hierarchy always includes the Home stack and
HyperCard itself. Scripts in any stack can call handlers in the script of the
Home stack, and external commands in the resource fork of either the Home
stack or HyperCard because they are always in the hierarchy.

When a stack is added to the hierarchy, it is inserted between the current stack
and the Home stack, as shown in Figure 4-7. That stack’s script and all of the
stack’s resources can now be shared with objects higher in that hierarchy.

To add a stack to the message-passing hierarchy, use the HyperTalk command
start using in a handler like this:

on openStack
start using stack "HD:Trees"

end openStack

After the start using command in the example handler is executed, the
handlers in the script of the stack Trees and any of its external commands
and resources are available for use by Flora.
62 Message-Passing Hierarchy

C H A P T E R 4

Handling Messages
Figure 4-7 One stack added to the message-passing hierarchy

Buttons

and

fields

Cards

Backgrounds

Current stack Flora

Added stack Trees

HyperCard

Home stack

The statement

start using stack "HD:Trees"

inserts the stack Trees in the

message-passing hierarchy
Message-Passing Hierarchy 63

C H A P T E R 4

Handling Messages
Each additional stack that is added to the hierarchy is inserted after the current
stack, as shown in Figure 4-8. The maximum number of stacks you can have in
a user-defined hierarchy is 16. If a stack that is already being used is used again
with the start using command, it is moved in the hierarchy to the location
just before the last stack that was inserted with the start using command.

Figure 4-8 Two stacks added to the message-passing hierarchy

Cards

Backgrounds

Current stack

Last added stack

Added stack

Buttons

and

fields

Flora

Fauna

Home stack

HyperCard

Trees
64 Message-Passing Hierarchy

C H A P T E R 4

Handling Messages
The current hierarchy described earlier in this chapter isn’t changed when you
create a user-defined hierarchy—it is extended with the new stacks added to
the hierarchy. Messages still traverse the hierarchy in the same way: they
go down from the buttons and fields belonging to the current card and its
background, to the card and background, to their stack, to any added stacks, to
the Home stack, and finally to HyperCard.

Note
If you have a handler with the same name in more than
one stack in a user-defined hierarchy, the handler highest
in the hierarchy is executed when a message that calls that
handler is sent. So if there’s a handler for that message in
the current stack, that’s the one that gets executed. If there
are handlers with the same name in two stacks that have
been added to the hierarchy, the one in the most recently
added stack is executed because it’s higher in the
hierarchy. ◆

The names of the stacks in the current hierarchy are stored in the global
property stacksInUse in the form of a return-separated list of the stacks in
the order in which they receive messages. If you create a card field, and then
use the statement put the stacksInUse into card field "Myfield"
in the Message box, it will return the list of stack names in the card field you
created. Each stack that is placed in the hierarchy with the start using
command is on a separate line in the field. If no stacks are added to the
hierarchy, stacksInUse returns empty.

You can remove a stack from the user-defined hierarchy with the command
stop using in the following statement:

stop using stack "Trees"
Message-Passing Hierarchy 65

C H A P T E R 4

Handling Messages
The stack is removed from the hierarchy, as shown in Figure 4-9.

Figure 4-9 Removing a stack from the message-passing hierarchy

Buttons

and

fields

Cards

Backgrounds

Added stack

Current stack Flora

Fauna

HyperCard

Home stack

Added stack Trees

Flora

The statement

stop using stack "Trees"

removes the stack Trees from the

message-passing hierarchy

Fauna
66 Message-Passing Hierarchy

C H A P T E R 4

Handling Messages
The Dynamic Path 4

When a message is traversing the hierarchy of a card different from the current
one, HyperCard inserts a dynamic path into the static path the message
normally follows. The static path is the route defined by an object’s own
hierarchy. For example, a card passes messages to its own background, the
background passes them to its own stack, and so on. When that hierarchy is not
the one stemming from the current card (the one currently active), HyperCard
passes messages through the current card’s hierarchy as well—that’s the
dynamic path.

Examples of situations in which a message traverses a hierarchy different from
the current one, invoking the dynamic path, are

■ when an executing handler contains a command that takes you to another
card (such as go or a command to create or delete the current card)

■ when you use the send keyword to send a message to an object not in the
current hierarchy

When any message that has not been received by a handler reaches the stack,
HyperCard checks to see if the current card is in a different hierarchy. If
so, HyperCard passes the message to the current card, and it traverses the
current card, background, and stack before it passes to the Home stack.

If any handler receives the message and passes it explicitly with the pass
keyword, HyperCard does not invoke the dynamic path unless the current
hierarchy is in a different stack from the static path. If either of the hierarchies
is in the Home stack, the message is not passed again to the Home stack.

The Go Command and the Dynamic Path 4

Figure 4-10 and Figure 4-11 show how a handler containing a go command
invokes the dynamic path.
Message-Passing Hierarchy 67

C H A P T E R 4

Handling Messages
Figure 4-10 Static path before the go command executes

In Figure 4-10, the mouseUp handler executes the statement beep 2, which
is sent as a message along the current hierarchy beginning with the button
containing the handler. After the go command executes, the current card
changes. Nonetheless, the button’s mouseUp handler continues to execute,
sending subsequent statements as messages through its own hierarchy, in this
case the beep 3 statement. In addition, however, HyperCard now sends
messages to the card, background, and stack of the new current hierarchy, as
shown in Figure 4-11.

Cards

Backgrounds

HyperCard

Home stack

Stacks

Buttons

and

fields

Birds

on mouseUp

 beep 2

 go to card 3 of stack "Birds"

 beep 3

end mouseUp
68 Message-Passing Hierarchy

C H A P T E R 4

Handling Messages
Figure 4-11 Dynamic path after the go command executes

The Send Keyword and the Dynamic Path 4

You can use the send keyword to direct a message to

■ any object in the current stack

■ any other stack on any disk or file server accessible to your Macintosh
computer (but not any individual object in those stacks, unless you go
to that stack first); the stack need not be in the current hierarchy

■ HyperCard itself

Cards

Backgrounds

Stacks

Home stack

HyperCard

Buttons

and

fields

Birds

on mouseUp

 beep 2

 go to card 3 of stack "Birds"

 beep 3

end mouseUp

Card

3

Message-Passing Hierarchy 69

C H A P T E R 4

Handling Messages
For example, you can type the following statement into the Message box:

send "greetings" to stack "Birds"

HyperCard looks in the script of the object to which the message is sent (in this
case, stack "Birds") for a matching handler, just as if it were in the current
hierarchy. If the matching handler isn’t found (in this case, a handler named
greetings), the message goes down the hierarchy stemming from the object
to which it was sent (that is, from stack "Birds"). If the target of the send
command is an object other than the current one, HyperCard invokes the
dynamic path.

Figure 4-12 shows the path of a message directed with the send keyword.

The executing handler, the one currently in control, need not be in the
hierarchy belonging to the current card. Which handler has control is
determined solely by which object receives a message.

Figure 4-12 Using the send keyword

Current

card

Cards

Backgrounds

Stacks

Home stack

HyperCard

Birds
70 Message-Passing Hierarchy

C H A P T E R 4

Handling Messages
For details about the send keyword, see Chapter 9, “Control Structures and
Keywords.”

Handlers Calling Handlers 4

When a handler executes, HyperCard sends each statement as a message first
to the object containing the executing handler so that other handlers in the
same script, as well as those in any other script lower in the message-passing
hierarchy, can be used as subroutines. A handler can also call itself, which is
known as recursion.

Subroutine Calls 4

You can use handlers in HyperCard the way you use procedures or subroutines
in other languages. You invoke a subroutine call in HyperTalk by executing
a statement that begins with the name of a handler. That name is sent as a
message, first to the object that contains the executing handler, then along the
current object hierarchy.

You can include a subroutine in a script by writing a handler in the same script
(or any other script lower in the object hierarchy) with whatever name you’d
like to call it. In the following example, the handler greetings is defined in
the same script as the one from which the message greetings is sent:

on mouseUp

greetings

end mouseUp

on greetings

Put "You've just been drafted!" into the Message box

end greetings

When HyperCard executes the statement consisting of the subroutine handler
name and a match is found between the name and its handler, control passes to
the subroutine handler. After it has finished executing, control passes back to
the calling handler. But it’s entirely possible for the subroutine handler to issue
a similar message, beginning execution of a third handler. The third handler
Handlers Calling Handlers 71

C H A P T E R 4

Handling Messages
must finish executing before control passes back to the second handler, which
in turn must finish executing before control passes back to the first. The
execution of a handler that has invoked another handler is suspended until the
handler it has called finishes executing.

Stopping execution
A handler can avoid giving control back to pending
handlers by executing the exit to HyperCard keyword
statement. You can interrupt an executing handler at any
time (and bypass pending handlers) by pressing
Command-period. ◆

Any handler can act as a subroutine for any other handler. The called handler
either has to be in the same script or in a script lower in the object hierarchy.
However, you can also use the send keyword to send the message (the
subroutine handler name) directly to the object that contains the handler. (See
Chapter 9, “Control Structures and Keywords,” for details on using send.)
Generally, handlers that act as subroutines are placed in the same script as the
handlers that call them.

IMPORTANT

Handlers can’t be nested. That is, they can’t be defined
with one inside another—a handler definition must not
appear between the on statement and the end statement of
another handler. ▲

Recursion 4

If you need to repeat an operation over and over, you can have a handler call
itself. In the following example, the handler decrement subtracts 1 from a
number in the Message box until the number is reduced to 1 (a number must
be in the Message box before you call the handler). To do the subtraction, the
handler summons itself:

on decrement

subtract 1 from the message box

if the value of the message box > 1 then decrement

end decrement
72 Handlers Calling Handlers

C H A P T E R 4

Handling Messages
Generally, subroutine calls and recursion don’t cause any problems. In fact,
they are natural consequences of the good programming technique of
separating scripts into functional units. However, HyperCard has a limit on the
number of pending handlers. The actual number depends on the complexity of
the handlers and other factors. It doesn’t matter whether a handler is invoking
itself or another handler—either type of invocation causes another level of
pending execution.

In particular, watch out for endless recursion, as in the following handler (if it
were in a stack script or the script of every card):

on openCard

go to next card

end openCard

The go to next card command results in an openCard message, so the
handler recurses again and again, and you get an error dialog box. The
HyperCard limit for such a recursion is limited by memory.

Using the Hierarchy 4

Where you place a handler in the hierarchy determines when it will be called.
All objects that are higher in the hierarchy can call handlers in objects lower
in the hierarchy. Lower objects can’t call handlers in higher objects unless they
use the send keyword. Messages that are sent when a statement in a handler
executes always go first to the object containing the executing handler. Then
they traverse the hierarchy stemming from that object until they find a
matching handler or reach HyperCard itself. Therefore, the farther down the
hierarchy a handler is placed, the greater the number of objects that can pass
messages to it.

Sharing Handlers 4

In effect, every object has access to the handlers of all the objects lower than
it in the hierarchy, which also includes the handlers in stacks put into the
message-passing hierarchy with the start using command. If you want
Using the Hierarchy 73

C H A P T E R 4

Handling Messages
every card in a stack to have a certain capability (that is, to respond to a certain
message), you put the appropriate handler in the stack script. Every card can
use the handler by passing the message down to the stack.

Figure 4-13 and Figure 4-14 show the effect of placing a handler at different
positions in the hierarchy. The example handler responds to the message
moveOn (the message name is for example only). The handler takes you to
the next card:

on moveOn

go to next card

end moveOn

Figure 4-13 Handler in a card script

Card

1

Card

2

Card

3

Card

4

Cards

Backgrounds

Stacks

Home stack

HyperCard
When the message is sent to

cards 1–4, it goes through the

hierarchy to HyperCard without

being handled.

or or or or

on moveOn

 go to next card

end moveOn
74 Using the Hierarchy

C H A P T E R 4

Handling Messages
You can place the handler in the script of one card, as in Figure 4-13. Then,
if you send moveOn from the Message box, you invoke the handler and go
to the next card only if the current card is the one with the handler. If the
current card is not the one with the handler, however, the moveOn message
produces an error.

In Figure 4-14, the handler is in the script of the stack, so the handler is invoked
by sending moveOn to any card in the stack.

Figure 4-14 Handler in a stack script

Card

1

Card

2

Card

3

Card

4

Cards

Backgrounds

Stacks

Home stack

HyperCard

on moveOn

 go to next card

end moveOn

or or or or
Using the Hierarchy 75

C H A P T E R 4

Handling Messages
Intercepting Messages 4

You can also make any card you want an exception in the way it responds to a
given message, without affecting the other cards in the stack, by putting a
special handler for the message in that card’s script: you write two different
handlers with the same message name—one in the stack script and one in
the card script. Then, for that same message, if the message comes through
that particular card, the card’s handler runs; from any other card, the stack’s
handler runs.

For instance, in the previous example, putting the handler in the stack script
caused the message moveOn to take you to the next card from any card in
the stack:

on moveOn

go to next card

end moveOn

But if you want the last card in the stack to be an exception, from which the
message moveOn takes you back to the Home stack, put the following handler
in the last card’s script:

on moveOn

go to stack "home"

end moveOn

Figure 4-15 illustrates this example of one object intercepting a message.

A handler can intercept a HyperTalk command
In the same way that you can give one card a unique way
of handling a message that would ordinarily be handled in
the background or stack script, you can write a handler
with the same name as a HyperTalk command and place it
anywhere in the hierarchy. But remember that your
handler is the one that will ordinarily run in response to
the command message, not HyperCard’s built-in one.
HyperTalk functions can be redefined in a similar manner,
and the same warning applies. ◆
76 Using the Hierarchy

C H A P T E R 4

Handling Messages
Figure 4-15 Intercepting a message

Parameter Passing 4

When a HyperTalk message is sent, the first word is the message name. For
example, in the message

searchScript "WildCard","Help"

the message name is searchScript. Any other words (or characters) are the
parameters. In the example, the parameters are "WildCard" and "Help".
Each receiving object in the hierarchy looks for a message handler with a
matching name. If the object finds a matching handler, the parameters are
passed into that handler.

Card

1

Card

2

Card

3

Card

4

Cards

Backgrounds

Stacks

Home stack

HyperCard

on moveOn

 go to next card

end moveOn

on moveOn

 go to stack "Home"

end moveOn

or or or or
Parameter Passing 77

C H A P T E R 4

Handling Messages
Parameters are passed into handlers as a list of comma-separated expressions.
(Chapter 7, “Expressions,” describes expressions.) These expressions are
evaluated before the message is sent by the current object and, when the
message is received by the receiving object, placed into a list of comma-
separated parameter variables appearing on the first line of the matching
handler definition. (See Figure 4-16.) That is, parameters are passed by value
into handlers. In the searchScript handler example shown in Figure 4-16,
the parameter variables pattern and stackName are replaced by the
parameter values "WildCard" and "Help".

Parameter variables are local variables of the handler in which they appear.
Parameter variables are also called formal parameters, to contrast them to the
actual parameters, which are the parameter values passed to them.

Function handler parameters
HyperCard passes parameters into function handlers and
message handlers in the same way, except that the syntax
of the function call requires the parameters to be placed
between parentheses. Placement of the parameter variables
on the first line of function handlers is identical to that of
message handlers. ◆

The value of the first expression in the message is placed into the first
parameter variable in the handler, the value of the second expression into
the second parameter variable, and so on. If there are more expressions in
the message’s parameter list than there are parameter variables in the first
line of the handler, the extra parameters are ignored. If there are more
parameter variables than parameters, the extra parameter variables are given
an empty value (equal to a string of zero length).

Passing parameters to redefined commands
HyperTalk command parameters are often more complex
than a comma-separated list of expressions. Some built-in
commands take parameters to which user-written handlers
have no access. So, if you redefine a command, you may
not be able to pass all of the parameters to your handler. ◆
78 Parameter Passing

C H A P T E R 4

Handling Messages
Figure 4-16 Parameter passing

Chapter Summary 4

Here is a summary of the material covered in this chapter:

■ The HyperCard environment consists of objects related to each other in a
hierarchy using HyperTalk as the means of communicating.

■ Messages sent to objects initiate all HyperCard actions.

■ Messages are generated by system events, executing handlers, statements
typed into the Message box, and the execution of some commands.

■ When an object receives a message, HyperCard tries to match the message
name with a handler in the object’s script; if it finds a match, it executes the
handler; otherwise it passes the message to the next object.
Chapter Summary 79

C H A P T E R 4

Handling Messages
■ The object hierarchy determines how messages are passed from one object
to another.

■ You can modify the message-passing hierarchy to use stacks as shared-
code libraries.

■ You can send a message directly to any object in the current stack, to another
stack, or to HyperCard using the send keyword.

■ A handler can initiate execution of another handler as a subroutine call.

■ Every object can use the handlers of objects lower than it in the hierarchy by
passing messages; conversely, an object can intercept a message to perform a
different action.

■ The values of a series of expressions following the first word of a message
statement are passed to variables in the first line of the receiving handler.
80 Chapter Summary

C H A P T E R 5

Figure 5-0
Listing 5-0
Table 5-0
Referring to Objects,
Menus, and Windows 5
This chapter explains how to refer to HyperCard’s objects, menus,
and windows.

A HyperCard object has three characteristics:

■ It can send and receive messages.

■ It has properties, which are its defining characteristics, and one of those
properties is its script.

■ It has a visible representation on the Macintosh screen (although the object
need not always be visible).

HyperCard menus, windows, and the menu bar share many of the character-
istics of HyperCard objects, except that they don’t have the script property.

You refer to an object when you use the go command (to go to a particular
card, background, or stack) or the send keyword (to send a message to a
particular object), and when you want to manipulate an object’s properties.
Fields are unique because they are HyperCard objects and are also sources of
values (described in Chapter 6, “Values”).

You can think of HyperCard itself as an object, because it can send and receive
messages and has global properties, including a “script” of built-in handlers or
commands. When this book talks about objects, however, it usually refers to
buttons, fields, cards, backgrounds, and stacks.

Names, Numbers, and IDs 5

You refer to objects using object descriptors. An object descriptor is formed
by combining a generic name with its specific designation. Generic names
are stack, card (abbreviated cd), background (abbreviated bkgnd or bg),
Names, Numbers, and IDs 81

C H A P T E R 5

Referring to Objects, Menus, and Windows
button (abbreviated btn), field, part (which refers to a field or button), or
family (which refers to a group of buttons).

HyperCard considers all references to buttons, button families, and parts to
be card buttons, card families, or card parts and all references to fields to
be background fields unless you specify otherwise. For example, button
"buttonName" and card button "buttonName" both refer to the card
button, and field "fieldName" refers to the same field as background
field "fieldName". To refer to background buttons, you must include
background in the descriptor—for example, bkgnd button "buttonName".
If you want to refer to card fields, you must include card—for example, card
field "fieldName".

The only specific designation of a stack is its name. (See “Identifying a Stack,”
later in this chapter.) The specific designation of all other objects (buttons,
fields, backgrounds, and cards) can be the objects’s name, number, or ID
number. The unambiguous form of an object descriptor begins with an object’s
generic name, immediately followed by its particular name, number, or ID
number. (See Figure 5-1.)

Figure 5-1 Card Info dialog box and descriptors for the same card

Card 1
First card
Card one
Card "Welcome to É"
Card ID 3916
82 Names, Numbers, and IDs

C H A P T E R 5

Referring to Objects, Menus, and Windows
Descriptor phrasing
Be careful to phrase descriptors so that they mean what
you intend. For example, using a descriptor such as card
field id 7, you could mean that the name of the card is
in the background field with ID number 7, or you could be
referring to the card field with ID number 7. HyperCard
assumes that you’re referring to the card field. If you want
HyperCard to get the card name from the background
field, enclose its descriptor in parentheses:

card (field id 7) ◆

Object Names 5

Names are optional for cards, backgrounds, buttons, and fields. You assign a
name for any of these objects by typing into the Name box in the object’s Info
dialog box, which appears when you choose the object’s Info command from
the Objects menu.

Object names can include any characters, even spaces. When you use a name
(background button "belly") in a statement, put quotation marks around
the object name to ensure that HyperCard recognizes it as a literal and doesn’t
look for a variable by that name. Names are not optional for stacks. You must
provide a name for each new stack you create. A stack name must be a valid
Macintosh filename.

Be careful with names
It’s difficult to manipulate a name that extends out of the
naming window, although you can scroll it left and right
(and up and down if it has more than one line) by
dragging. It’s also difficult to refer by name to an object if
you put a double quotation mark in its name. Also, if you
use numbers for an object’s name, HyperCard could
misinterpret the name: it takes card "1812" to mean a
card whose number, rather than name, is 1812. ◆
Names, Numbers, and IDs 83

C H A P T E R 5

Referring to Objects, Menus, and Windows
The name of an object is one of its properties. (See Chapter 12, “Properties,” for
an explanation of properties and a description of the name property.)

The name property of an object has three forms—long, abbreviated, and
short. The long name of an object includes the type of object, its name, its
enclosing object (either a card or background), and the full pathname of
its stack:

card button "Rolo" of card "Home" of stack

"MyHardDisk:Home"

The abbreviated form includes the type of object and its name:

card button "Rolo"

The short form includes just the name:

"Rolo"

Object Numbers 5

Buttons, fields, cards, and backgrounds always have numbers by which you
can refer to them. An object’s number represents its position within its
enclosing object: buttons and fields are ordered within a card or background,
as are card parts (remember that this term refers to both buttons and fields)
and button families; cards and backgrounds are ordered within their stack.

For objects and parts with numbers one through ten, there are three ways to
express an object’s number: use an integer following its generic name (card
2), use one of the numeric constants one through ten following its generic
name (card two), or use one of the ordinal constants first through tenth
preceding its generic name (second card). For objects with numbers higher
than ten, you have to use the integer value.

Object numbers are contiguous from one through the number of currently
existing objects within the enclosing object: card buttons and card fields within
their card; background buttons and background fields within their back-
ground; cards within their stack (not their background); and backgrounds
within their stack. If you delete an object, its number is reassigned to the object
following it in order, and so on for the succeeding objects as well.
84 Names, Numbers, and IDs

C H A P T E R 5

Referring to Objects, Menus, and Windows
Part Numbers 5

A part is the generic name for either a button or field. HyperCard thinks of
buttons and fields as parts of either their enclosing backgrounds or cards and,
as such, numbers them as they are generated. If you don’t specify, HyperCard
assumes you are referring to card parts.

The reference to generic parts rather than specific buttons or fields makes it
much easier to iterate through all the buttons and fields in a stack. You can use
the number function to count the number of parts of a card or background.
(See number in Chapter 11, “Functions.”)

This example shows a handler that searches through all the scripts of a stack to
find a word pattern. It is actually a shorter form of the searchScript handler,
which you can find in your Home stack, rewritten to iterate through script
parts rather than buttons and fields:

on searchScript pattern

global ScriptFindString

push card -- remember where we are

set lockMessages to true

set lockRecent to true

if pattern is empty then

ask "Search for what string?" with ScriptFindString

if (it is empty) or (the result is "Cancel")

then exit searchScript

put it into pattern -- otherwise save it in pattern

end if

put pattern into ScriptFindString

set cursor to busy

-- search the stack script of the stack

if the script of this stack contains pattern

then edit script of this stack
Names, Numbers, and IDs 85

C H A P T E R 5

Referring to Objects, Menus, and Windows
-- search the background scripts

repeat with curBkgnd = 1 to the number of bkgnds

set cursor to busy

go to card 1 of bkgnd curBkgnd

if the script of this bkgnd contains pattern

then edit script of bkgnd curBkgnd

-- search the scripts of background parts

-- (bg buttons and fields)

repeat with curPart = 1 to the number of bg parts

set cursor to busy

if the script of part curPart contains pattern

then edit script of part curPart

end repeat

end repeat

-- search the card and card part scripts of the stack

repeat with curCard = 1 to the number of cards

 set cursor to busy

 go card curCard

 if the script of this card contains pattern

 then edit script of this card

-- otherwise search through the card buttons and fields

repeat with curCdBtnOrFld= 1 to the number of ¬

card parts

set cursor to busy

if the script of card part curCdBtnOrFld ¬

contains pattern

then edit script of card part curCdBtnOrFld

end repeat

end repeat

pop card -- return to where we were

set lockMessages to false

set lockRecent to false
86 Names, Numbers, and IDs

C H A P T E R 5

Referring to Objects, Menus, and Windows
 restoreUserLevel -- set userLevel back to whatever it was

 answer "Search script done!" -- ∆
end searchScript

Button Families 5

Button families are specified by number only; they do not have names or IDs.
Only the numbers from 1 to 15, inclusive, are valid. An example of a HyperTalk
reference to a button family is

cd family 1

Special Ordinals 5

In addition to the ordinal constants first through tenth, HyperTalk has
three special ordinals: middle, last, and any. The values of the special
ordinals are resolved according to the number of objects in the set. Middle
resolves to half the number of objects (rounded down to the nearest integer)
plus 1. The ordinal last resolves to the number of objects. Any resolves to a
random number between 1 and the number of objects. (The special ordinals
also work with chunk expressions, which are described in Chapter 7,
“Expressions.”)

Object Numbers and Tab Order 5

The sequence of object numbers determines tab order for fields: you can move
from field to field within a background and card using the Tab key—it moves
from the lowest numbered field to the highest through the background fields
first, then the card fields. The sequence also determines which button or field
gets a message when several are layered on top of each other (the highest
numbered one is closest and gets the message), and it determines which card or
background is referred to by the special descriptor next or previous (see the
section “Special Object Descriptors” later in this chapter).

Reassigning object numbers
You can reassign object numbers of buttons and fields with
the Bring Closer and Send Farther menu commands. See
the HyperCard Reference Guide for details. ◆
Names, Numbers, and IDs 87

C H A P T E R 5

Referring to Objects, Menus, and Windows
Object ID Numbers 5

HyperCard generates an object ID number for each object within a stack. This
number is unique for that type of object within its enclosing object. For
example, each button (the type of object) on a card (the enclosing object) has a
different ID number. Object ID numbers never change, and if an object is
deleted, its number is not reassigned to a newly created object (until the
HyperCard object limit, listed in Appendix G, has been reached). An object’s ID
number is its generic name, followed by the word ID (in uppercase or lower-
case), followed by an integer (for example, card id 5734).

The ID number of a copied object is different
If you copy an object and paste it into a different enclosing
object, the copy is then a different object from the original,
and it has a different ID number. For example, if you copy
a card and paste it into a different stack, the ID number of
the pasted card is different from the ID number of the card
you copied. Therefore, you can’t assume that you have
“moved” the card when you copy it, paste it, and delete
the original—a button that took you to the original will
probably not take you to the copy. ◆

Because ID numbers are unique and unchanging for all objects within a stack,
HyperCard uses them internally to identify objects (for example, to identify the
target of a go command generated with the LinkTo feature in the Button Info
dialog box). HyperCard can generally find objects faster if they are identified
by ID number. If you ask for the name of an object that has no name (put the
name of last card), HyperCard returns its ID number.

The ID of an object is one of its properties. The ID property of an object has
three forms that are similar to the three forms of the name and are differen-
tiated by the same adjectives—long, abbreviated, and short. The long ID
of an object includes the type of object, its ID number, its enclosing object if
necessary, and the full pathname of its stack:

card id 2590 of stack "HyperDisk:HyperCard:Stacks:Home"

The abbreviated form includes the type of object and its ID number:

card id 2590
88 Names, Numbers, and IDs

C H A P T E R 5

Referring to Objects, Menus, and Windows
The short form includes just the ID number:

2590

All objects except stacks always have ID numbers; stacks never have ID
numbers.

Special Object Descriptors 5

You can use the special descriptor this to refer to the current card, background,
or stack—for example:

put the id of this card into whereFound

You can’t use this with buttons or fields.

You can refer to the card or background preceding the current one, within the
stack, as previous, which can be abbreviated prev. Similarly, you can refer to
the card or background following the current one as next—for example:

go to next background

You can refer to the card that was current immediately prior to the current one
as recent.

You use me within a script to specify the object containing the currently
executing handler. For example, this statement in a field script would put the
value of the textHeight property of the field into the variable height:

put the textHeight of me into height

Identifying a Stack 5

A stack is a HyperCard document. In some cases when you’re writing a script
or using the Message box, you can refer to a stack by its name alone. To do that,
the stack must be in the current folder, in the folder containing the HyperCard
application, or in a folder listed in the global variable stacks. (The stacks
variable gets its list of folders on startup from the Stacks Search Paths card of
Identifying a Stack 89

C H A P T E R 5

Referring to Objects, Menus, and Windows
the Home stack. The Stacks Search Paths card is one of three Search Paths cards
that contain lists of search paths, or pathways through the folders on your disk,
that HyperCard should follow to retrieve a stack, application, or document.)
When the stack is located anywhere else, you must let HyperCard know the
full pathname by which it can find the stack.

A full pathname is a concatenation of the volume name, directory name or
names, and filename, separated by colons. The volume name is the name of the
disk or server containing the stack. The directory names are the names of all
the folders, if any, that HyperCard has to open to get to the stack. (HyperCard
sometimes might have to open several folders because folders may contain
other folders to any depth.) The filename is the stack name. Figure 5-2 shows
the structure of a pathname.

Figure 5-2 A pathname

The only unambiguous way to refer to a stack in a script or in the Message box
is the word stack followed by its name in quotation marks. When you refer to
a stack, you can use the full pathname to specify the stack’s exact location:

go to stack "myDisk:myFolder:mystack"

You can also type the folder name in the Stack Search Paths card of the Home
stack. If HyperCard can’t find a stack you request, it displays a dialog box that
allows you to click your way through the directories until you reach the stack.
HyperCard notes your path and, once you’ve found the stack, automatically
records its folder on the Search Path card in the Home stack.

Disk or server

name; desktop level

mondoDisk:HyperMedia:HyperStuff:BirdStac

Folder at

disk level

Inner folder Stack name

Volume Directory Directory File
90 Identifying a Stack

C H A P T E R 5

Referring to Objects, Menus, and Windows
Ambiguous stack descriptors
HyperCard tries to derive a proper stack name from an
ambiguous expression in a place where it expects a stack
descriptor, but it cannot always succeed. In that case,
HyperCard displays the directory dialog box to allow the
user to find the stack file. ◆

Naming a Stack 5

You must name a stack when you create it. (For all other objects, names are
optional.) You create a stack with the New Stack command in the File menu or
with the create stack command. (See Chapter 10, “Commands,” for more
information about the create stack command.) When you use the New
Stack command, a dialog box appears in which you type the name for the new
stack. (See Figure 5-3.) You can also select the card size for your stack either by
dragging the rectangle on the right side of the dialog box or by selecting one of
the preset sizes available from the pop-up menu in the upper-right corner, as
shown in Figure 5-4.

Figure 5-3 New Stack dialog box
Identifying a Stack 91

C H A P T E R 5

Referring to Objects, Menus, and Windows
Figure 5-4 New Stack dialog card-size pop-up menu

Combining Object Descriptors 5

To refer to objects within a stack, you combine object descriptors using either
of the prepositions of and in between an object descriptor and that of its
enclosing object. Combined object descriptors proceed left to right from the
smaller to the larger:

first field of last card of this background

This syntax lets you refer directly to any object within the current stack—you
don’t have to go to the card containing a particular field to get the field’s
contents or put something into it. For example, if the current card were the first
in the stack, you could still execute the following command:

put the selection into field "undoHolder" of last card

You cannot refer to an object within another stack. You have to go to the stack
before you can address its objects directly.

You can further combine field descriptors with chunk expressions, which are
described in Chapter 7, “Expressions.”
92 Combining Object Descriptors

C H A P T E R 5

Referring to Objects, Menus, and Windows
Referring to Menus and Menu Items 5

HyperCard menus and menu items have names and numbers, as well as
ID numbers.

Menu and Menu Item Names 5

Menus and menu items all have names. The name of a menu or menu item is
one of its properties. You assign a name for a menu when the menu is created
with the create command. You assign a name to a menu item when you put
the menu item into a menu with the put command.

Menu and menu item names can include any characters, including spaces. When
you use a menu or menu item name in a statement, put quotation marks around
the name to ensure that HyperCard recognizes it as a literal and doesn’t look for
a variable by that name, for example, menuItem "User Preferences".
When you refer to menus by name, you must precede the menu name with the
word menu, for example, menu "Notes". When you refer to existing menu
items, you precede the name of the menu item with the word menuItem,
for example, menuItem "Power Tools". You must also specify which menu
the menu item is in, for example, menuItem "Power Tools" of menu
"Utilities". You can use either of or in. There is an exception to these rules:
you do not have to precede the name of a menu item with menuItem or specify
the menu that a menu item is in when referring to a menu item in a doMenu
statement:

doMenu "Power Tools"

Menu and Menu Item Numbers 5

Menus and menu items always have numbers by which you can refer to them.
The menu number refers to the menu’s position within the menu bar. Menus
are ordered from left to right in the HyperCard menu bar. The menu item
number refers to the menu item’s position within its enclosing menu. Menu
items are ordered from top to bottom.
Referring to Menus and Menu Items 93

C H A P T E R 5

Referring to Objects, Menus, and Windows
You can get the name of a menu item by referring to it with its number. For
example, typing the following statement into the Message box

menuItem 3 of menu "Utilities"

puts the name of the third menu item in the Utilities menu into the
Message box.

You can also use ordinals when referring to menus and menu items. For
example, typing the following statement into the Message box

the third menuItem in the fifth menu

puts the name of the third menu item in the fifth menu into the Message box.

You cannot get the number of a menu or menu item by referring to it by name.
For example, the statement

the number of menuItem "Card Info..." of menu "Objects"

would result in an error dialog box.

The dashed line used in menus to visually separate menu items that have
different functions is also counted as a menu item in the number of menu
items. For example, if you have a menu with a dashed line separating the
second and third menu choices, the dashed line is referred to as menuItem 3.
You always refer to the dashed line by a menu item number because it has no
name property. To put a dashed line in an existing menu, use the put
command syntax as follows:

put "-" after menuItem itemName of menu menuName

To get a return-delimited list of all of the menus in the current HyperCard
menu bar, use the function the menus. To get a return-delimited list of all the
menu items in a menu, use the menu name, number, or ordinal: menu
"Power Tools", menu 6, or the sixth menu.

To determine how many menus are in the current HyperCard menu bar,
use the function number of menus. To determine how many menu items
are in a specified menu, use the function number of menuItems in menu
menuName. To determine the name of a menu or menu item, use the
name property.
94 Referring to Menus and Menu Items

C H A P T E R 5

Referring to Objects, Menus, and Windows
You can use menu commands, functions, and properties with the HyperCard
built-in menus with the exceptions noted in the descriptions of the menu
commands, functions, and properties.

The following statements use some of the menu commands and properties to
create the simple example of a custom (user-defined) menu shown in Figure 5-5.

create menu "MyMenu"

put "Item 1" into menu "MyMenu"

put "-" after menuItem "Item 1" of menu "MyMenu"

put "Item 3" after the second menuItem of menu "MyMenu"

put "Item 4" after menuItem "Item 3" of menu "MyMenu"

put "-" after menuItem "Item 4" of menu "MyMenu"

put "Item 6" after the fifth menuItem of menu "MyMenu"

set the enabled of menuItem "Item 4" of menu "MyMenu" to false

-- or disable menuItem 4 of menu "MyMenu"

set the cmdChar of menuItem "Item 6" of menu "MyMenu" to "]"

set the checkMark of menuItem "Item 3" of menu "MyMenu" to true

Figure 5-5 A custom menu

Menu MyMenu

Menu item 2 of menu MyMenu
Menu item 3 with checkmark

property set to true

Menu item 5 of menu MyMenu
Menu item 4 with enabled

property set to false
Menu item 6 with cmdChar

property set to] character

Menu item 1 of menu MyMenu
Referring to Menus and Menu Items 95

C H A P T E R 5

Referring to Objects, Menus, and Windows
Referring to Windows 5

In addition to referring to a window by name, you can refer to a window by ID
number or by a number representing its place in the window layer.

Card windows are referred to as card window (for example, set the
location of card window to 45,65). Card window always refers to
the card window of the current stack. You can’t use the card window syntax
to refer to the card window of another stack unless you go to that stack first.
You can, however, refer to another visible or hidden stack’s window with
the syntax window "stackName" (for example, set the location of
window "Dizzie" to "45,65").

You refer to the Message Watcher window as Message Watcher (for
example, show Message Watcher) or window "Message Watcher" (for
example, set the loc of window "Message Watcher" to "65,80").

You refer to the Variable Watcher window as Variable Watcher (for
example, set the loc of Variable Watcher to "64,124") or
window "Variable Watcher" (for example, set the hBarLoc of
window "Variable Watcher" to "65,80").

The Tools palette and Patterns palette are referred to in HyperTalk as tool
window and pattern window, or window "tools" and window
"patterns", respectively.

The Message box is referred to as message window or message box.
Message can be abbreviated msg in any of these forms.

The Scroll window is referred to as scroll window or window "Scroll".

In addition to HyperCard’s built-in windows, there are also external windows
you create with the picture command. They are referred to by the name you
give to the window at the time of its creation—for example,

set the rect of window "MyBestPicture" to "60,90,300,300"
96 Referring to Windows

C H A P T E R 5

Referring to Objects, Menus, and Windows
You can also retrieve the ID of any window, including pictures and palettes.
The unique IDs of picture windows could be particularly useful for referring to
different windows that have two pictures with the same name.

In addition to its name and ID number, you can refer to a window by its
number—that is, its position in the front-to-back order of windows. (Keep in
mind that a window’s number is a read-only property, and that this number
changes as other windows are selected, opened, or closed.)

The windows function evaluates to a list of all the windows (listed by name in
front-to-back order) that are currently available to HyperCard. The list could
include the Message box, Scroll window, Message Watcher window, Variable
Watcher window, FatBits window, Patterns palette, Tools palette, the windows
of the Home stack and any currently open stacks, and any user-defined
external windows.

Chapter Summary 5

Here is a summary of the material covered in this chapter:

■ You refer to a HyperCard object using an object descriptor—its generic name
and its specific designation.

■ Cards, backgrounds, buttons, fields, and windows always have unique ID
numbers that never change, always have object numbers that may change,
and may optionally be given names.

■ You can use special ordinals—middle, last, and any—to refer to objects
by their position within their enclosing object.

■ You can refer to the current card, background, or stack with this. You can
refer to the card or background preceding the current one with previous,
and to the one following the current one with next. You can refer to the card
that was current prior to the current one with recent.

■ The term me, in a script, refers to the object containing the script.

■ The only unambiguous object descriptor for a stack is the word stack
followed by the stack’s filename within quotation marks.
Chapter Summary 97

C H A P T E R 5

Referring to Objects, Menus, and Windows
■ You can combine object descriptors to refer directly to any object in the
current stack.

■ Menus and menu items can be referred to by their name or number.

■ Built-in HyperCard windows are referred to by names that are defined in
the HyperTalk vocabulary. An external window you create with the
picture command is referred to by the name you give it when you create
it. Windows can also be referred to by the number of their position in the
window layer or their unique ID numbers.
98 Chapter Summary

C H A P T E R 6

Figure 6-0
Listing 6-0
Table 6-0
Values 6
This chapter describes the elements of HyperTalk that contain values. Values
are the information on which HyperTalk operates. A HyperTalk expression is
a description of how to get a value.

The sources of values in HyperTalk are

■ constants

■ literals

■ functions

■ properties

■ numbers

■ containers

These sources of values are the most basic expressions.

HyperCard does not have data types: values are stored simply as strings of
characters. (For mathematical operations, numbers are represented internally
in a more efficient format; see the Standard Apple Numerics Environment
description in this chapter.)

Constants 6

A constant is a named value that never changes. It’s different from a variable
in that you can’t change it, and it’s different from a literal in that its value is
not always the string of characters making up the name. For example, the
constant empty is the same as the null string (the literal ""), and the constant
space is the same as the literal " ". All HyperTalk constants are described
in Appendix B, “Constants.”
Constants 99

C H A P T E R 6

Values
Literals 6

A literal is a text string whose value is the string, exactly as it appears. Literals
are denoted by double quotation marks at both ends of the string. (You must
use the straight double quotation mark, not the printer’s double quotation
marks typed with the Option–left bracket and Option–Shift–left bracket
keys.) Any character except double quotation mark, return, or “soft” return
(generated by pressing Option-Return) can be part of a literal string. A literal
can be of any length. For example, "This is a literal string" is
a literal.

Unquoted literals are not supported
Do not use unquoted literals in HyperTalk. The value of an
unquoted literal is the literal of itself—as though you had
entered put "fred" into fred. Always put double
quotation marks around a word you want HyperCard to
take as a literal. ◆

Functions 6

A function is a named value that HyperCard calculates when the statement in
which the function is used executes. The value of a function varies according to
conditions of the system or according to the value of parameters you pass to
the function when you use it.

For example, the built-in function named the time returns the current time in
place of itself in a HyperTalk statement:

put the time into the message box

If the current time were 5:12 P.M., the above example would put 5:12 PM into
the Message box.

You can also define your own functions in scripts using the function handler
structure described in Chapter 9, “Control Structures and Keywords.”

All built-in HyperTalk functions are described in Chapter 11, “Functions.”
100 Literals

C H A P T E R 6

Values
Properties 6

A property is a named value representing one of the defining characteristics of
an element of the HyperCard environment. Different types of objects and other
elements have different properties, according to their purpose. For example,
fields share a set of properties, many of which are different from the set shared
by buttons.

You get the value of most properties by using the property name as a function
in a script or in the Message box. For example, the following statement
retrieves the location property (two integers separated by a comma) of
button 1, and it puts the value into the Message box:

put the location of button 1 into msg

This next example returns a value of either true or false for the enabled
property of the menu Clues.

put the enabled of menu "Clues"

You can also change most properties with the set command. All HyperCard
properties are described in Chapter 12, “Properties.”

Numbers 6

A number in HyperCard is a character string consisting of any combination of
the numerals 0 through 9, representing a decimal value. A number can include
one period (.) representing the decimal point, but it can have no other
punctuation nor a space character. A number can be preceded by a hyphen or
minus sign to represent a negative value (HyperCard doesn’t recognize a plus
sign as part of a number). Numbers that consist only of numerals are integers.
Numbers that include a period are real and, when used with mathematical
operators, are manipulated with floating-point operations.
Properties 101

C H A P T E R 6

Values
Standard Apple Numerics Environment 6

HyperCard performs mathematical operations with Standard Apple Numerics
Environment (SANE) routines, but you don’t have to worry about how to
represent the values. You always enter numbers into HyperCard containers
as numeric strings.

When performing a mathematical operation, HyperCard automatically
converts the strings representing the numbers to SANE numeric values. If you
put the result of the operation into a variable, it’s stored as a SANE numeric
value; if you put it into a field or the Message box, HyperCard automatically
converts it back to a string with a precision of up to 19 decimal places. The
same conversion takes place if you put the variable into a field or the Message
box at a later time, or if you use it in a way that implies a string (character
2 of varName). So although SANE values are used internally for handling
numbers with speed and precision, you can always think of HyperTalk
numbers as strings.

Precision 6

The precision of the decimal string, resulting from putting a SANE numeric
value into a field or the Message box, is controlled by the numberFormat
global property (see Chapter 12, “Properties,” for a detailed description). For
example, the command

set numberFormat to 0.00

would result in a string with at least one digit to the left of the decimal point
and exactly two digits to the right of the decimal point.

The numberFormat property does not affect the precision with which mathe-
matical operations are executed, only the precision with which the results are
displayed. When you put a number into a field or the Message box to display
it, however, HyperCard converts it to a decimal string. So any extra precision it
may have had (beyond the numberFormat specification in effect at the time)
is lost.
102 Numbers

C H A P T E R 6

Values
Number Handling 6

The following example shows how number handling works. These three
HyperTalk statements put the constant pi into a variable, set the numberFormat
property, and put the value of the variable into the Message box, respectively:

put pi into joe

set numberFormat to 0.00

put joe into msg

The result shown in the Message box is 3.14159265358979323846. In this
case, pi is entered into the variable joe as a string, and it remains a string,
so numberFormat has no effect. If, however, you perform a mathematical
operation on the variable, HyperCard converts it to a SANE numeric value:

put pi into joe -- joe contains a string

add 0 to joe -- mathematical operation makes it a number

set numberFormat to 0.00 -- affects the format of joe

put joe into msg

The result shown in the Message box is 3.14. In this case, numberFormat
takes effect when joe is converted from a SANE numeric value to a string as
it’s put into the Message box. The example statements for number handling
work only when placed inside a handler. If entered one at a time in the
Message box, the result is in the default format, because HyperCard resets
numberFormat to its default value during idle time.

Containers 6

A container in HyperCard is a place where you can store a value. Containers
include fields, buttons, variables, menus, the current selection, and the Message
box. Containers other than fields and buttons can store values of any length,
including zero length. Containers other than the Message box can have more
than one line in them; each line ends with a return character (which can be the
only character in the line).
Containers 103

C H A P T E R 6

Values
Fields 6

A field is a HyperCard object for holding and displaying editable text. Fields
are interesting objects because they are also containers—a field’s value is
the text string it contains. Fields can also act as expressions; for example,
put field 1 into it puts the value of the expression field 1 into the
variable it. Variables are described in the section “Variables” later in this
chapter, and expressions are described in Chapter 7, “Expressions.”

You can refer to fields directly by name, number, or ID number. (See Chapter 5,
“Referring to Objects, Menus, and Windows,” for more about how to refer
to fields.)

Fields belong to cards or to backgrounds; the text held by a field, however,
usually remains with the card (unless the sharedText property is true),
even if the field belongs to the background. A field can contain up to 30,000
characters, including spaces, return characters, and other invisible characters. If
you put more than that many characters into a field, the extras are ignored.

You can search through text with the find command unless the dontSearch
property of the field is true. You can edit it using the I-beam pointer of the
Browse tool when the field isn’t locked.

About Paint text
You can also put text onto cards and backgrounds as Paint
text—pictures that look like characters. Paint text can’t be
edited once it has been fixed onto the card or background
(although you can paint over it or erase it as you can any
part of a picture). See the HyperCard Reference Guide for
more information on Paint text. ◆

Buttons 6

As mentioned in Chapter 2, “HyperTalk Basics,” buttons are action objects or
“hot spots” on the screen that can also contain text. Buttons, like fields, are
objects that are also containers—a button’s value is the text string it contains.
Buttons can also act as expressions; for example,

put btn 6 into cd fld 1

puts the value of the expression btn 6 into the card field with the number 1.
104 Containers

C H A P T E R 6

Values
Pop-up buttons contain text that they display as menu items. The following
code fragment creates a new pop-up button whose menu items are the
currently running programs:

doMenu "New Button"

set style of last button to popup

put the programs into last button

See the programs function in Chapter 11, “Functions,” and the style
property in Chapter 12, “Properties.” Variables are described in the next
section, and expressions are described in Chapter 7, “Expressions.”

Variables 6

A variable is a named container that has no visible representation other than its
name. Its value is a character string of any length. The variable name is a
HyperTalk identifier. An identifier can be of any length, always begins with an
alphabetic character, and can contain any alphanumeric character plus the
underscore character (_).

You assign a value to a variable with the put command. You cannot read from
a nonexistent variable—you must create it by putting something into it before
you use it. The constant empty, the null string, counts as something you can
put into a variable. This example puts a numeric value 12 into the variable
fudge, adds 5 to that variable, and then puts the result, 17, into the Message
box. Enter each line separately in the Message box.

put 12 into fudge

add 5 to fudge

put fudge into msg

HyperCard assumes that an unquoted word used in an expression is a variable
when it can’t interpret the word as some other source of value (the string is not
a function, constant, property, or other container name). If you haven’t put a
value into a variable by that name, HyperCard treats it as an unquoted literal.
Containers 105

C H A P T E R 6

Values
Scope of Variables 6

HyperCard has both local and global variables. A local variable is valid only
during the current invocation of the currently executing handler. You don’t
need to declare a local variable before you use it—just put something into it. A
global variable is valid for all handlers. You must declare a variable as global
by using the global keyword in each handler before you use the variable:

global useMeEverywhere,useMeToo

HyperTalk assumes a variable to be local unless you specifically use the
global keyword.

For more details on the global keyword, see Chapter 9, “Control Structures
and Keywords.”

Parameter Variables 6

You create parameter variables when you put their names after the message
name in a handler:

on messageName firstParam,secondParam

When the handler is called, these variables are assigned the values, if any, of
the items in a comma-separated list of expressions following the message name
in the calling statement. Parameter variables are local to their handler. See
Chapter 4, “Handling Messages,” for an explanation of parameter passing.

The Variable It 6

The local variable named It is the destination of the commands get, ask,
answer, read, and request. For example, get the name of field 1
puts the value of that background field’s name into It. Convert puts its
results into It if another destination isn’t specified.

For information on these commands, see Chapter 10, “Commands.”
106 Containers

C H A P T E R 6

Values
Menus 6

When a menu reference does not refer to a menu as a HyperCard element (for
example, get enabled of menu "Home"), then it behaves as a container.
Like variables, you assign a value (made up of text) to a menu with the put
command. The text becomes the menu’s menu items. In this manner, a menu
evaluates to a list of its menu items; the statement

put menu "Edit" into editMenuItems

stores a list of the menu items in the Edit menu in the variable editMenuItems.

The Selection 6

The selection is a container that holds the currently selected area of text. You
can put values into, before, or after the selection or put the selection (or any
chunk of the selection) into another container. Figure 6-1 shows an example
that puts a string into the selection to replace the highlighted text.

Figure 6-1 Manipulating the selection

Starting with this selection

this HyperCard command

produces this result

put "easy to change using a" into the selection
Containers 107

C H A P T E R 6

Values
If the phrase I'm the selected text is selected, and your handler issues
the statement

put the selection into the Message box

then I'm the selected text appears in the Message box. (Both instances
of the word the in the example are optional.)

Found text isn’t selected
Text found by the find command is indicated by a box
around it—it is not placed into the selection. To get
information about text found with the find command, use
the functions foundText, foundChunk, foundLine, and
foundField, which are described in Chapter 11,
“Functions.” ◆

You must select some text with the mouse or the click, drag, or select
command before you can manipulate the selection container.

You can also get information about a chunk of text or a line in a field that has
been clicked with the clickChunk or clickLine function, described in
Chapter 11, “Functions.”

The Message Box 6

The Message box is a special container. Any HyperTalk expression can be put
into the Message box. Typically, you use the Message box to send a HyperTalk
message directly to an object or to HyperCard. The Message box is a single-line
container, as shown in Figure 6-2. If you put more than one line from a
multiple-line container into the Message box (put card field 2 into
msg), only the first line is copied into the Message box.

Referring to the Message box
There are several forms you can use when referring to
the Message box. The forms are message box, message,
and msg. ◆
108 Containers

C H A P T E R 6

Values
Figure 6-2 The Message box

The Message box is the default destination for the put command. You can put
a value directly into the Message box without specifying the Message box by
using one of these forms of the put command:

put property [of element]
put container
put function

Property is an expression that yields any HyperCard property, element yields the
descriptor of a HyperCard element (an object, menu, menu item, or window),
container yields a container, and function yields any HyperCard function.

If you put something into the Message box when it’s hidden, HyperCard
shows it automatically. You can toggle the Message box between being hidden
or shown by pressing Command-M.

The Message box can be specified by just the word message or its abbreviation
msg. Optionally, you can follow either of those with either box or window, and
you can precede either with the word the.

See the description of the put command in Chapter 10, “Commands,” for more
information about the values you can put into the Message box.

Chapter Summary 6

Here is a summary of the material covered in this chapter:

■ The most basic expressions in HyperTalk are constants, literals, functions,
properties, numbers, and containers.

■ HyperTalk’s values can always be treated as strings of characters.

■ Containers—fields, variables, the selection, and the Message box—are places
to store values.
Chapter Summary 109

C H A P T E R 7

Figure 7-0
Listing 7-0
Table 7-0
Expressions 7
This chapter describes the expressions you use to refer to values. An expression
is a description of how to get a value. It may be as simple as a single source of a
value, or it can be a complex expression built with operators.

This chapter also describes HyperTalk’s operators, the elements of the
language that you use in expressions to manipulate and calculate values,
described in Chapter 6, “Values.”

Complex Expressions 7

You can build complex expressions using values and operators. As a complex
expression is evaluated, the values of its basic components are manipulated to
derive a final value in place of the entire expression. (The original values are
not changed in the process.) Complex expressions are evaluated according to
rules of precedence, and restrictions apply to the values that can be used,
depending on their operators.

Chunk expressions are different
Chunk expressions are a different type of expression: they
designate pieces of the strings representing values. Chunk
expressions are described later in this chapter. ◆

Factors 7

A factor is a single element of value in an expression. The following constructs
are factors:

■ a simple source of value

■ an expression enclosed in parentheses
Complex Expressions 111

C H A P T E R 7

Expressions
■ an element with a minus sign in front of it that evaluates to a number

■ an expression with the word not in front of it that evaluates to true
or false

An expression can be a single source of value, or it can be any two expressions
with an operator between them.

The difference between a factor and an expression is important to the syntax of
HyperTalk commands and functions. Where a built-in HyperTalk command
parameter permits an expression, you can specify as complex an expression as
you wish. HyperCard derives the final value before passing the parameter to
the command. For example, the add command accepts a complex expression as
its first parameter:

add 46+12*monthlyRate to total

In contrast, when a built-in HyperTalk function requires a factor, HyperCard
takes the value of the first factor as the parameter to pass to the function. For
example, the sqrt function takes the first factor following its name as its
parameter. This is illustrated by the following expression, which you can type
into the Message box or use in a statement:

the sqrt of 4+12

In the example, the sqrt function takes the factor 4 as its parameter, rather
than the value of the expression 4+12. So the entire expression evaluates to 14,
rather than 4, which would be the value if sqrt accepted an entire expression.
(To specify the entire expression 4+12 as the parameter, you can enclose it in
parentheses, which turns it into a single factor.)

Two hyphens always indicate a comment
You can put a hyphen in front of a factor to create another
factor, and you can put another hyphen in front of that and
still have a factor. However, two hyphens in sequence
indicate a comment, so you must separate the hyphens
with a space or enclose the inner factor in parentheses for
HyperCard to recognize the construct as a factor. ◆

HyperTalk’s built-in commands and functions are described in Chapters 10
and 11, respectively.
112 Complex Expressions

C H A P T E R 7

Expressions
HyperTalk Operators 7

Operators are used in complex expressions to derive values from other
values. Operators fall into several categories:

■ Arithmetic operators work on numbers and result in numbers.

■ Comparison operators work on numbers, text, and Boolean values (true
or false) and result in Boolean values.

■ Logical operators work on Boolean values and result in Boolean values.

■ Text operators manipulate text strings and result in text strings.

Table 7-1 is a list of all the operators in HyperTalk.

Table 7-1 HyperTalk operators

Operator Description

& Concatenate: Text string operator that joins the text
string yielded by the expression on its left to the
text string yielded by the expression on its right.

&& Concatenate with space: Text string operator that joins
the text string yielded by the expression on its left
to the text string yielded by the expression on its right,
with a space between them.

/ Divide: Arithmetic operator that divides the number
to its left by the number to its right.

= Equal: Comparison operator that results in true if
the expression to its left and the expression to its
right have the same value. The expressions can be
arithmetic, text string, or logical.

^ Exponent: Arithmetic operator that raises the number
to its left to the power of the number to its right.

> Greater than: Comparison operator that results in
true if the expression to its left has greater value than
the one to its right. The expressions can be both
arithmetic or both text.

continued
Complex Expressions 113

C H A P T E R 7

Expressions
≥ Greater than or equal to: Same as >=. The ≥ character
is obtained on the Macintosh keyboard by pressing
Option-period (.).

>= Greater than or equal to: Same as ≥. Comparison
operator that results in true if the expression to its
left has greater value than the one to its right or the
same value. The expressions can be both arithmetic
or both text.

() Grouping: Expressions within the innermost pair of
parentheses are evaluated first. Parentheses don’t
force a new level of evaluation; they change the
sequence in which the current level of evaluation
proceeds.

< Less than: Comparison operator that results in true if
the expression to its left has less value than the one to
its right. The expressions can be both arithmetic or
both text.

≤ Less than or equal to: Same as <=. The ≤ character is
obtained on the Macintosh keyboard by pressing
Option-comma (,).

<= Less than or equal to: Same as ≤. Comparison operator
that results in true if the expression to its left has less
value than the one to its right or the same value. The
expressions can be both arithmetic or both text.

– Minus: Arithmetic operator that makes negative the
number to its right or, if it is between two numbers,
subtracts the one on the right from the one on the left.

* Multiply: Arithmetic operator that multiplies two
numbers it appears between.

≠ Not equal: Same as <>. The ≠ character is obtained on
the Macintosh keyboard by pressing Option–equal
sign (=).

continued

Table 7-1 HyperTalk operators (continued)

Operator Description
114 Complex Expressions

C H A P T E R 7

Expressions
<> Not equal: Comparison operator that results in true
if the expression to its left and the expression to its
right have different values. The expressions can be
arithmetic, text, or logical.

+ Plus: Arithmetic operator that adds two numbers it
appears between.

and AND: Logical operator that results in true if both
the expression to its left and the expression to its right
are true.

contains Contains: Comparison operator that results in true if
the text string yielded by the expression on its right is
found in the text string yielded by the expression on
its left.

div Divide and truncate: Arithmetic operator that divides
a number to its left by a number to its right, ignoring
any remainder, resulting in just the whole part.

is Is: Same as =.

is a
or
is an

Is a, is an: Comparison operator that tests for types.
Types include number, integer, point, rect, date,
empty, and logical.

is in Is in: Converse of contains; comparison operator
that results in true if the text string yielded by the
expression on its left is found in the text string yielded
by the expression on its right.

is not Is not: Same as <>.

is not a
or
is not an

Is not a, is not an: Comparison operator that tests for
types. Types include number, integer, point, rect,
date, and logical.

is not in Is not in: Opposite of is in; comparison operator
that results in true if the text string yielded by the
expression on its left is not found in the text string
yielded by the expression on its right.

continued

Table 7-1 HyperTalk operators (continued)

Operator Description
Complex Expressions 115

C H A P T E R 7

Expressions
is within Is within: The is within operator tests whether
or not a point lies inside a rectangle; it results in a
Boolean value: true or false.

mod Modulo: Arithmetic operator that divides the number
to its left by the number to its right, ignoring the
whole part, resulting in just the remainder.

not NOT: Logical operator that results in true if the
expression on its right is false, and false if
the expression on its right is true.

or OR: Logical operator that results in true if either
the expression to its left or the expression to its right
is true.

there is a
or
there is an

There is a, there is an: Unary operator that results in
true if the item exists. Items include the descriptor of
a window, menu, menu item, file, button, field, card,
card picture, background, background picture, part,
stack, folder, document, file, or program.

You can use this operator to check for any currently
executing System 7–friendly program. The expression

there is a program programName

returns true if the program is both System 7–friendly
and currently executing. When searching for an
application or document, this operator uses the search
paths stored in the Home stack. When searching for a
file, it does not use the search paths.

there is not a
or
there is not an

There is not a, there is not an: Opposite of there is
a; unary operator that results in true if the specified
item does not exist. Items include the descriptor of a
window, menu, menu item, file, button, field, card,
card picture, background, background picture, part,
stack, folder, document, file, scripting language, or
program. When searching for an application or
document, this operator uses the search paths stored
in the Home stack. When searching for a file, it does
not use the search paths.

Table 7-1 HyperTalk operators (continued)

Operator Description
116 Complex Expressions

C H A P T E R 7

Expressions
Operator Precedence 7

Parentheses alter the order of expression evaluation. Different operators have
different orders of precedence that determine how things get evaluated. The
order in which HyperCard performs operations is shown in Table 7-2.

Table 7-2 Operator precedence

Order Operators Type of operator

1 () Grouping
2 – Minus sign for numbers

not Logical negation for Boolean values

there is a Boolean test for HyperCard items

there is an Boolean test for HyperCard items

there is not a Boolean test for HyperCard items

there is not an Boolean test for HyperCard items

within Boolean test for point within rectangle

3 ^ Exponentiation for numbers

4 * / div mod Multiplication and division for numbers

5 + – Addition and subtraction for numbers

6 & && Concatenation of text

7 > < <= >= ≤ ≥ Comparison for numbers or text

is in contains Comparison for text

is not in Comparison for text

is a Comparison for types

is an Comparison for types

is not a Comparison for types

is not an Comparison for types

8 = is is not <> ≠ Comparison for numbers or text

9 and Logical for Boolean values

10 or Logical for Boolean values
Complex Expressions 117

C H A P T E R 7

Expressions
Operators of equal precedence are evaluated left to right, except for exponentia-
tion, which goes right to left. For example, 2^3^4 means “3 raised to the fourth
power, then 2 raised to that power,” whereas 1-2-3 means “2 subtracted from
1, then 3 subtracted from that.” If you use parentheses, HyperCard evaluates
the parenthetical expression first.

Operators and Expression Type 7

The operator you use must match the values you’re using it with: "tom" +
"cat" would cause an error, because numeric values are required for addition.
However, tom + cat would be acceptable if tom and cat were names of
containers with numbers in them, and "tom" & "cat" would be acceptable
because the & operator works on text strings (the result of this operation would
be the text string tomcat). Text operators work on any value, because any
value in HyperTalk can be treated as a text string; they always yield text
strings.

Because numeric values are automatically converted to strings when necessary
(see “Numbers” in Chapter 6, “Values”), they can be manipulated by both text
operators and arithmetic operators. For example, 5 & 78 yields 578, and
5 + 78 yields 83.

Comparison operators try to treat both of their operands as numbers; if they
can’t both be regarded as numbers, HyperCard treats them as text and does a
lexical comparison. A lexical comparison uses the order of the ASCII table (see
Appendix D, “Extended ASCII Table”). For letters, it’s the same as alphabetical
order; for numerals, it’s 0–9, but it’s different from a numerical comparison
because a lexical comparison looks at just one character at a time, rather than
the number as a whole. For example, 9 < 10 results in true, because 9 is less
than 10 arithmetically. But "9x" < "10x" results in false, because the
operands are evaluated lexically and 9 is greater than 1.

Chunk Expressions 7

You use a chunk expression to specify a particular piece—a chunk—of the
value of any source of value: constant, literal, function, property, number, or
container. Chunk expressions can specify any character, word, item, or line in
the source.
118 Chunk Expressions

C H A P T E R 7

Expressions
Syntax of Chunk Expressions 7

The form of a chunk expression designates the smallest part of the chunk
first, then specifies each larger, enclosing part. You separate each part of
the expression with the preposition of or its synonym in. For example, the
expression

first character of second word of third line of field 1

specifies a single character in the field.

You modify the specification of the kind of chunk—character, word, item, or
line—with the number of the particular one you want. The number can be an
ordinal constant preceding the kind (tenth word) or an integer following the
kind (line 2). You can also use a numeric constant in place of the integer
(line two), or any numeric expression that resolves to an integer.

You can use the special ordinals middle, last, and any to specify a chunk
within its enclosing part. HyperCard resolves a special ordinal to a number
using the total number of chunks of the specified type within its enclosing part:
middle resolves to one more than half the total (rounded down to the nearest
integer), last resolves to the total, and any resolves to a random number
between 1 and the total. For example,

put "Joe" into any word of line 2 of field 1

replaces a random word in the line with Joe.

It isn’t necessary to specify the enclosing parts of the source in strict
hierarchical order. You can designate any smaller part within any larger part:

character 35 of field 1

And, although you must go left-to-right from smaller to larger, you don’t have
to specify any smaller part than you want:

third item of It
Chunk Expressions 119

C H A P T E R 7

Expressions
Characters 7

Characters are designated by the chunk name character (or char). Spaces
count as characters in any part of a source except words. (Words are delimited
by spaces.) Commas count as characters except in items. (Items are delimited
by commas.) Return characters count as characters in whole sources and items.
(A return character delimits the last word on the line as well as the line itself.)

For example, if field 6 contains the phrase

It was the turtle, not I, who spilled the beans.

the chunk expression

character 25 of field 6

yields a comma (the one after not I).

Words 7

Words are composed of any characters, including punctuation, delimited by
spaces and return characters, and are designated by the chunk name word:

word 2 of "Where's my cubicle?"

yields my.

Items 7

Items are composed of any characters, including punctuation, delimited by
commas, and are designated by the chunk name item:

item three of "cat's, rat's, bat's, gnat's"

yields " bat's" (including the space character in front).
120 Chunk Expressions

C H A P T E R 7

Expressions
Lines 7

Lines are composed of any characters, including punctuation, delimited by
return characters, and are designated by the chunk name line.

The chunk name line denotes text between the beginning of a container and
the first return character, between two return characters, or between the last
return character and the end of the container.

It doesn’t matter how many display lines it takes to display one container line.
For example, a single line in a field might occupy several lines on the display
if the text wraps around (which it does if the field isn’t wide enough to
accommodate the whole line). Figure 7-1 shows two examples of lines in a
field: one with text wrap, and one without text wrap.

Figure 7-1 Lines in a field

Ranges 7

The preposition to in a chunk expression specifies a range of a chunk within
the larger chunk:

word 1 to 5 of line 2 of field "fred"

The numbers given in a range are inclusive. For example:

char 2 to 5 of "Hedgehog"

yields edge.
Chunk Expressions 121

C H A P T E R 7

Expressions
You specify the range with integers (or with constants or numeric expressions
that resolve to integers) following the chunk name, rather than with ordinal
numbers preceding the chunk name. That is, you must say char 1 to 3 of
"george"; you can’t say first to third char of "george".

When the first number in a character range is greater than the second, you get
an empty string. For example, char 5 to 3 of "Motorcycle" yields ""
or empty. For words, items, and lines, a “reversed” range evaluates to the first
chunk of the range. For example, word 2 to 1 of "Motorcycle
helmet" yields "helmet".

Figure 7-2 shows some chunk expressions, labeled in various valid forms of
chunk expression syntax, in a hypothetical card field 1.

Figure 7-2 Chunk expressions

Chunks and Containers 7

Combining a chunk expression with the object descriptor of a field lets
you refer directly to any piece of text down to a single character within the
current stack:

put char 2 of line 2 of field 1 of last card

Figure 7-3 shows an example that refers to the single character “a”.

Character 2

of word 4 of

line 2 of

card field 1

Item 2 of

fourth line of

card field 1

Third word

of line 1 of

card field 1

Char 4 to 6

of line 3 of

card field 1

Tenth word of

third line of

card field 1

122 Chunk Expressions

C H A P T E R 7

Expressions
Figure 7-3 Combining chunks and objects

You can’t specify chunks in another stack
You can’t combine a stack name with a chunk expression;
you must go to the stack first. ◆

Chunks as Destinations as Well as Sources 7

Chunk expressions can be used to specify a part of the value in a container
wherever a container name is used. So, the chunk can specify the destination of
a value—where you’re putting it—as well as the source of a value—where
you’re getting it. For example,

put "Mr Steve" into word 3 of field 1

replaces only the third word in the field with the value Mr Steve, leaving the
rest of the field’s former contents intact.

Character

Word

Line

Card

Third character of second word of third line of first field of fourth card.

a

what

That’s what I thought.

Stack

This is line one.
This is line two.
That’s what I thought.

Field
Chunk Expressions 123

C H A P T E R 7

Expressions
Nonexistent Chunks 7

If you specify chunks that don’t exist as sources of values, you get nothing.
For example,

put char 5 of "hey" into msg

puts empty (or nothing) into the Message box, because the word hey contains
only three characters.

If you specify a nonexistent chunk as the destination of a put command, the
outcome depends on the kind of chunk. If you put a value into a character or a
word that doesn’t exist in a container, you put just the value. That is, if field 1 is
empty, the statement

put "hey" into word 5 of field 1

puts hey (with no characters before it) into background field 1.

If you put a value into a nonexistent line, however, HyperCard puts in a return
character, and if you put a value into a nonexistent item, HyperCard puts
in a comma. (In both cases, you put a null chunk delimited by its particular
delimiting character.) For example, if field 1 is empty, the statement

put "hey" into line 5 of field 1

puts four return characters (four null lines) followed by hey into background
field 1. Similarly,

put "hey" into item 5 of field 2

puts four commas (four null items) followed by hey into the first line of
background field 2.

Chapter Summary 7

Here is a summary of the material covered in this chapter:

■ Complex expressions are built with values and operators.

■ Operators are used to manipulate and calculate values.

■ Chunk expressions can specify any chunk—character, word, item, or line—
either in a source of value or as the destination of a put command.
124 Chapter Summary

C H A P T E R 8

Figure 8-0
Listing 8-0
Table 8-0
System Messages 8
This chapter describes the messages HyperCard sends in response to events,
such as mouse clicks or Apple event commands, that you or an external process
initiate in its environment.

Most system messages are sent by HyperCard to the current card, but those
having to do with a specific button or field are sent to that object. The receiving
object has the first chance to respond to the message before it goes on to the
next encompassing object, as described in Chapter 4, “Handling Messages.”
The receiving object can respond to the system message with a handler
that begins

on messageName

where messageName is one of the system messages in the lists in this chapter.

Messages and Commands 8

Most system messages are informational—they cause no action if passed all the
way to HyperCard, although they may be a result of a HyperTalk command
executing. For example, HyperCard sends deleteButton to a button while
it is executing either a Cut Button or Clear Button menu command. The
deleteButton message is a result of a command, not the command itself.
Consequently, you can’t prevent the deletion of buttons by intercepting the
deleteButton message with a handler named deleteButton. All system
messages that are a result of a command can be intercepted, but the inter-
cepting handler will have no effect on the action of the command that sends
that message.
Messages and Commands 125

C H A P T E R 8

System Messages
Other system messages, however, are commands if passed to HyperCard. For
example, all menu commands are passed to HyperCard as parameters of the
doMenu message. (So you can prevent deletion of buttons by intercepting
doMenu. But see the section “Redefining Commands” at the beginning
of Chapter 10 before trying it.) All system messages that are HyperTalk
commands are noted as such in this chapter and are also listed in Chapter 10,
“Commands.” If a message that reaches HyperCard is neither a system
message nor a command, HyperCard displays a “Can’t understand” error
dialog box.

Although system messages are usually sent by HyperCard, they can be sent by
other objects as well. For example, a handler could invoke a mouseUp handler
in another object by executing a statement such as

send "mouseUp" to button 1 of card 1

The tables in this chapter correspond to the type of object to which the listed
system messages are sent initially. If that object has no handler with a name
matching the system message, it passes the message on to succeeding objects
in the hierarchy. So, for example, a card can have a handler for a message
sent initially to a button.

Messages Sent to a Button 8

The only messages that are sent initially to buttons are those having to do with
a specific button. They are of two types: those announcing the button’s creation
or deletion, and mouse messages.

All of the mouse messages that can be sent to buttons can also be sent to fields.
When buttons and fields are layered on top of each other, mouse messages are
sent only to the closest one. Background buttons and fields can never overlay
those belonging to the card. Both background buttons and card buttons
precede the card in the message-passing hierarchy even though the back-
ground itself comes after the card.

Table 8-1 shows the system messages HyperCard sends initially to buttons.
126 Messages Sent to a Button

C H A P T E R 8

System Messages
Table 8-1 Messages sent to a button

Message Meaning

deleteButton Sent to a button that is being deleted just before
it disappears.

mouseDoubleClick Sent to a button after a second mouse click is released
when all of the following occur:
■ The second click is within the double-click time

interval set in the Mouse control panel.
■ The second click is at a location within 4 pixels of

the first click.
■ The second click is within the same object as

the first.

When the mouseDoubleClick message is sent,
it’s the only system message sent as a result of the
second click.

If someone clicks repeatedly, faster than the double-
click speed, each odd-numbered click is treated as a
first click and each even-numbered click is treated as
a second click.

mouseDown Sent to a button when the mouse button is pressed
down while the pointer is inside its rectangle. (This
message may also be sent to a field or card; see
Table 8-2 and Table 8-3.)

mouseEnter Sent to a button as soon as the pointer is moved
within its rectangle. (This message may also be sent
to a field; see Table 8-2.)

mouseLeave Sent to a button as soon as the pointer is moved
outside its rectangle. (This message may also be sent
to a field; see Table 8-2.)

mouseStillDown Sent to a button repeatedly while the mouse button
is held down and the pointer is inside its rectangle.
(This message may also be sent to a field or card; see
Table 8-2 and Table 8-3.)
Messages Sent to a Button 127

C H A P T E R 8

System Messages
Messages Sent to a Field 8

The only messages that are sent initially to fields are those having to do with a
specific field. They are of three types: those announcing the field’s creation or
deletion, those announcing its opening for text entry or closing afterward, and
mouse messages.

All of the mouse messages that can be sent to fields can also be sent to buttons.
When buttons and fields are layered on top of each other, mouse messages are
sent only to the closest one. Background buttons and fields can never overlay
those belonging to the card. Both background fields and card fields precede the
card in the message-passing hierarchy even though the background itself
comes after the card.

mouseUp Sent to a button when the mouse button is released
while the pointer is inside its rectangle. The pointer
must be in the same button rectangle it was in when
the mouse button was pressed down for the message
to be sent. (This message may also be sent to a field
or card; see Table 8-2 and Table 8-3.)

mouseWithin Sent to a button repeatedly while the pointer is inside
its rectangle. (This message may also be sent to a
field; see Table 8-2.)

newButton Sent to a button as soon as it has been created;
because a button can have no script with which to
respond to this message (unless it was created by
pasting), the message passes to objects lower in the
hierarchy that can respond with handlers such as

on newButton
set autoHilite of the target to true

end newButton

Table 8-1 Messages sent to a button (continued)

Message Meaning
128 Messages Sent to a Field

C H A P T E R 8

System Messages
Table 8-2 shows the system messages HyperCard sends initially to fields.

Table 8-2 Messages sent to a field

Message Meaning

closeField Sent to an unlocked field when it is closed after text
editing by clicking outside the field, moving the text
insertion point to the next field with the Tab key,
pressing the Enter key, clicking a button, going to
another card, or quitting HyperCard. The message is
not sent unless some text was actually changed.

deleteField Sent to a field that is being deleted just before it
disappears.

enterInField Sent to a field when the Enter key is pressed while
there is an insertion point or selection in the field. If
enterInField is not intercepted by a handler and
the contents of the field have been changed,
HyperCard sends the closeField message.

exitField Sent to an unlocked field when it is closed without
having its text changed.

mouseDoubleClick Sent to a locked field after a second mouse click is
released when all of the following occur:

■ The second click is within the double-click time
interval set in the Mouse control panel.

■ The second click is at a location within 4 pixels of
the first click.

■ The second click is within the same object as
the first.

When the mouseDoubleClick message is sent, it’s
the only system message sent as a result of the
second click.

If someone clicks repeatedly, faster than the double-
click speed, each odd-numbered click is treated as a
first click and each even-numbered click is treated as
a second click.

continued
Messages Sent to a Field 129

C H A P T E R 8

System Messages
mouseDown Sent to a locked field when the mouse button is
pressed down while the pointer is inside it.
MouseDown is not sent to a scrolling field when the
mouse is clicked while the pointer is in the scroll bar.
You can send mouseDown to an unlocked field by
holding down the Command key while clicking the
mouse in the field. (This message may also be sent to
a button or card; see Table 8-1 and Table 8-3.)

mouseEnter Sent to a field as soon as the pointer is moved into
it. (This message may also be sent to a button; see
Table 8-1.)

mouseLeave Sent to a field as soon as the pointer is moved
outside it. (This message may also be sent to a
button; see Table 8-1.)

mouseStillDown Sent to a locked field repeatedly while the mouse
button is held down and the pointer is inside it. (This
message may also be sent to a button or card; see
Table 8-1 and Table 8-3.)

mouseUp Sent to a locked field when the mouse button is
released while the pointer is inside it. The pointer
must be in the same field it was in when the mouse
button was pressed down for the message to be sent.
(This message may also be sent to a button or card;
see Table 8-1 and Table 8-3.)

mouseWithin Sent to a field repeatedly while the pointer is inside
it. (This message may also be sent to a button; see
Table 8-1.)

newField Sent to a field as soon as it has been created.

openField Sent to an unlocked field when it is opened for text
editing by clicking the field or moving the text
insertion point from the previous field with the
Tab key.

continued

Table 8-2 Messages sent to a field (continued)

Message Meaning
130 Messages Sent to a Field

C H A P T E R 8

System Messages
Messages Sent to the Current Card 8

System messages not sent to buttons or fields are sent initially to the current
card, even when they concern the background or the stack.

Mouse messages are sent to the card only when there is no button or field,
belonging to either the card or the background, under the pointer.

Table 8-3 shows the system messages HyperCard sends initially to the
current card.

returnInField Sent to a field when the Return key is pressed while
there is an insertion point or selection in the field. In
response to a returnInField message, HyperCard
sends a tabKey message to the field if the following
conditions are true:

■ The field’s autoTab property (described in
Chapter 12, “Properties”) is true.

■ The ReturnInField message is not intercepted
by a handler.

■ The field is not a scrolling field.
■ The insertion point or selection is on the last line.

Otherwise, HyperCard inserts a return character into
the field. The tabKey message, if it’s not intercepted,
causes HyperCard to place the insertion point in the
next field.

tabKey Sent to a field when the Tab key is pressed while the
text insertion point is in the field. (This message may
also be sent to the current card; see Table 8-3.)

Table 8-2 Messages sent to a field (continued)

Message Meaning
Messages Sent to the Current Card 131

C H A P T E R 8

System Messages
Table 8-3 Messages sent to the current card

Message Meaning

appleEvent class,
id, sender

Sent to the current card when an Apple event is received.

In an appleEvent message, class is the general category of the
event (aevt, misc), id is the actual event received (oapp, odoc,
pdoc, clos, quit, dosc, eval), and sender is the name of the
application or process that sent the event.

Since Apple event commands are usually generated by other
processes, you may want to check to make sure that they are not
destructive. You can intercept an appleEvent message with an
Apple event handler like this one written for the Home stack:

on appleEvent class,id,sender
 answer "Apple Event Alert!" & return & ¬
 "The class is" && class & return & ¬
 "The ID is" && id & return & ¬
 "The Sender is" && sender ¬
 with "Pass" or "Kill"
 if It is "pass" then pass appleEvent
end appleEvent

If you pass the event on at the end of your handler to HyperCard
using the pass keyword, HyperCard executes the event; other-
wise, the event is not executed.

arrowKey var Sent to the current card when an arrow key is pressed (see also
the textArrows property in Chapter 12, “Properties”). The
value passed into the parameter variable var can be left,
right, up, or down, depending on which arrow key is pressed.
The beginning of a handler for this message could read

on arrowKey whichKey
if whichKey = "left" then go previous card
...

(This message is also a HyperTalk command; see Chapter 10,
“Commands.”)

close Sent to the current card, just before leaving that card, when you
close a stack window with the close window command and
when you click the close box of a card window.

continued
132 Messages Sent to the Current Card

C H A P T E R 8

System Messages
closeBackground Sent to the current card, just before leaving that card, when a
background is closed by going to another card that has a
different background.

closeCard Sent to the current card just before leaving that card.

closePalette
paletteWindowName,
paletteWindowID

Sent to the current card when a palette that was opened with the
palette command is closed.

closePicture
pictureWindowName,
pictureWindowID

Sent to the current card when a window that was created with
the picture command is closed.

closeStack Sent to the current card, just before leaving that card, when a
stack is closed by opening another stack.

commandKeyDown var Sent to the current card when a combination of the Command
key and another key is pressed. The parameter variable var can
be any character on the keyboard. The beginning of a handler for
this message could read

on commandKeyDown whichKey
if whichKey = j then doMenu "MyMenu"
-- more statements...

controlKey var Sent to the current card when a combination of the Control key
and another key is pressed. The possible values of the parameter
value var and the keys each value corresponds to are shown in
Appendix D, “Extended ASCII Table.” (See also the controlKey
command in Chapter 10, “Commands.”) The beginning of a
handler for this message could read

on controlKey whichKey
if whichKey = 16 then doMenu "Print Card"
-- additional statements...

deleteBackground Sent to the current card when a background is deleted just before
it disappears.

deleteCard Sent to a card that is being deleted just before it disappears.

continued

Table 8-3 Messages sent to the current card (continued)

Message Meaning
Messages Sent to the Current Card 133

C H A P T E R 8

System Messages
deleteStack Sent to the current card when a stack is deleted just before it
disappears.

doMenu var1, var2 Sent to the current card when a menu item is selected. The
parameter variable var1 has the exact name of the menu item
selected, including the three periods following menu items
that invoke dialog boxes. Uppercase and lowercase don’t
matter, but you must type the three periods—don‘t use the
Option-semicolon ellipsis character. The second parameter
variable, var2, has the exact name of the menu in the menu
bar. (This message is also a HyperTalk command, which is listed
in Chapter 10, “Commands.” An example handler to intercept
the doMenu message is shown in the section “Redefining
Commands,” at the beginning of Chapter 10.)

enterKey Sent to the current card when the Enter key is pressed unless the
text insertion point is in a field. (This message is also a HyperTalk
command; see Chapter 10.)

functionKey var Sent to the current card when a function key on the Apple
Extended Keyboard is pressed. The parameter variable var can
range from 1 to 15. Function keys 1 through 4 are preprogrammed
for the Undo, Cut, Copy, and Paste commands, respectively. The
beginning of a handler for this message could read

on functionKey whichKey
if whichKey < 5 then pass functionKey
else if whichKey is 5 then doMenu "New Card"
else if whichKey is 6 then choose browse tool
else if whichKey is 7 then choose button tool

You can override the preprogrammed functions of keys 1
through 4 in a functionKey message handler. (This message is
also a HyperTalk command; see Chapter 10, “Commands.”)

help Sent to the current card, just before leaving that card, when Help
is chosen from the Go menu (or Command-? is pressed). You can
intercept this message if you want to provide your own Help
system for your stack. (This message is also a HyperTalk
command; see Chapter 10, “Commands.”)

continued

Table 8-3 Messages sent to the current card (continued)

Message Meaning
134 Messages Sent to the Current Card

C H A P T E R 8

System Messages
hide menubar Sent to the current card when the menu bar is visible and you
press Command–Space bar. (Hide is also a HyperTalk command;
the command accepts other parameter variable values besides
menubar; see its description in Chapter 10, “Commands.”)

idle Sent to the current card repeatedly when nothing else is
happening and the Browse tool is current.

An idle handler can interfere with typing. For example, if you
have an idle handler that puts text into a field, it can remove the
insertion point from another field while the user is typing. Here
is an example of such a handler:

on idle
put the time into card field "Time"
pass idle

end idle

If this on idle handler were to execute during typing into
another field (idle is sent during a typing pause), and if the time
had changed, HyperCard would remove the insertion point from
the user’s field. The user would have to click the field or press
the Tab key to replace the insertion point after every pause,
which would be annoying and tedious.

keyDown var Sent to the current card when a key is pressed. The parameter
variable var can be any character on the keyboard. The beginning
of a handler for this message could read

on keyDown whichKey
if whichKey = t then put "That's the key"
-- more stuff...

The keyDown message is not sent for keys that generate special
messages or for programmed function keys. A programmed
function key would send a functionKey message and any
additional messages that the specified function key is
programmed to generate. See also the functionKey message
description.

continued

Table 8-3 Messages sent to the current card (continued)

Message Meaning
Messages Sent to the Current Card 135

C H A P T E R 8

System Messages
mouseDoubleClick Sent to a card, after a second mouse click is released, when all of
the following occur:

■ The second click is within the double-click time interval set in
the Mouse control panel.

■ The second click is at a location within 4 pixels of the first click.
■ The second click is within the same object as the first.
When the mouseDoubleClick message is sent, it’s the only
system message sent as a result of the second click.
If someone clicks repeatedly, faster than the double-click speed,
each odd-numbered click is treated as a first click and each
even-numbered click is treated as a second click.

mouseDown Sent to the current card when the mouse button is pressed down
and the pointer is not in a button rectangle or field. (This message
may also be sent to a button or field; see Table 8-1 and Table 8-2.)

mouseDownInPicture
pictureWindowName,
point

Sent to the current card when the mouse button is held down
while the pointer is in a window created with the picture
command. See also the picture command in Chapter 10,
“Commands.”

mouseStillDown Sent to the current card repeatedly while the mouse button is
held down. (This message may also be sent to a button or field;
see Table 8-1 and Table 8-2.)

mouseUp Sent to the current card when the mouse button is released. (This
message may also be sent to a button or field; see Table 8-1 and
Table 8-2.)

mouseUpInPicture
pictureWindowName,
point

Sent to the current card when the mouse button is released
after being down while the pointer is in a window created with
the picture command. See also the picture command in
Chapter 10, “Commands.”

moveWindow Sent when you change a card window’s location property
with HyperTalk, drag or zoom the card window, or change the
location of the card window with the show command. See also
the location and rectangle properties in Chapter 12,
“Properties,” and the show command in Chapter 10,
“Commands.”

continued

Table 8-3 Messages sent to the current card (continued)

Message Meaning
136 Messages Sent to the Current Card

C H A P T E R 8

System Messages
newBackground Sent to the current card as soon as a background has
been created.

newCard Sent to a card as soon as it has been created.

newStack Sent to the current card when a stack is created.

openBackground Sent to the current card when a background is first opened by
going to a card whose background is different than that of the
previous card.

openCard Sent to a card when you go to it.

openPalette
paletteWindowName,
paletteWindowID

Sent to the current card when a palette is opened with the
palette command.

openPicture
pictureWindowName,
pictureWindowID

Sent to the current card when a window is created with the
picture command.

openStack Sent to the current card when a stack is opened by going to a
card in a different stack than that of the previous card. In this
case the following three messages are sent, in order: openCard,
openBackground, and openStack.

quit Sent to the current card when you choose Quit HyperCard
from the File menu (or press Command-Q) just before
HyperCard quits.

resume Sent to the current card when HyperCard resumes running after
having been suspended.

resumeStack Sent to the current card when you return to an already
open stack.

returnKey Sent to the current card when the Return key is pressed unless
the text insertion point is in a field. (This message is also a
HyperTalk command; see Chapter 10, “Commands.”)

show menubar Sent to the current card when the menu bar is hidden and you
press Command–Space bar. (Show is also a HyperTalk command;
the command accepts other parameter variable values besides
menubar; see the description in Chapter 10, “Commands.”)

continued

Table 8-3 Messages sent to the current card (continued)

Message Meaning
Messages Sent to the Current Card 137

C H A P T E R 8

System Messages
Message Order 8

For some events, HyperCard sends a sequence of system messages. The
messages are sent in a specific message order. You can create message handlers
that use the message sending order to set properties or perform other actions
when opening stacks, creating new backgrounds, creating new cards, deleting
cards, backgrounds, or stacks, moving from card to card, and moving from

sizeWindow Sent to the current card when the card window is resized, such as
in the following cases:
■ The window is resized from the size box or scroll palette.
■ The window is zoomed in or out, thereby changing the

window size.
■ A script sets the one of the rectangle properties (height,

width, and so on) of the card window to a new rectangle.
■ A script sets the rect of the card to a new rectangle and the

resizing of the card causes resizing of the card window.
In all cases except the first, a moveWindow message also may be
sent. When both messages are pending, sizeWindow is sent first.

suspend Sent to the current card when HyperCard is suspended by
launching another application with the open command just
before the other application is launched.

suspendStack Sent to the current card, just before leaving that card, when you
switch to another stack.

startUp Sent to the first card displayed when HyperCard is first started.

tabKey Sent to the current card when the Tab key is pressed unless
the text insertion point is in a field. In that case, tabKey is
sent initially to the field; see Table 8-2. (This message is also a
HyperTalk command; see Chapter 10, “Commands.”)

Table 8-3 Messages sent to the current card (continued)

Message Meaning
138 Message Order

C H A P T E R 8

System Messages
stack to stack. For example, the startUp system message is always sent when
HyperCard first starts up and the first stack is opened, so you can create a
handler for the startUp system message that sets properties for the first card
before it appears.

You can create handlers for any message that is sent earlier in the message
sending order to change the actions that take place before the messages that
follow it are acted upon by HyperCard. The HyperCard message sending order
that results from some of the actions most frequently performed when creating
or modifying stacks is shown in Table 8-4. You can also open the Message
Watcher to watch the messages that result from other actions.

Table 8-4 HyperCard message sending order

Action Resulting message order

Create a new
background

closeCard, closeBackground, newBackground, newCard,
openBackground, openCard

Create a new card closeCard, newCard, openCard
Create a new stack closeCard, closeBackground, closeStack, newStack,

newBackground, newCard, openStack, openBackground,
openCard

Cut a card closeCard, closeBackground, deleteCard,
deleteBackground, openBackground, openCard

Delete a background closeCard, closeBackground, deleteCard,
deleteBackground

Delete a card closeCard, closeBackground, deleteCard,
deleteBackground, openBackground, openCard

Delete a stack closeCard, closeBackground, closeStack, deleteStack
Paste a card closeCard, closeBackground, newBackground, newCard,

openBackground, openCard
Resume HyperCard resume, openStack, openBackground, openCard
Start up HyperCard startUp, openStack, openBackground, openCard
Message Order 139

C H A P T E R 9

Figure 9-0
Listing 9-0
Table 9-0
Control Structures and Keywords9
This chapter describes the nature of control structures and the control structure
vocabulary, which is made up of HyperCard keywords.

A keyword is a word whose meaning is predefined in HyperTalk. You cannot
redefine keywords as variable names. Keywords are not sent as messages when
they execute in scripts, nor can they be used in the Message box (except for do,
if, and send). Some keywords provide the structure for handlers; others
control the flow of execution within handlers.

HyperTalk has two kinds of handlers: message and function handlers, denoted
by the initial keywords on and function, respectively. Message and function
handlers are defined in the same way (except for the initial keyword), but
they differ in how they are invoked and in how they return values.

The syntax for each keyword is given. In the syntax statements, words in
italic represent general elements that you replace with a specific instance
when you write a statement; brackets ([]) denote optional elements (don’t
type the brackets).

Keywords in Message Handlers 9

The on keyword identifies a HyperCard message handler. Message handlers
are written to define your own messages, or to modify or redefine what
happens in response to any message (including a HyperTalk command). The
general syntax of a message handler looks like this:

on messageName [parameterList]
statementList

end messageName
Keywords in Message Handlers 141

C H A P T E R 9

Control Structures and Keywords
MessageName is an identifier: a string starting with a letter and containing no
spaces or punctuation marks except underscore; parameterList is a series of zero
or more parameter variables (separated by commas if more than one); and
statementList is one or more HyperTalk statements.

The handler dictates the method by which its object responds to messageName.
When a message called messageName is sent to an object, HyperCard checks all
of that object’s message handlers to see if it has one named messageName. If
so, the object responds according to that handler, and the message is sent no
further (assuming the script has no pass statement, described later in this
chapter). If the object has no handler to match messageName, HyperCard passes
the message to the next object in the hierarchy.

You can override HyperTalk
If you name a message handler the same as a built-in
command, your name overrides the built-in one if yours is
anywhere along the message-passing hierarchy between
the object sending the message and HyperCard. ◆

The statements in the handler execute until an end, exit, pass, or return
keyword is reached (these keywords are discussed later in this section). A
message handler can return a value through the built-in function the result
(discussed in Chapter 11, “Functions”).

On 9

on messageName [parameterList]

The on keyword marks the beginning of a message handler and connects the
handler with a particular message. MessageName is the first word of the
message to which the handler responds, and it is the name of the handler.

The optional parameterList allows the message handler to receive some values
sent along with the message. This list is a series of local variable names, called
parameter variables, separated by commas. When the message is sent, each
source of value following the message name is evaluated; when the handler
receives the message, each value is plugged into the parameter variable that
appears in the corresponding position following on messageName. The first
value in the list goes into the first parameter variable, and so on. If no values
are sent with the message name, empty goes into each parameter variable.
142 Keywords in Message Handlers

C H A P T E R 9

Control Structures and Keywords
Chapter 4, “Handling Messages,” explains more about parameter passing.
See also the param, paramCount, and params functions in Chapter 11,
“Functions.”

End 9

end messageName

The end keyword begins the last line of a handler—it is reached when all of the
handler’s statements have been executed (except for any bypassed conditional
blocks). When the end statement is reached, the message that initiated
execution of the handler is sent no further unless a pass messageName
statement follows the end statement. (Pass is defined later in this section.)
If the message that initiated this handler’s execution was part of some other
handler, control passes back to the other handler.

Exit 9

exit messageName
exit to HyperCard

The exit messageName statement ends execution of the handler.

The exit to HyperCard form makes program flow return directly to
HyperCard, bypassing any pending handlers that have not finished executing.

Pass 9

pass messageName

The pass messageName statement ends execution of the handler and sends the
entire message that initiated execution of the handler to the next object in the
hierarchy. (Ordinarily, a message is sent no further than the object containing
the executing handler.)
Keywords in Message Handlers 143

C H A P T E R 9

Control Structures and Keywords
Return 9

return expression

The return statement ends execution of the handler and, when it appears
within a message handler structure, places the value of expression into the
HyperTalk function the result.

The value of the result set by the return statement is valid only
immediately after it executes; each new statement resets the result.
(See the result function in Chapter 11, “Functions,” for examples.)

Message Handler Example 9

The following example shows a handler that originates a message that in turn
initiates execution of a second handler. (The second handler could be in the
same script as the first or anywhere farther along the object hierarchy.)

on mouseUp

heyNow 5,10 -- heyNow is the message name that's sent

end mouseUp

on heyNow timeVar,timeVar2 --Handler name heyNow matches message name

play "boing" tempo 200 "c4e c dq c f eh" -- Happy Birthday

wait timeVar seconds

play stop

play "harpsichord" "ch d e f g a b c5w"

wait timeVar2 seconds

play stop

end heyNow

Execution of the first handler is initiated when its object receives a mouseUp
message. The mouseUp message could be generated when the user clicks the
mouse or types mouseUp in the Message box and presses Return. It could also
originate from another handler executing the statement mouseUp or could be
sent explicitly to the handler’s object with a send command.
144 Keywords in Message Handlers

C H A P T E R 9

Control Structures and Keywords
When the mouseUp handler executes, it sends its one command statement
(heyNow 5,10) as a message, first to its own object. The message name (the
first word of the message) matches the handler name (the word following on in
the first line of the handler), so the statements in the second handler begin
executing. (If the current object had no heyNow message handler, that object
would pass the entire message on to the next object in the hierarchy.)

The values of the parameters following heyNow in the first handler are passed
into the parameter variables following heyNow in the second handler. So when
the second handler is executing, timeVar has the value 5, and timeVar2 has
the value 10.

Keywords in Function Handlers 9

A function is a named value that is calculated by HyperCard when a statement
in which it’s used executes. The function keyword identifies a HyperCard
function handler. You can use this structure to define your own functions, which
then can be called from any place in a statement where their values are needed.
(User-defined functions are called like built-in HyperCard functions except that
you must always use parentheses—see “Return,” later in this section.)

Like message handlers, function handlers cannot be nested inside each other
(or inside message handlers). The general syntax of a function handler looks
like this:

function functionName [parameterList]
statementList

end functionName

FunctionName is an identifier: a string starting with a letter and containing no
spaces or punctuation marks except underscore; parameterList is a series of zero
or more parameter variables separated by commas; and statementList is one or
more HyperTalk statements.

User-defined function handlers use the message-passing hierarchy in the same
way as do message handlers. That is, when the function name appears in a
statement or in the Message box, HyperCard searches through all of the scripts
along the current message-passing hierarchy for a matching function handler. If
Keywords in Function Handlers 145

C H A P T E R 9

Control Structures and Keywords
a match is found, the function handler executes. If none is found, the function
call is passed to HyperCard; if there is no built-in function of that name,
HyperCard displays an error dialog box.

If you name a function handler the same as a built-in function, your function
is called when you use the function call syntax that uses parentheses. Of
course, your function handler must also be in the script of an object lower or
equal in the hierarchy than the originator of the function call. You can make
calls to built-in functions using the function call syntax with the preceding
the function name, which bypasses the message-passing hierarchy and calls
HyperCard built-in functions directly.

Program flow runs through the function handler until it encounters an end,
exit, pass, or return statement (discussed later in this section). A function
handler returns a value directly into the statement in which its name was used.

Function 9

function functionName [parameterList]

The function keyword marks the beginning of a function handler and
connects the handler with a particular function call. FunctionName is the
function call to which the handler responds, and it is the name of the handler.

The optional parameterList allows the function handler to receive some values
sent along with the function call. This list is a series of local variable names,
called parameter variables, separated by commas. When the function call is
made, each source of value appearing between parentheses following the
function name is evaluated; when the handler begins to execute, each value is
plugged into the parameter variable that appears in the corresponding position
following function functionName, the first value in the list going into the first
parameter variable, and so on.

For more details on passing parameters to function handlers, see “Return,”
later in this section.
146 Keywords in Function Handlers

C H A P T E R 9

Control Structures and Keywords
End 9

end functionName

The end statement is the last line of the handler, reached when all of
the handler’s statements have been executed (except for any bypassed
conditional blocks).

When the end statement is reached, control passes back to the handler
containing the function call that originated the function handler’s execution.

Exit 9

exit functionName
exit to HyperCard

The exit functionName statement ends execution of the handler.

The exit to HyperCard form makes program flow return directly to
HyperCard, bypassing any pending handlers that have not finished executing,
including the handler containing the function call.

Pass 9

pass functionName

The pass statement ends execution of the handler and sends the entire
function call that initiated execution of the handler to the next object in
the hierarchy. (Ordinarily, a function call is sent no further than the object
containing the executing handler.)
Keywords in Function Handlers 147

C H A P T E R 9

Control Structures and Keywords
Return 9

return expression

The return statement ends execution of the handler and, when it appears
within a function handler structure, dictates the returned value of the function.

The value of expression replaces the function in the calling statement.

The function appears in the calling statement in the form functionName
(expressionList):

put square(17) into card field 1

ExpressionList is a series of zero or more expressions separated by commas
whose values are assigned to the parameter variables in the parameterList
of the function handler. In the above example, the expressionList comprises
only the number 17.

A user-defined function handler that would respond to the function call
example square(17), shown above, is

function square x

return x * x

end square

In this example, the function handler has one parameter variable to receive one
value passed to it by the calling statement. The value 17 is passed to the
function handler, where it is assigned to the parameter variable x; the value of
x * x is returned by the return statement, replacing square(17) in the
calling statement. So, the effect of the calling statement is to put the value 289
into card field 1.

Parentheses required
User-defined functions are always followed by parentheses
(which are empty if there are no parameters to pass).
Unlike built-in functions (explained in detail in
Chapter 11), user-defined functions can’t be called with
the form the function of. ◆
148 Keywords in Function Handlers

C H A P T E R 9

Control Structures and Keywords
Function Handler Example 9

The following function handler determines whether a number passed to it as a
parameter is even or odd, returning the constant true if it’s even or false if
it’s odd:

function evenNumber numberPassed

return numberPassed mod 2 is 0

end evenNumber

A calling statement that would invoke the evenNumber function handler
could be one like the following:

if evenNumber(numberVariable) then add 1 to evenNumberCount

In the calling statement, numberVariable can be the name of any variable or
other source of value (including an actual number). HyperCard evaluates
numberVariable before it passes the function call along the hierarchy, and its
value is given to the parameter variable numberPassed when the evenNumber
function handler is found. The part of the calling statement following then is
arbitrary—the point of the example is to show how the function handler receives
a value, examines it, and returns another value into the calling statement, based
on the result of its execution.

Repeat Structure 9

The repeat structure causes all of the HyperTalk statements between its first
and last lines to execute in a loop until some condition is met or until an exit
statement is encountered. The general syntax of a repeat structure looks
like this:

repeat controlForm
statementList

end repeat

ControlForm is one of the forms of the repeat statement described below, and
statementList is any number of HyperTalk statements. Repeat structures can be
used only within message handlers or function handlers.
Repeat Structure 149

C H A P T E R 9

Control Structures and Keywords
Note
If you want to try the examples in this chapter, be sure to
put them within handlers. ◆

Repeat Statements 9

The repeat keyword begins the first line of a repeat structure. The repeat
statement has five forms differentiated by the second word of the statement.
Additionally, the repeat with form has two variations.

Repeat Forever 9

repeat [forever]

The loop repeats forever, or until an exit statement is encountered (whichever
comes first):

put 1 into Message box

repeat

add 1 to Message box

if Message box contains 6 then exit repeat

end repeat

The example ends with 6 in the Message box.

For information on exit repeat, see “Exit Repeat Statement,” later in this
chapter. For information on if, see “If Structure,” later in this chapter.
150 Repeat Structure

C H A P T E R 9

Control Structures and Keywords
Repeat For 9

repeat [for] number [times]

Number is a source that yields a positive integer specifying how many times the
loop is executed:

put 1 into Message box

repeat for 5 times

add 1 to Message box

end repeat

The example ends with 6 in the Message box.

Repeat Until 9

repeat until condition

Condition is an expression that always evaluates to true or false. The loop is
repeated as long as the condition is false. The condition is checked prior to
the first and any subsequent executions of the loop:

put 1 into Message box

repeat until Message Box contains 6

add 1 to Message box

end repeat

The example ends with 6 in the Message box.
Repeat Structure 151

C H A P T E R 9

Control Structures and Keywords
Repeat While 9

repeat while condition

Condition is an expression that evaluates to true or false. The loop is
repeated as long as the condition is true. The condition is checked prior
to the first and any subsequent executions of the loop:

put 1 into Message box

repeat while Message Box < 6

add 1 to Message box

end repeat

The example ends with 6 in the Message box.

Repeat With 9

There are two variations of the repeat with form: one that increments a
variable and one that decrements a variable.

repeat with variable = start to finish

Variable is a local or global variable name, and start and finish are sources of
integers. The value of start is assigned to variable at the beginning of the loop
and is incremented by 1 with each pass through the loop. Execution ends when
the value of variable equals the value of finish.

repeat with increment = 1 to 6

put increment into the Message box

end repeat

The example ends with 6 in the Message box. (This structure works much like
a FOR...NEXT loop in BASIC.)

repeat with variable = start down to finish
152 Repeat Structure

C H A P T E R 9

Control Structures and Keywords
The down to form is the same as the to form above, except that the value of
variable is decremented by 1 with each pass through the loop. Execution ends
when the value of variable equals the value of finish.

repeat with decrement = 6 down to 1

put decrement into the Message box

end repeat

The example ends with 1 in the Message box.

Exit Repeat 9

exit repeat

The exit repeat statement sends control to the end of the repeat structure,
ending execution of the loop regardless of the state of the controlling condi-
tions specified in the repeat statement.

put 1 into the Message box

repeat with increment = 1 to 100

add increment to the Message box

if Message box > 20 then

beep 5

exit repeat

end if

end repeat

The example ends with 22 in the Message box.

An exit statement can appear anywhere within the structure.

For information on if, see “If Structure,” later in this chapter.
Repeat Structure 153

C H A P T E R 9

Control Structures and Keywords
Next Repeat 9

next repeat

When a next repeat statement is encountered, control returns immediately
to the top of the structure. (Usually, flow doesn’t return to the top of the repeat
structure until an end statement is encountered.)

repeat 20

put random(9) into tempVar

if tempVar mod 2 = 0 then next repeat

put tempVar after field "oddNumbers"

end repeat

The example appends only the odd random numbers to the field, skipping any
even ones.

A next statement can appear anywhere within the repeat structure.

For information on if, see “If Structure,” later in this chapter. For more
information about the random function, see Chapter 11, “Functions.”

End Repeat 9

end repeat

The end repeat statement marks the end of the loop; it’s the last line of a
repeat control structure. When the controlling conditions specified in the
repeat statement have been satisfied or an exit statement is encountered,
control goes beyond the end statement:

repeat for 5 times

beep

end repeat
154 Repeat Structure

C H A P T E R 9

Control Structures and Keywords
If Structure 9

The if structure tests for the specified condition and, if the condition is true,
executes the command statement or series of command statements that follow.
The if structure has several forms, described in the following sections.

Note
If you want to try the examples in this section, be sure to
put them within handlers. ◆

Single-Statement If Structure 9

A single-statement if structure has the form shown below:

if condition then statement [else statement]

A single-statement if structure can also occupy more than one line:

if condition
then statement
[else statement]

Within the if structure, condition is an expression that evaluates to true or
false, and statement is a single HyperTalk command statement.

In the single-statement if structure, only one command statement can follow
either then or else (if present), and the command statement must be on the
same line with then or else.

If the condition between if and then is true, HyperCard executes the state-
ment between then and else if else is present, or between then and the end
of the line if else is not present following the statement, either on the same
line or on the next line.
If Structure 155

C H A P T E R 9

Control Structures and Keywords
If the condition between if and then is false, HyperCard executes the state-
ment between else and the end of the line if else is present, or it ignores the
rest of the line if else is not present:

if Message box > 10 then beep 5 else beep 15

In this example, if the Message box holds a value greater than 10, the
Macintosh beeps 5 times; if the value in the Message box is 10 or less,
the Macintosh beeps 15 times.

Note
Single-statement if structures can be used in the
Message box. ◆

Multiple-Statement If Structure 9

A multiple-statement if structure accommodates more than one executable
statement following then and, optionally, more than one statement
following else:

if condition then
statementList

[else

statementList]
end if

You can also end a multiple-statement then clause with a single-line else, in
which case no end if statement is needed:

if condition then
statementList

else statement

Condition is an expression that evaluates to true or false, and statementList is
any number of HyperTalk statements.
156 If Structure

C H A P T E R 9

Control Structures and Keywords
In the multiple-statement if structure, more than one command statement can
follow either then or else (if present), and the first command statement must
be on the line following then or else. That is, if you want to have more than
one statement in a block following then or else, put a return character after
the respective then or else. Such a multiple-statement block must be ended
explicitly: a multiple-statement then block can be ended with either end if
or else; a multiple-statement else block must be ended with end if.

If the condition between if and then is true, HyperCard executes the state-
ment or statements between then and else if else is present, or between
then and end if if else is not present.

If the condition between if and then is false, HyperCard executes the
statements between else and end if if else is present, or it ignores
what’s between then and end if if else is not present:

if number of this card is 10 then

put "We're done!" into msg

go Home

else

put "And the next question is:" into msg

go next card

end if

Note
Multiple-statement if structures can be used only within
message handlers or function handlers. ◆

Nested If Structures 9

If structures can be nested; that is, statements following a then or an else
can include more if structures. Each nested multiple-line if structure must
have its own end if, and an else always goes with the closest preceding
if clause.
If Structure 157

C H A P T E R 9

Control Structures and Keywords
The next example could be used as a mouseUp handler within a button.

repeat

ask "Guess a number between 1 and 10:"

if it is empty then

exit repeat

else

if it is random(10) then

put "You guessed it!"

else

put "Sorry, try again."

end if

end if

end repeat

In this example, satisfying the if it is empty condition in the first if
structure allows the user to exit the loop by selecting the OK button without
entering a number in the dialog box that is created with the ask command.
Executing this example without the first if structure results in an endless loop,
which you can exit by simultaneously clicking the Cancel button and pressing
the Command-period keys.

Note
Nested-statement if structures can be used only within
message handlers or function handlers. ◆

Do 9

do expression
do expression [as scriptingLanguage]

The do keyword causes HyperCard to get the value of expression; HyperCard
then sends that value as a message. (The do keyword in HyperTalk does not
work like the do in Pascal does.)
158 If Structure

C H A P T E R 9

Control Structures and Keywords
You can use the do expression [as scriptingLanguage] form to execute scripts
in any scripting language supported by an OSA-compliant scripting
component, as well as HyperTalk. Here are some examples:

do field 1 as AppleScript

do "people.dw.stuff = 1" as UserTalk

In versions of HyperCard before HyperCard 2.0, if expression was a field with
more than one line, only the first line of the field was used by HyperCard
and any lines that followed were ignored. HyperCard now evaluates any
expression after the do keyword and sends it as a command. For example, if
field 3 contains several lines of HyperTalk code and you say do field 3, the
entire contents of field 3 are sent to HyperCard. Each line of the container
executes just as if it were contained in a handler.

The do keyword can be used in the Message box.

Global 9

global variableList

VariableList is one or more HyperCard variable names separated by commas.

The global keyword makes a variable name known and its contents available
to any script of any object in HyperCard. The following two lines are
individual examples of global statements:

global myVar

global pages,sections,chapters

The following example handlers show a global variable being used for two
handlers to access the same value:

on mouseUp

global myVariable -- load the global here

put 3 into myVariable

writeResult

end mouseup
If Structure 159

C H A P T E R 9

Control Structures and Keywords
on writeResult

global myVariable -- now we can use the global

put myVariable -- the value remains 3

end writeResult

Changing the value of a global variable in any script changes its value every-
where. The global keyword must be used in each handler in which the global
variable is used.

Global variables are not saved in between sessions of HyperCard or when
HyperCard is suspended by launching another application with the open
command.

Send 9

send expression to program programName [with|without reply]
send expression to program ID programID [with|without reply]
send expression to this program [with|without reply]
send "messageName [parameterList]" [to object]

Expression is any valid expression or sequence of commands in the scripting
language supported by the target program, programName is the pathname of
the application to send the message to, programID is the signature of the
application to send the message to, messageName is a string beginning with a
letter and containing no spaces or punctuation marks other than underscore,
parameterList is one or more expressions (separated by commas if more than
one), and object is a HyperCard object descriptor or HyperCard itself. If no
object is specified, the message continues along the message-passing hierarchy.
(See Chapter 4, “Handling Messages,” for information on how the message-
passing hierarchy works.)

The send keyword sends a message directly to a particular object, bypassing
any handlers in the intervening message-passing hierarchy that might
otherwise intercept the message.
160 If Structure

C H A P T E R 9

Control Structures and Keywords
send "hideIt" to field 3

send "addSums travel,food,hotel" to stack "expenseAccount"

send mouseUp to button "pushMe"

send "doMenu Print Card" to HyperCard

send "make waves" to program "FishingNet:MyHD:HyperCard"

send "build {project}" to program "MPW Shell" without reply

You can send a message directly to any object in the current stack or to another
stack, but not to a specific object in another stack.

If the object has no message handler for messageName, the message is passed
along the message-passing hierarchy stemming from the object to which the
message was sent. If the object does have a matching handler, the handler
executes, but the card to which it belongs does not necessarily open. Messages
sent by executing the statements of the object’s handler are sent along the
receiving object’s hierarchy.

The send expression to program form sends a "do script" Apple event
from HyperCard to another application running remotely. You can use it to
send a script to any program that understands the standard 'dosc' Apple
event. By default, HyperCard waits for a reply from the target program before
continuing. However, you can specify with the [without reply] option if
you don’t want to wait for a reply.

If the target program is running on a different Macintosh you must specify the
Macintosh name; if it is in a different zone you must specify that also. The form
of such a full pathname is zone:Macintosh:program.

SCRIPT

The following handler directs a copy of HyperCard 2.2 on a Macintosh compu-
ter named “MyMac,” in the same zone as the sending computer, to go to the
last card of its currently active stack. It then checks the result to make sure that
the command executed:

on changeRemoteCard

send "go last card" to program "MyMac:HyperCard 2.2"

if the result is not empty -- problems?

then answer "Error during send!"

end changeRemoteCard
If Structure 161

C H A P T E R 9

Control Structures and Keywords
The next handler sends a message to a copy of HyperCard running on a
Macintosh computer named “Oahu” on a network zone named “Hawaii.”
The message tells the remote copy of HyperCard to execute the handler
“doThisNow,” already defined in the remote stack:

on doRemoteHandler

send "doThisNow" to program "Oahu:Hawaii:HyperCard 2.2"

end doRemoteHandler

NOTES

When sending Apple events to another program, if HyperCard has not
established a link with the target program, the user is presented with a
dialog box, through which the link is established. If a link has already been
established between HyperCard and the target program, the Apple event
is sent without further user interaction.

The following error messages go into the container the result of the source
program when the send fails:

Chapter 4, “Handling Messages,” has more information about how the send
command interacts with the message-passing hierarchy.

Parameter expressions are evaluated before they are sent, even though the
entire message has quotation marks around it.

Condition the result contents

Information returned is not recognized
by HyperCard as text

Unknown data type

System software prior to version 7.0 Not supported by this version of
the system

Target program didn’t handle event Not handled by target program

Target program returned error number
in reply, or AESend returned some
other error

Got error <errorNum> when
sending Apple event

Target program returned error string
in reply

<errorString>

Target program timed out Timeout

User canceled “Link to program” dialog Cancel
162 If Structure

C H A P T E R 9

Control Structures and Keywords
The send keyword does not change cards when a message is sent to an object
on a card other than the current card, or cause HyperCard to send open or
close messages to cards, backgrounds, or stacks. For example, if you are on
the second card and send a message to a button on the ninth card in the stack,
the ninth card doesn’t get an openCard message.

You can use it in the Message box
The do, if, and send keywords, unlike all other
keywords, work in the Message box. ◆
If Structure 163

C H A P T E R 1 0

Figure 10-0
Listing 10-0
Table 10-0
Commands 10
This chapter describes all the commands in HyperTalk, showing their syntax
and meaning.

HyperTalk commands are built-in message handlers that reside in HyperCard
itself. When you issue a HyperTalk command, it’s passed along the message-
passing hierarchy as a message to HyperCard. In most cases there’s no handler
in any script along the way to intercept the message, so HyperCard receives the
message and acts on it.

Some commands (such as arrowKey) are system messages as well as com-
mands. This means two things: a system event can generate the message
(pressing an arrow key generates the arrowKey message), and HyperCard has
a built-in response to the message (arrowKey takes you to another card).

Redefining Commands 10

You can write a message handler that redefines a built-in command. Redefining
commands is especially useful for trapping menu commands you want to
modify or that you want to prevent a user from issuing (for example, on
doMenu menuItem).

Be wary, however: once a command—or any message—has been intercepted
by a handler, it’s sent no further along the hierarchy, so your newly defined
command replaces HyperCard’s built-in one. If, for example, you write a
Redefining Commands 165

C H A P T E R 1 0

Commands
handler for the doMenu command, be sure to pass the message if you don’t
want to prevent every instance of it from reaching HyperCard:

on doMenu menuItem

if menuItem is "Delete Card" then

answer "Are you sure?" with "Delete" or "Cancel"

if It is not "Delete" then exit doMenu

end if

pass doMenu

end doMenu

If you inadvertently fail to pass doMenu, you may find yourself apparently
unable to use any menu command, even to fix the doMenu handler. (In that
case, from the Message box, execute the command edit script for the
object containing the handler. If the Message box is hidden and blind typing
is false, go to the last card of the Home stack and turn blind typing on.)

Syntax Description Notation 10

The syntax descriptions use the following typographic conventions. Words or
phrases in this font are HyperTalk language elements or are those that you
type to the computer literally, exactly as shown. Words in italics describe
general elements, not specific names—you must substitute the actual instances.
Brackets ([]) enclose optional elements that may be included if you need
them. (Don’t type the brackets.) In some cases, optional elements change what
the message does; in other cases they are helper words that have no effect
except to make the message more readable.

It doesn’t matter whether you use uppercase or lowercase letters; names that
are formed from two words are shown in lowercase letters with a capital in the
middle (likeThis) merely to make them more readable.

The term yields indicates a specific kind of value, such as a number or a text
string, that must result from evaluation of an expression when a restriction
applies (for example, the expression and the destination in an add command
must yield numbers). However, any HyperTalk value can be treated as a
text string.
166 Syntax Description Notation

C H A P T E R 1 0

Commands
Some of the syntax statements and examples in this chapter use the soft return
(¬) character to continue long statements onto the next line. The soft return is
used here because of the line length limitations of the page format used in this
chapter. You should avoid using soft returns in your scripts so that the
statements in your handlers are easier to read.

System 7 Commands 10

Some commands require system software version 7.0 or later. If you try to run a
script with any of these commands in them while running an earlier version of
system software, HyperCard sets the HyperTalk function the result to “Not
supported by this version of the system.”

Command Descriptions 10

The rest of this chapter describes the commands supported by HyperCard 2.2.

Add 10

SYNTAX

add number to [chunk of] container

Number is an expression that yields a number. Chunk is an expression that
yields a chunk of a container. Container is an expression that identifies a
container, such as a field, the Message box, the selection, or a variable.

EXAMPLES

add 3 to It

add field "Amount" to field "Total"
System 7 Commands 167

C H A P T E R 1 0

Commands
DESCRIPTION

The add command adds the value of number to the value of [chunk of]
container and leaves the result in [chunk of] container. The value in the
container when you begin must be a number; it is replaced with the new value.

SCRIPT

The following example handler sums numbers in a field, if each line of the field
contains one number, and puts the result into the Message box. The name of
the field is passed to the handler as a parameter.

on sumField whichField
put 0 into total
repeat with count = 1 to the number of lines¬

in whichField
add line count of whichField to total

end repeat
put total into msg

end sumField

Answer 10

SYNTAX

answer question [with reply [or reply2 [or reply3]]]
answer file promptText [of type fileType]
answer program promptText [of type processType]

Question and reply are expressions that yield text strings. If no reply is specified,
HyperCard displays one button containing OK.

PromptText is an expression that yields a string of text that will appear in the
dialog box as a prompt, telling the user what action to take. Use a string
consisting of the space character, "", if you do not want a prompt to appear. If
you are using the answer program form of the answer command and you
use the null string, "", for the prompt text parameter, HyperCard displays the
default prompt “Choose a program to link to:”. (See Figure 10-3.) PromptText
can be up to 254 characters.
168 Answer

C H A P T E R 1 0

Commands
Reply, reply2, and reply3 can be up to 254 characters each.

FileType is one of the following literal file types: stack, text, application,
picture, paint, and painting. You can also specify the same file types with
the following Macintosh four-letter file-type designators: STAK, TEXT, APPL,
PICT, and PNTG.

ProcessType is a System 7–friendly process currently running on your machine
or any others on the network.

EXAMPLES

answer "Which is the way the world ends?" with ¬

"Bang" or "Whimper"

answer myQuestion with myAnswer or field 7

answer file "Pick a text file:" of type text

answer file "" of type PICT

answer program "Pick a Zone, Macintosh, and Program."

DESCRIPTION

The answer command either displays a dialog box with a question and up to
three buttons, each representing a different reply, or displays a standard file
dialog box, with a list of either all the files of a certain type or a PPC Browser
that contains a list of all the System 7–friendly processes currently running on
your machine and any others on the network.

When you use the answer question form of the answer command, the last
reply you specify correlates to the default button in the resulting dialog box.
If no reply is specified, HyperCard displays one button containing OK. The
dialog box stays on the screen until one of the buttons is clicked. Pressing
Return or Enter has the same effect as clicking the default button.

When you use the answer file form of the answer command, HyperCard
displays a standard file dialog box containing your prompt and a list of files.
You can specify a file type using the fileType parameter. When your user selects
a file from the file list, its name is placed in the local variable It.
Answer 169

C H A P T E R 1 0

Commands
The answer program command displays a dialog box in which the user can
choose from all the System 7–friendly programs, or processes, running on the
user’s Macintosh computer or any other networked Macintosh computers.

When you select a program from the PPC Browser, its program path goes into
the local variable It. If you click the Cancel button or press the Command-
period keys, the variable It is empty and the result contains Cancel.

SCRIPT

The following example handler produces the dialog boxes in Figure 10-1 (the
second one depends on which button you click in the first one):

on chooseColor

answer "Which color do you prefer?" with "Red" or¬

"Blue" or "Yellow"

if It is "Red" then answer "You picked Red."

else if It is "Blue" then answer "You picked Blue."

else if It is "Yellow" then answer "You picked Yellow."

end chooseColor

Figure 10-1 Answer command dialog boxes
170 Answer

C H A P T E R 1 0

Commands
The following example handler displays the standard file dialog box shown in
Figure 10-2.

on mouseUp

answer file "Print what document?" of type text

if It is not empty then

put It into doc

answer file "Use what application?" of type ¬

application

if It is not empty then print doc with It

end if

end mouseUp

Figure 10-2 Answer command display of the standard file dialog box

Execute the following line of code from either a script or the Message box to
produce the PPC Browser shown in Figure 10-3.

answer program ""
Answer 171

C H A P T E R 1 0

Commands
Figure 10-3 The PPC Browser produced using the answer program command

NOTES

There is no way for a script to reply to a dialog box by itself, so it’s important
that a script meant to run unattended not use answer.
The text of the button clicked goes into the local variable It. If no reply is
specified, HyperCard displays one button containing OK.

The question can be up to 14 lines or 254 characters.

If you use a container with more than one line for a reply, the middle line is
displayed in the button. (Only the center portion shows if the line is too long
to fit in the button.) However, all lines go into the local variable It when
the button is clicked.

Unless you’re using container names, put the question and the replies inside
quotation marks if they contain any spaces.

If you do not supply a file type for the answer file form, all file types are
displayed in the dialog box. If you try to execute answer program under
System 6, the result returns “Not supported by this version of the system”.

See also the ask command, later in this chapter.
172 Answer

C H A P T E R 1 0

Commands
ArrowKey 10

SYNTAX

arrowKey direction

Direction is an expression that yields the name of one of the arrow keys: left,
right, up, or down.

EXAMPLES

arrowKey left

arrowKey down

DESCRIPTION

The arrowKey command takes you to another card. The effects of the
arrowKey command are shown in Table 10-1.

The arrowKey message, which invokes the arrowKey command if it reaches
HyperCard, is normally generated by pressing any of the arrow keys on the
keyboard. (Which arrow key you press determines the message’s parameter
value.) You can also send arrowKey from the Message box or execute it as a
line in a script.

Table 10-1 Effects of the arrowKey command

Parameter value Effect

left Go to previous card in current stack

right Go to next card in current stack

up Go forward through recent cards

down Go back through recent cards
ArrowKey 173

C H A P T E R 1 0

Commands
Note
The textArrows property alters the effect of pressing the
arrow keys (see “TextArrows” in Chapter 12), but it does
not affect the arrowKey command. ◆

See also the arrowKey message in Table 8-3.

SCRIPT

The following example handler works with extended keyboards. It makes
function keys 9, 10, 11, and 12 send the arrowKey message with parameters
of left, right, up, and down, respectively:

on functionKey whichKey -- map function keys to arrow keys

if whichKey is 9 then arrowKey left

else if whichKey is 10 then arrowKey right

else if whichKey is 11 then arrowKey up

else if whichKey is 12 then arrowKey down

else pass functionKey

end functionKey

Ask 10

SYNTAX

ask question [with defaultAnswer]
ask password [clear] question [with defaultAnswer]
ask file promptText [with fileName]

Question and defaultAnswer are expressions that yield text strings. PromptText is
an expression that yields a text string. FileName is an expression that yields a
default filename to be displayed in the filename field of the dialog box.

Put the question and the default answer inside quotation marks if they contain
any spaces or if they are telephone numbers containing a hyphen (see the
example script), unless you’re using container names.
174 Ask

C H A P T E R 1 0

Commands
EXAMPLES

ask "Who needs this kind of grief?" with "Not me."

ask field 1 with line 1 of field 2

ask password "Please enter your password:"

ask file "Save this file as:" with "MyTextFile"

ask file ""

DESCRIPTION

The ask command displays a dialog box containing a question with a text box
into which the user can type an answer. The optional defaultAnswer string
specifies an answer that appears initially in the window, highlighted so it can
be easily replaced. The dialog box appears with OK and Cancel buttons. The
question and defaultAnswer can have up to 14 lines between them for all text to
display properly.

The ask password form causes the answer to be encrypted as a number
(which is placed into the local variable It). The encrypted answer can be
stored in a field to be compared to a later answer to ask password if, for
example, you want the user to be able to protect data he or she enters into the
stack. Password protection built into a stack in this manner is separate from
that set up by the Protect Stack command in the File menu. The text entered in
the password dialog box is hidden from the user. Like the ask form, the ask
password form’s question and defaultAnswer can have up to 14 lines between
them for all text to display properly.

The ask file form of the ask command displays a standard dialog box for
saving files. You can use the optional fileName form of the command to place a
default filename in the filename text entry field of the dialog box. The fileName
string should be 23 characters or less in length to fit into the text entry field.
The default filename is replaced by the user when the user starts typing. If you
do not supply a default filename, the filename text entry field is empty when
the dialog box is displayed.

The promptText string should be 7 lines or less to fit into the dialog box. If you
do not want a prompt, use "".
Ask 175

C H A P T E R 1 0

Commands
SCRIPT

The following example handler produces the dialog box in Figure 10-4:

on phone

ask "Dial what number:" with "555-1212"

if It is not empty then dial It

end phone

Figure 10-4 Ask command dialog box

NOTES

The text typed into the box (the answer to the question, the password, or the
filename) goes into the local variable It, either when the OK button is clicked
or when Return or Enter is pressed. If the Cancel button is clicked, the dialog
box goes away, but the answer is not placed into It. The function the result
returns “Cancel”.

If you use the ask password clear form of the ask password command,
the password is not encrypted when it is typed in the dialog box.

Unless you’re using container names, put the question and the default answer
inside quotation marks if they contain any spaces (or if, as in the example, they
are telephone numbers containing a hyphen—to prevent HyperCard from
doing subtraction).

See also the answer command, earlier in this chapter.
176 Ask

C H A P T E R 1 0

Commands
Beep 10

SYNTAX

beep [number]

Number is an expression that yields an integer.

EXAMPLES

beep 5

beep line 3 of field 1

DESCRIPTION

The beep command causes the Macintosh speaker to play the system beep
sound number times. If no number is given, the speaker sounds the system
beep once.

SCRIPT

The following example handler uses the beep command to alert the user that
an answer dialog box, to which the user must reply, is being displayed:

on openStack

beep 2

answer "Do you need instructions?" with "Yes" or "No"

if It is "Yes" then go to stack "Instructions"

end openStack
Beep 177

C H A P T E R 1 0

Commands
Choose 10

SYNTAX

choose toolName tool
choose tool toolNumber

ToolName is an expression that yields the name of any one of the tools from the
HyperCard Tools palette (shown in Figure 10-5). ToolNumber is an expression
that yields an integer from 1 to 18.

EXAMPLES

choose browse tool

choose tool 11

choose eraser tool

DESCRIPTION

The choose command changes the current tool as though you had chosen it
from the Tools palette. Valid tool names and numbers are

browse (1) oval (14)

brush (7) pencil (6)

bucket (13) poly[gon] (18)

button (2) rect[angle] (11)

curve (15) reg[ular] poly[gon] (17)

eraser (8) round rect[angle] (12)

field (3) select (4)

lasso (5) spray [can] (10)

line (9) text (16)
178 Choose

C H A P T E R 1 0

Commands
Figure 10-5 Tools palette

SCRIPT

The following example shows a typical use of the choose command in
a handler:

on drawBox

reset paint

choose rectangle tool

set lineSize to 2

drag from 50,50 to 150,150

choose browse tool

end drawBox

NOTES

You must have the user level set to Painting, Authoring, or Scripting to use the
choose command, but the Tools palette need not be visible.

You can get the name of the current tool by using the function the tool in a
handler or the Message box.

Setting user levels is described in the HyperCard Reference and in the userLevel
global property description in Chapter 12, “Properties.” The tool function is
described in Chapter 11, “Functions.”

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

Choose 179

C H A P T E R 1 0

Commands
Click 10

SYNTAX

click at point [with key [,key2[,key3]]]

Point is an expression yielding a point: two integers separated by a comma,
representing horizontal and vertical pixel offsets (respectively) from the top-left
corner of the card. Key, key2, and key3 are expressions that yield one of the
following key names, separated by commas: shiftKey, optionKey, or
commandKey (or cmdKey).

EXAMPLES

click at 100,100

click at the loc of button "Press me" with optionKey

DESCRIPTION

The click command causes the same actions as though you had clicked
with the pointer at the specified point on the screen: the system messages
mouseDown and mouseUp are sent to the objects under the pointer (but the
visible pointer is not moved from its current location).

Using a with key form produces the same result as clicking the mouse button
while holding down the specified key (or keys).

If point is within an unlocked field, the insertion point is set: if there is text at or
past point, the insertion point is set at point; if there is text on the same line as
point but point is beyond the end of text, the insertion point is set at the end of
text on that line; if there is no text at point, the insertion point is set at the start
of the line.

You can select a word by double-clicking it (that is, by executing the click
command twice in succession at the location of the word). You can select
any string of text by using click at the beginning, then using click with
shiftKey at the end of the string.
180 Click

C H A P T E R 1 0

Commands
SCRIPT

The following example handler selects and displays a word from a locked field
when you click the word (mouseUp is not sent to unlocked fields when you
click them):

on mouseUp

set lockText of me to false

click at the clickLoc -- simulates double-click

click at the clickLoc

get the selection

put It into the Message box

set lockText of me to true

end mouseUp

NOTES

The pixel offset values of point are not restricted to the size of the screen but are
misinterpreted if greater than 32767.

See also the drag command, later in this chapter.

Close 10

SYNTAX

close [docPathname [in|with]] appPathname

DocPathname is an expression yielding a text string that is a valid document
name. AppPathname is an expression yielding a text string that is a valid
application name or desk accessory.

You must provide the full pathname of the document if it cannot be found
through the search paths. When running System 7, both parameters,
docPathname and appPathname, can refer to Finder alias files.
Close 181

C H A P T E R 1 0

Commands
EXAMPLES

close "HD:Applications:TeachText 7.1"

close "TestDoc" with "HD:MyApp 1.0"

DESCRIPTION

The close command closes an application, a document opened with another
application, or a desk accessory, by sending one of the Apple event messages
quit or clos to the other application. The form close [docPathname
[in|with]] appPathname sends the clos Apple event, and the form close
appPathname sends a quit Apple event.

The other application or desk accessory must be on the same Macintosh
computer as HyperCard, and that Macintosh computer must be running
System 7. Also, the other application must recognize the Apple event quit
to close itself and the Apple event clos to close a document. (See also the
system message appleEvent described in Chapter 8, “System Messages.”)

SCRIPT

The following button handler closes a specific application after the user’s
intention is confirmed:

on mouseUp -- Button handler

answer "Are you sure you want to close"¬

&&"OtherHyperCard?" with "No" or "Yes"

if It is "Yes"

then close "MacHD:OtherHyperCard"

end mouseUp
182 Close

C H A P T E R 1 0

Commands
NOTE

The following error messages go into the container the result of the source
program when the close command fails:

Close File 10

SYNTAX

close file fileName

FileName is an expression that yields a text string that is a valid filename.

EXAMPLES

close file myData

close file "myDisk:myFolder:myFile"

Condition the result contents

Closing an application that’s not running No such application

Target program didn’t handle event Not handled by target program

Target program returned error number
in reply, or AESend returned some
other error

Got error <errorNum> when
sending Apple event

Target program returned error string
in reply

<errorString>

Target program timed out Timeout
Close File 183

C H A P T E R 1 0

Commands
DESCRIPTION

The close file command closes a disk file previously opened with the
open file command to import or export ASCII text. The expression fileName
must yield a valid Macintosh filename, including pathname if required.

SCRIPT

The following example handler reads any size text file into a global variable
named temp:

on importText

global temp

put "MyFilename" into filename

open file filename

read from file filename until end

put It into temp

close file filename

end importText

NOTES

If the specified file is not open, an error is generated. The error is stored in the
HyperCard function the result. Use the close file command to close
files explicitly after you use them. HyperCard automatically closes all open
files when an exit to HyperCard statement is executed, when you press
Command-period, or when you quit HyperCard.

You must provide the full pathname of the file if it’s not at the same directory
level as HyperCard. (See “Identifying a Stack” in Chapter 5 for an explanation
of pathnames.)

See also the open file, read, and write commands, later in this chapter,
and the result function in Chapter 11, “Functions.”
184 Close File

C H A P T E R 1 0

Commands
Close Printing 10

SYNTAX

close printing

DESCRIPTION

The close printing command ends a print job previously begun with the
open printing command or the open report printing command.
Nothing is actually printed until the close printing command is executed.

SCRIPT

The following example handler executes a printing job. It prints a specified
number of cards, beginning on a specified card:

on printRange low,high

push card

open printing

go to card low

print (high-low) + 1 cards

close printing

pop card

end printRange

NOTE

See also the open printing, open report printing, print, and print
card commands, later in this chapter.
Close Printing 185

C H A P T E R 1 0

Commands
Close Window 10

SYNTAX

close window window

Window is an expression that identifies a stack window or picture window.

DESCRIPTION

The close window command closes the specified stack. The close window
command works on stack windows only if more than one stack is open and the
stack is active (or frontmost). The close window command also works on
picture windows, external windows, and stacks that are hidden. When the
specified window is closed, a close system message is also sent by HyperCard.

EXAMPLE

close window "Planets"

NOTE

You cannot use the close window command on HyperCard’s built-in
palettes; use the hide command instead.

See also the go command in this chapter and the close system message
described in Chapter 8, “System Messages.”
186 Close Window

C H A P T E R 1 0

Commands
CommandKeyDown 10

SYNTAX

commandKeyDown char

Char is an expression yielding a character (spaces count as characters).

EXAMPLE

commandKeyDown "H" -- go Home

commandKeyDown "V" -- paste

commandKeyDown "5" -- doMyCommand

DESCRIPTION

The commandKeyDown command passes a character, char, which represents a
key pressed in combination with the Command key. HyperCard has various
built-in responses to the commandKeyDown command, depending on the
character passed with it.

You can use the commandKeyDown command to take advantage of the built-in
meanings for Command-key combinations in HyperCard. For example,
commandKeyDown "P" is the same as pressing the Command key and “P”
key together or selecting Print Card from the File menu.

You also can override HyperTalk Command-key combinations. If you name a
message handler the same as a built-in command, your name overrides the
built-in one if yours is anywhere along the message-passing hierarchy between
the object sending the message and HyperCard.

In the case of keys other than those built into HyperCard, nothing happens
when a given Command-key combination is pressed or a commandKeyDown
command is executed unless you have a handler for that Command-key
combination in the script of the current card or in a script somewhere in the
message-passing hierarchy between the current card and HyperCard.
CommandKeyDown 187

C H A P T E R 1 0

Commands
SCRIPT

The following example handler in a stack script in the current message-passing
hierarchy opens the Navigator palette at the coordinates 20,30 when it
intercepts the commandKeyDown system message and the parameter "Y". The
handler works either if the Command-Y key combination is pressed or if you
type the command commandKeyDown "Y" in the Message box.

on commandKeyDown whichKey

if whichKey = "Y" then

palette "navigator","20,30"

exit commandKeyDown

end if

pass commandKeyDown

end commandKeyDown

NOTES

CommandKeyDown is also a system message sent to the current card when the
Command key is pressed in combination with another key. See Table 8-3 for
more information.

See also the keyDown and controlKey commands in this chapter, and the
commandKey function in Chapter 11, “Functions.”

ControlKey 10

SYNTAX

controlKey keyNumber

KeyNumber is an expression that yields an integer between 1 and 127. The
values 97 through 126 do not correspond to any key.

EXAMPLE

controlKey 26
188 ControlKey

C H A P T E R 1 0

Commands
DESCRIPTION

The controlKey command passes a numeric value, keyNumber, which
represents a key pressed in combination with the Control key.

NOTES

ControlKey is also a system message sent to the current card when the Control
key is pressed in combination with another key. The acceptable values for the
keyNumber parameter are shown in Table 10-2.

There are no built-in meanings for Control-key combinations in HyperCard.
Nothing happens when a given Control-key combination is pressed or a
controlKey command is executed unless you have a handler for that Control-
key combination in the script of the current card or in a script somewhere in
the message-passing hierarchy between the current card and HyperCard.

See also the controlKey system message in Table 8-3.

Table 10-2 ControlKey message parameter values

Parameter
value Keys

Parameter
value Keys

1 a, Home 12 l, Page Down

2 b 13 m, Return

3 c, Enter 14 n

4 d, End 15 o

5 e, Help 16 p, all function keys

6 f 17 q

7 g 18 r

8 h, Delete 19 s

9 i, Tab 20 t

10 j 21 u

11 k, Page Up 22 v

continued
ControlKey 189

C H A P T E R 1 0

Commands
SCRIPT

The following example handler in a stack script in the current message-passing
hierarchy prints the current card when it intercepts the controlKey system
message and the parameter 16. The handler works either if the Control-P key

23 w 47 Slash (/)

24 x 48 0

25 y 49 1

26 z 50 2

27 Esc, Clear, left
bracket ([)

51 3

28 Backslash (\),
Left Arrow

52 4

29 Right bracket
(]),
Right Arrow

53 5

30 Up Arrow 54 6

31 Hyphen (-),
Down Arrow

55 7

39 Single
quotation
mark (')

56 8

42 Asterisk (*) 57 9

43 Plus (+) 59 Semicolon (;)

44 Comma (,) 61 Equal (=)

45 Minus (–) 96 Tilde (~)

46 Period (.) 127 Forward delete

Table 10-2 ControlKey message parameter values (continued)

Parameter
value Keys

Parameter
value Keys
190 ControlKey

C H A P T E R 1 0

Commands
combination is pressed or if you type the command controlKey 16 in the
Message box.

on controlKey whichKey

if whichKey = 16 then

doMenu "Print Card"

exit controlKey

end if

pass controlKey

end controlKey

Convert 10

SYNTAX

convert [chunk of] container|literal [[from format][and format]]
to format [and format]

Container is an expression that identifies a container, and format is an expression
that yields a time or date format. The optional [and format] specification is
used when both a date and time are included. Valid formats and their
meanings are as follows:

abbreviated date
abbrev date
abbr date

The date in text form with abbreviated day of week:
Tue, October 17, 1989.

abbreviated time
abbrev time
abbr time

Same form as short: 5:15 PM.

dateItems A comma-separated list of numbers representing (in
order) year, month, day, hour, minute, second, and
day of week.

long date The date in text form: Tuesday, October 17,
1989.
Convert 191

C H A P T E R 1 0

Commands
EXAMPLES

This line of code puts the content of the first line of the second card field into
the internationally invariant format dateItems:

convert line 1 of card field 2 from date to dateItems

If line 1 of card field 2 contains the date April 9, 1993, then HyperCard puts this
into card field 2: 1993,4,9,0,0,0,6. Other examples using the convert
command are

convert card field "Date and Time" from date and time to ¬

dateItems

convert timeVariable to seconds

convert myVar from seconds to long date

convert line 1 of second cd field to long date and ¬

short time

DESCRIPTION

The convert command gets a date or time and converts it from a particular
format, if you choose to specify one, to a particular format. This command
works with any date format supported by an installed script.

long time The time in colon-separated form including
seconds: 5:15:15 PM.

seconds Seconds since midnight, January 1, 1904.

continued

short date The date in slash-separated numeric form:
10/17/89. The date separators may be different in
countries other than the United States.

short time The time in colon-separated form without seconds:
5:15 PM.
192 Convert

C H A P T E R 1 0

Commands
The first form of the convert command gets the date or time from a container
and places the converted date or time in that container. When you use a literal
as input to the convert command, the resulting date or time is stored in the
HyperTalk variable It.

If you know precisely what format the input is in, you can choose to specify a
format to convert from. If the input can’t be parsed as specified, HyperTalk sets
the result to "Invalid date".

Note that if you try to convert an invalid date, for example, a date that has the
wrong number for the day, like Wednesday, May 6, 1993, when it should be
Thursday, May 6, 1993, HyperTalk sets the result to "Invalid date".

IMPORTANT

A script that needs to perform calculations on dates and
times should first convert to one of HyperTalk’s invariant
formats for dates and times—seconds and dateItems.
This avoids problems that may occur when someone trys
to run your stack on a machine where the format of the
date has been localized (to Swedish format, for instance) or
customized (to display military time, for instance) by
changing resources in the System file. To make sure your
scripts and stacks are localizable, you should also be
careful to save dates and times in either seconds or
dateItems format. These formats are the only ones that
the commands convert and sort are guaranteed to
recognize on any system. ▲

SCRIPT

Here’s an example that shows how to get tomorrow’s date in the short format
(this works no matter what format the date is set to by system resources):

on mouseUp

get the date -- the current date in short format

convert it to dateItems -- year, month, day, hour,

-- minute, second, day of week

add 1 to item 3 of it -- make it tomorrow

convert it to short date

end mouseUp
Convert 193

C H A P T E R 1 0

Commands
The following example handler counts the seconds elapsed while a command
in the Message box executes:

on mouseUp

put the long time into startTime

convert startTime to seconds

if msg is not empty then do msg

put the long time into endTime

convert endTime to seconds

answer "That took" && endTime - startTime && "seconds."

end mouseUp

Create Menu 10

SYNTAX

create menu menuName

MenuName is an expression that yields the name of a new menu to be added to
the menu bar.

EXAMPLES

create menu "Home"

create menu "Vacation locations"

DESCRIPTION

You use the create command to add a new menu to the HyperCard menu
bar. After the new menu is created, it remains in the menu bar until it is deleted
with the delete command, or you use the reset menubar command, or you
quit HyperCard. If you want a set of menus to remain in the menu bar while a
certain stack is open, create your menus in that stack’s openStack system
message handler. You can delete or disable your menus when you close your
stack or open another stack by using the delete or disable command in
closeStack or suspendStack system message handlers. See Chapter 8,
“System Messages,” for more information about system messages.
194 Create Menu

C H A P T E R 1 0

Commands
You can put menu items into the new menu with the put command, described
later in this chapter. You can also specify a menu message to be sent when a
menu item is chosen.

NOTES

See also the checkMark, commandChar, enabled, markChar, menuMessage,
name, and textStyle properties in Chapter 12, “Properties.”

See also the delete, disable, enable, and put commands in this chapter.

Create Stack 10

SYNTAX

create stack stackName [with background] [in a new window]

StackName is an expression that yields the name you want to assign to the
new stack. Background is an expression that yields the descriptor of a back-
ground you want to use in the new stack. The background must be one in the
current stack.

EXAMPLES

create stack "Ghosts" with this background

create stack "Mystery" with bkgnd 3

DESCRIPTION

The create command creates a new stack with the specified name and
optionally with a specified background of the current stack.

If you do not specify a background, the stack is created with a blank back-
ground. If you use the form create stack stackName in a new window,
the stack is created, appears in another window, and becomes the current stack.
If you do not use the form in a new window, the current stack is closed.
Create Stack 195

C H A P T E R 1 0

Commands
NOTES

The create stack command no longer allows stackName to begin with the
period character.

To create a stack with a background in a stack other than the current stack, you
must go to the stack with the background you want to use before using the
create stack command.

If the create stack command generates an error, it is stored in the
HyperCard function the result.

The new stack is created with the same card size as the current stack. You
can change the card size by resetting the rectangle property of the card
window or by clicking the Resize button in the Stack Info dialog box, and
then dragging the lower-right corner of the representation of the card to the
size you want.

See also the result function in Chapter 11, “Functions,” and the rectangle
property in Chapter 12, “Properties.”

Debug Checkpoint 10

SYNTAX

debug checkpoint

EXAMPLE

debug checkpoint

DESCRIPTION

The debug checkpoint command sets a checkpoint in a HyperTalk handler.
When HyperCard encounters this message in a handler, it enters the debugger:
it pauses execution of the handler and opens the script editor window, putting
a box around the line where the checkpoint is set.

Once you are in the debugger, you can step or trace through the remaining
lines of the script. You can step by pressing Command-S or choosing Step from
the Debugger menu. You can step into by pressing Command-I or choosing
196 Debug Checkpoint

C H A P T E R 1 0

Commands
Step Into from the Debugger menu. You can trace by choosing Trace from the
Debugger menu. You can trace into by pressing Command-T or choosing Trace
Into from the Debugger menu. With each step, the next line of HyperTalk in the
current handler is selected and executed.

NOTES

In combination, checkpoints and stepping can be used to examine, diagnose,
and modify the behavior of sophisticated HyperTalk handlers.

See also Chapter 3, “The Scripting Environment,” for more information about
the debugger environment.

Delete 10

SYNTAX

delete chunk of container
delete menu
delete menuItem of menu
delete part

Chunk is a chunk expression referring to some text in a specified container, and
container specifies the container. Menu is an expression that yields a menu
descriptor. MenuItem is an expression that yields a menu item descriptor. Part is
an expression yielding a button or field descriptor.

EXAMPLES

delete line 1 of field 1

delete char 1 to 5 of line 4 of field "Charlie" ¬

of second card

delete menuItem "Paths..." of menu "Home"

delete menu "Windows"

delete second menuItem of menu 6

delete button 1
Delete 197

C H A P T E R 1 0

Commands
delete last button

delete card field "Temp Data"

delete field id 1234

DESCRIPTION

The delete command removes

■ text from a container in the current stack

■ a menu item

■ a menu

■ a part (button or field) from the current card

Note that this command lets you delete menus from the standard HyperCard
menu bar, including the Tools, Patterns, Font, and Apple menus; but you can’t
delete menu items within those menus. If you delete those menus, the menu
items in those menus can still be activated with the doMenu command or with
their Command-key equivalents.

SCRIPT

The following example handler finds and deletes a name from a list with one
name per line:

on zapaName

put "Maller" & return & "Calhoun" & return & "Winkler"¬

into list

ask "Delete which name from the list?" with empty

repeat with count = the number of lines in list¬

down to 1

if It is in line count of list then ¬

delete line count of list

end repeat

end zapaName
198 Delete

C H A P T E R 1 0

Commands
NOTES

Using the delete command to delete a chunk is not the same as using put
empty into with the same chunk of text specified. For example, if you delete
a line in a field with a statement like

delete line 4 of field 7

you delete the return character as well as the text; what was previously the fifth
line becomes the fourth. The following statement leaves the return character in
line 4:

put empty into line 4 of field 7

Even if you delete all of the text in a field, the field remains defined on the card
or background, unlike selecting the field and choosing Cut Field or Clear Field
from the Edit menu.

When you delete text in a field on a card other than the current one, the current
card does not change. If you delete the text in a background field that has the
sharedText property set to true, the text in that background field is deleted
on every card with that background field.

Because deleting parts causes a deleteButton or deleteField message to
be sent, you can delete only parts on the current card. In other words, delete
button 1 of next card doesn’t work; however, you do not get an error
message when you try to do this.

In the case of the HyperCard standard menu items, the doMenu command
works even when the item is deleted with the delete command. For example,
if the File menu is deleted and the following handler is executed, HyperCard
exits to the Finder:

on mouseDown

delete menuItem "Quit HyperCard" from menu "File"

doMenu "Quit HyperCard"

end mouseDown

Command-key equivalents, however, do not work for menu items that have
been deleted, with one exception: Command-Q still works after the Quit
HyperCard menu item is deleted.
Delete 199

C H A P T E R 1 0

Commands
Chapter 5, “Referring to Objects, Menus, and Windows,” describes how to
designate menus and menu items. Chunk expressions are described in
Chapter 7, “Expressions.” See also the create menu, disable, enable,
and put commands in this chapter.

Dial 10

SYNTAX

dial number [with modem [modemCommands]]

Number is an expression that yields a string with numbers in it, and
modemCommands are commands for your modem.

EXAMPLES

dial steve -- if steve is a variable containing a number

dial "415-555-1212"

dial "493-996-1010" with modem "ATS0=0S7=1DT"

dial "493-973-6000" with modem

DESCRIPTION

The dial command, without the with modem option, generates the touch-
tone sounds for the digits in number through the Macintosh speaker. Holding
the telephone handset up to the speaker works on some telephones; for others
you need a device that feeds the Macintosh audio output to the telephone.

If you use the with modem option, the dial command sets up telephone
calls using the Apple Modem 300/1200, the Apple Personal Modem, or
any Hayes-compatible modem attached to the Macintosh serial port. The
modemCommands parameters are those described in the manual for your
modem. Their default value is "ATS0=0DT".

If number yields a string with numbers including a hyphen (as in 555-1212),
enclose it within quotation marks to prevent HyperCard from doing
subtraction with the hyphen before passing the number to the dial command
(which ignores characters other than numbers). Similarly, enclose the
modemCommands parameter within quotation marks.
200 Dial

C H A P T E R 1 0

Commands
NOTES

You can press Command-period to exit the dial command during the
ten-second wait imposed when dialing with a modem.

A one-second delay occurs between opening the modem port and first using it.

Disable 10

SYNTAX

disable menu
disable menuItem of menu
disable button

Menu is an expression that yields a menu descriptor. MenuItem is an expression
the yields a menu item descriptor. Button is an expression that yields a button
descriptor.

EXAMPLES

disable background button 5

disable menu "Home"

disable menu 5

disable menuItem "Get Back" of menu "Direction"

disable the fourth menuItem of sixth menu

DESCRIPTION

The disable command disables a menu, menu item, or button. When any of
these objects is disabled, it is gray and inactive. The disable command also
sets the enabled property to false. You should be aware that when you
create a menu item, it is automatically enabled unless you use the disable
command to change it.

If you try to use the disable command on a menu item, menu, or button
that does not exist, HyperCard displays an error dialog box with the text,
"No such menu" (or menu item or button) unless the lockErrorDialogs
property is set to true.
Disable 201

C H A P T E R 1 0

Commands
Except for Command-Q, Command-key equivalents do not work on menu
items that have been deleted or disabled.

NOTE

See also the commandChar, enabled, markChar, and menuMessage and
button properties in Chapter 12, “Properties,” and the create menu,
enable, and put commands in this chapter.

Divide 10

SYNTAX

divide [chunk of] container by number

Chunk is an expression that yields a chunk expression. Container is a container
that holds a numeric value, and number is any expression that yields a
numeric value.

EXAMPLES

divide field "total" by 3

divide fahrenheit by celsius -- if fahrenheit and

-- celsius are variables

divide line 3 of field 4 by 10

DESCRIPTION

The divide command divides the value of [chunk of] container by the value
of number and puts the result into [chunk of] container.
202 Divide

C H A P T E R 1 0

Commands
SCRIPT

The following example handler figures the percentage represented by a fraction
of two numbers specified as parameters:

on percent var1,var2

divide var1 by var2

put trunc(var1 * 100) & "%"

end percent

NOTES

The value previously in the container must be a number; it is replaced with the
new value.

Division by 0 puts the result INF into container. (INF is the SANE value for
infinity.) Division is carried out to a precision of up to 19 decimal places. The
value for the amount of precision is set with the numberFormat property.

See also the numberFormat global property in Chapter 12, “Properties,” and
the discussion of numbers in Chapter 6, “Values.”

DoMenu 10

SYNTAX

doMenu itemName [,menuName][without dialog]¬
[with modifierKey [,modifierKey]]

ItemName is an expression that yields the name of a menu command.
MenuName is an expression that yields the name of a menu. ModifierKey is
one or more comma-delimited combinations of optionKey, commandKey,
and shiftKey.

EXAMPLES

doMenu "open stack..."

doMenu "Copy Card"

doMenu "Open Stack..." with shiftKey
DoMenu 203

C H A P T E R 1 0

Commands
DESCRIPTION

The doMenu command performs the menu command specified by itemName
as though you had chosen the command directly from the appropriate
HyperCard menu. In conjunction with the doMenu command, you can choose
to suppress a dialog box by using the without dialog option.

You may also use an optional modifier key to apply to your menu item choice.
For instance, if someone chooses the Open Stack menu item while holding
down the Shift key, the Open Stack dialog box appears with the New Window
checkbox already checked. This HyperTalk command line does the same thing:

doMenu "Open Stack..." with shiftKey

Note
If you write your own doMenu handler to intercept menu
commands, you can examine param(6) to find out if a
modifier key parameter was specified. ◆

There are several caveats to be aware of when using or intercepting the
doMenu command:

■ Both the specified menu item and the menu in which it resides must
be available at the current user level (as described in the HyperCard
Reference Guide).

■ If there are periods following the menu item, you must include them in
menuItem (you can’t use the ellipsis character in their place). For example,
"Open Stack..." is a HyperCard menu item with three periods.

■ Some menu commands change with conditions (for example, Paste Card can
change to Paste Button, depending on the contents of the Clipboard).

■ If you write a handler to intercept the doMenu system message that is sent to
the current card when a menu item is selected, be sure to pass the message
after examining the new menu item. (See the example.) Otherwise, you may
find yourself apparently unable to use any menu command, fix the doMenu
handler, or quit HyperCard. (In that case, from the Message box, execute the
command edit script for the object containing the handler. If the
Message box is hidden and blind typing is false, go to the last card of the
Home stack and turn blind typing on.)
204 DoMenu

C H A P T E R 1 0

Commands
SCRIPT

The following example handler checks for a doMenu message with the Quit
HyperCard menu item and puts up a dialog box when the Quit HyperCard
menu item is selected:

on doMenu menuChoice

if menuChoice is "Quit HyperCard"

then

answer "Are you sure you want to Quit" ¬

with "OK" or "Cancel"

if it is "Cancel"

then

exit doMenu

else

pass doMenu

end if

else

pass doMenu

end if

end doMenu

Drag 10

SYNTAX

drag from point1 to point2 [with key [,key2[,key3]]]

Point1 and point2 are expressions, each of which yields a point: two integers
separated by a comma, representing horizontal and vertical pixel offsets
(respectively) from the top left of the Macintosh screen. Key, key2, and key3
are one of the following key names, separated by commas: shiftKey,
optionKey, or commandKey (or cmdKey).
Drag 205

C H A P T E R 1 0

Commands
EXAMPLES

drag from 100,100 to 200,200

drag from the loc of button 1 to the mouseLoc with ¬

commandKey,shiftKey

DESCRIPTION

The drag command performs the same action as though you had dragged
manually, except that in order to select text in a field using the drag command,
you must use with shiftKey. In all other cases, using the with key form
produces the same result as dragging while holding down the specified key.

SCRIPT

The following example handler draws random-sized ovals filled with random
patterns on a new card:

on mouseUp

doMenu "New Card" -- so we don't draw on current card

choose oval tool

set filled to true

repeat until the mouseClick

set pattern to random(30)

drag from random(319),random(199) to ¬

random(319),random(199)

end repeat

choose browse tool

doMenu "Delete Card" -- get rid of the card we just made

go previous card -- take us back where we started from

end mouseUp

NOTES

You can use drag with any tool selected, but it has no effect with some
Paint tools.

The location of the actual pointer doesn’t change from where it was before the
command was issued.
206 Drag

C H A P T E R 1 0

Commands
See also the click command earlier in this chapter, and the dragSpeed
property in Chapter 12, “Properties.”

Edit Script 10

SYNTAX

edit [the] script of object

Object is an expression that yields a descriptor of an object: a stack, card,
background, field, or button.

EXAMPLES

edit script of button 1

edit script of this stack

DESCRIPTION

The edit script command opens the script of the specified object with the
HyperCard script editor as though you had clicked the Script button in the
object’s Info dialog box.

SCRIPT

The following example handler enables you to edit the script of any button or
field merely by positioning the pointer over it and pressing the Option key:

on mouseWithin

if the optionKey is down then edit script of the target

end mouseWithin

NOTE

Refer to Chapter 3, “The Scripting Environment,” for an explanation of how the
script editor works.
Edit Script 207

C H A P T E R 1 0

Commands
Enable 10

SYNTAX

enable button
enable menu
enable menuItem of menu

Button is an expression that yields a card or background button descriptor.
Menu is an expression that yields a menu descriptor. MenuItem is an expression
that yields a menu item descriptor.

EXAMPLES

enable menu "Home"

enable menu 5

enable menuItem "Get Back" of menu "Direction"

enable the fourth menuItem of sixth menu

enable background button id 3

enable btn "PanAm"

DESCRIPTION

The enable command makes the specified menu, menu item, or button active
by setting its enabled property to true and making its text and outline
appear solid rather than dimmed.

If you enable a menu, menu item, or button that does not exist, HyperCard
displays an error dialog box with the text "No such menu" (or menu item
or button) unless the lockErrorDialogs property is set to true.

NOTES

See also the commandChar, enabled, markChar, and menuMessage and
button properties in Chapter 12, “Properties,” and the create menu,
disable, and put commands in this chapter.
Command keys do not work on menu items that have been deleted or disabled.
208 Enable

C H A P T E R 1 0

Commands
EnterInField 10

SYNTAX

enterInField

DESCRIPTION

The enterInField command closes a field that is open for text editing.

NOTES

The enterInField system message, which invokes the enterInField
command if it reaches HyperCard, is normally sent by pressing the Enter key
on the keyboard, but you can also execute it as a line in a script.

Closing a field with enterInField sends the closeField system message;
if no text was changed, the exitField system message is sent.

See also the enterKey and exitField system messages in Chapter 8,
“System Messages.”

EnterKey 10

SYNTAX

enterKey

DESCRIPTION

The enterKey command sends a statement typed into the Message box to the
current card or, if a field is open for text editing, closes the field.
EnterInField 209

C H A P T E R 1 0

Commands
NOTES

The enterKey system message, which invokes the enterKey command if it
reaches HyperCard, is normally sent by pressing the Enter key on the keyboard,
but you can also execute it as a line in a script.

Closing a field with enterKey sends the closeField system message; if no
text was changed, the exitField system message is sent.

See also the enterKey and exitField system messages in Chapter 8,
“System Messages.”

Export Paint 10

SYNTAX

export paint to file fileName

FileName is an expression that yields any valid Macintosh filename.

EXAMPLE

export paint to file "TreeFrogs"

DESCRIPTION

The export paint command creates a Macintosh paint file containing the
image of the current card and saves it with the specified filename. If you are
working in the background, only the graphics, buttons, and fields visible in the
background are exported. If you are not working in the background, export
paint exports both the card and background graphics plus all the visible card
and background buttons and fields.

NOTES

If an error is generated while using the export paint command, the error is
stored in the HyperCard function the result.
210 Export Paint

C H A P T E R 1 0

Commands
The export paint command only works when a Paint tool is chosen. If
you use export paint while using the browse, button, or field tool, an
error message is put into the result.

See also the import paint command in this chapter and the result
function in Chapter 11.

Find 10

SYNTAX

find [international] text [in field] [of marked cards]
find chars [international] text [in field] [of marked cards]
find string [international] text [in field] [of marked cards]
find whole [international] text [in field] [of marked cards]
find word [international] text [in field] [of marked cards]

Text is an expression that yields a series of one or more text strings separated by
spaces, and field is an expression that yields a card field or background field
descriptor.

EXAMPLES

find "money" in field "Charity"

find chars "Wild" in field 1

find word msg in second field

find word international "æble" in field 5

DESCRIPTION

The find command searches through all the card and background fields
(visible or not) in the stack for the text strings yielded by text. The search begins
on the current card and continues through the last card, the first card, and on to
the card previous to the current card. The of marked cards option searches
only marked cards.
Find 211

C H A P T E R 1 0

Commands
You can use the international option with the find command to enable
searching that recognizes international characters like æ and ø as unique from a
and o. This is important in languages such as Danish, where such characters
are distinguished.

Note
If you write a handler to override the find command,
you can examine param(1) to determine whether the
international option was specified. ◆

Choosing Find from the Go menu (or pressing Command-F) puts the find
command in the Message box with the text insertion point after it between
double quotation marks.

SCRIPT

The following example handler queries the user for search criteria, then
executes the find command:

on doMenu var

global findString

if var is "Find..." then

ask "Find what string:" with findString

if It is not empty then

put It into findString

answer "Match" && findString && "how:" ¬

with "Chars" or "Word" or "All"

if It is "Chars" then find chars findString

else if It is "Word" then find word findString

else find findString

end if

else pass doMenu

end doMenu
212 Find

C H A P T E R 1 0

Commands
NOTES

The find command executes faster if you use as many three-character
combinations as possible in the search string. That is, three characters are
faster than one, six are faster than three, nine are faster than six, and so on.

The find form finds the match only at the beginnings of words. The
find chars form finds the match anywhere within words. The find word
form matches only complete words.

The find whole form (also invoked by pressing Command-Shift-F) lets you
search for a specific word or phrase, including spaces. For HyperCard to find a
match, all the characters must be in the same field, and they must be in the
same order as they appear in the string derived from text.

When you use find without whole, HyperCard finds a card that contains
every word in the string derived from text, but the words can appear in
different order or in different fields. That is, with find whole, interword
spaces are part of the search string; without whole the spaces delimit separate
search strings. With every form of find, you can limit the search to a specific
background field.

The following example finds a card with a field that has the phrase Apple
Computer in it; it won’t find Apple Computers or This apple is a computer. (The
find command without whole would find a match in all three cases.)

find whole "Apple Computer"

Find whole won’t find partial-word matches, and it pays no attention to case
or diacritical marks: apple Cømpüter and aPPle cOmputer are seen as the same.
(If the international option is specified, however, diacritical marks are
recognized.)

The find string form lets you search for a contiguous string of characters,
including spaces, regardless of word boundaries. (Find whole searches for
characters at the beginnings of words.) For HyperCard to find a match, all the
characters must be in the same field, and they must be in the same order as in
the string derived from text. For strings without spaces, find string works
the same as find chars.
Find 213

C H A P T E R 1 0

Commands
In the following example, HyperCard finds the string in Apple computers but
not in computers, not apples. (The find command without string would not
find a match in either case.)

find string "ple Computer"

If the match is on a different card, it becomes the current card; if a match isn’t
found, the current card doesn’t change. If you enter the find command from
the Message box and a match isn’t found, HyperCard sounds a beep. If it finds
a match, HyperCard puts a box around the word containing the found string if
the field containing the string is visible. If a match is found in a hidden field,
the field’s card becomes the current card, but the field remains hidden.

As the find command evaluates the expression passed to it, it places the
resulting values internally between quotation marks as a single parameter
string. The following examples show text expressions on the left and the
resulting parameter string on the right:

find "my" && "word" find "my word"

find "my" & "word" find "myword"

find a & b & c find "xyz" -- if a = "x",

-- b = "y", c = "z"

find a && b && c find "x y z"

If more than one search string (separated from each other by spaces) is
included in the parameter string, all of them must be on a single card or
its background for a successful search. However, they can be in any order
on the card, and only the first is shown with a box around it.

The text in shared background fields and in backgrounds, cards, and fields
with the dontSearch property set to true is ignored by the find command.

Press Command-F to display the parameter string from the most recently
executed find command in the Message box.

An unsuccessful search sets HyperTalk’s function the result to not found.
After a successful search, the result is empty. (See the result function in
Chapter 11, “Functions.”)

For more information about retrieving text, see the foundChunk, foundField,
foundLine, and foundText functions in Chapter 11, “Functions.”
214 Find

C H A P T E R 1 0

Commands
FunctionKey 10

SYNTAX

functionKey keyNumber

KeyNumber is an expression that yields an integer between 1 and 15.

EXAMPLES

functionKey 1

functionKey 15

DESCRIPTION

The functionKey command has built-in Undo, Cut, Copy, and Paste
functions for keyNumber values 1 through 4, respectively. Any other value
of keyNumber has no built-in effect.

SCRIPT

The following example handler uses the functionKey command to
implement the message undo as a command:

on undo

functionKey 1 -- preprogrammed as undo in HyperCard

end undo

NOTES

The functionKey message, which invokes the functionKey command if it
reaches HyperCard, is normally generated by pressing one of the 15 function
keys on the Apple Extended Keyboard. But you can also send it from the
Message box or execute it as a line in a script.

You can program function keys 5 through 15, or reprogram keys 1 through 4,
by writing an on functionKey handler in the script of any object in the
hierarchy between the current card and HyperCard. The following
FunctionKey 215

C H A P T E R 1 0

Commands
functionKey handler opens the print report dialog box when function
key 9 is pressed.

on functionKey whichKey

if whichKey = 9 then

doMenu "Print Report..."

exit functionKey

end if

pass functionKey

end functionKey

See also the functionKey system message in Chapter 8, “System Messages.”

Get 10

SYNTAX

get expression

Expression yields any value.

EXAMPLES

get the long name of field 1

get the location of button "newButton"

get 2+3 -- puts 5 into It

get the date

DESCRIPTION

The get command puts the value of any expression into the local variable It.
That is, get expression is the same as put expression into It.
216 Get

C H A P T E R 1 0

Commands
SCRIPT

The following example handler saves the current user level, sets the user level
to 5, then restores the saved level:

on doMything

get userLevel -- get the current userLevel

put It into savedLevel -- save userLevel before

 -- changing it

set userLevel to 5 -- set userLevel for my

-- button or script

-- (put my script here)

-- restore userLevel when leaving

set userLevel to savedLevel

end doMything

Go 10

SYNTAX

go [to] [stack] stackName [in a new window] [without dialog]
go [to] background [of [stack] stackName [in a new window]]¬

[without dialog]

go [to] card [of background] [of [stack] stackName¬
[in a new window]] [without dialog]

go back

go forth

go [to] ordinal
go [to] position

StackName is an expression that yields a valid stack name. Card is an expression
that yields a valid card descriptor. Background is an expression that yields a
valid background descriptor. Ordinal is an expression that yields an ordinal
constant. Position is an expression that yields a special object descriptor.
Go 217

C H A P T E R 1 0

Commands
EXAMPLES

go card 23

go to stack "ArtIdeas"

go bkgnd field 1 -- if bkgnd field 1 contains a stack name

go "home"

go mid card of stack "clip art"

go next

go to first card of second background of "home"

go card 2 of stack "VacationSpots" in a new window

go stack "VacationSpots" in a new window without dialog

go card 4 of stack "VacationSpots" without dialog

go "hd:bigFolder:innerFolder:myStack" -- full pathname

DESCRIPTION

The go command takes you to the specified destination. If you name a stack
without specifying a card, you go to the first card in the specified stack. If you
don’t name a stack, you go to the specified card in the current stack. If you go
to a background, you go to the next card with that background (not the first
card). If the current card has the specified background, you won’t move. Go
forth and go back move you forward and backward among the recent
cards. You can specify a visual effect to be used on opening the card by issuing
the visual effect command before you use the go command.

If the destination is in a stack other than the current one and you use the in a
new window form of the go command, the destination stack is opened in
addition to any existing stacks. If you do not specify the in a new window
form, the current stack is closed before the specified stack is opened. If only one
stack is open and you do not specify the in a new window form of the go
command, the current stack closes and the specified stack appears without a
close box.

If you use the without dialog form of the go command and the destination
can’t be found, you do not get a standard dialog box for opening files. Instead,
the result is set to "No such stack" or "No such card". If the destina-
tion is a marked card within a stack that has no marked cards, you won’t move.
218 Go

C H A P T E R 1 0

Commands
SCRIPT

The following example handler queries the user for a destination, then executes
a go command with a visual effect:

on mouseUp

ask "Where to?" with "This card"

if It is empty then put "this card" into It

put It into goWhere

visual effect fade to black

go to goWhere

end mouseUp

Help 10

SYNTAX

help

DESCRIPTION

The help command takes you to the first card of the stack named
HyperCard Help.

NOTE

See also the help system message in Chapter 8.
Help 219

C H A P T E R 1 0

Commands
Hide 10

SYNTAX

hide background picture

hide card picture

hide groups

hide menuBar

hide object
hide picture of background
hide picture of card
hide titlebar

hide window stackName
hide window windowName

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

Card yields the descriptor of a card in the current stack. Background yields the
descriptor of a background in the current stack. WindowName is the name of a
window created with the picture command. StackName is the name of an
open stack.
220 Hide

C H A P T E R 1 0

Commands
EXAMPLES

hide message

hide bkgnd button "goHome"

hide field id 1

hide window "Planets"

hide card window

DESCRIPTION

The hide command removes the specified object from view. Its effect is the same
as setting the visible property of the specified object to false or clicking a
window’s close box (except for external windows and stack windows).

The hide picture form of the hide command removes from view the
graphic bitmap on the card or background, and the show picture form of
the show command displays it.

The hide groups form of the hide command removes the gray 2-pixel
underline made visible below group style text by the show groups form of
the show command. The hide groups command affects all group style text in
all fields globally.

SCRIPT

The following example handler hides a field or button when the user puts the
pointer over the button or field:

on mouseWithin

hide the target

end mouseWithin

NOTES

Message can be abbreviated msg. Background can be abbreviated bkgnd.
Button can be abbreviated btn. Card can be abbreviated cd.

Hide menuBar is also sent as a system message when the menu bar is hidden.
Hide 221

C H A P T E R 1 0

Commands
If the screen is locked, hide menuBar has no effect. See the lock and unlock
commands later in this chapter, and the lockScreen property in Chapter 12,
“Properties.”

The hide command does not affect the location property of an object or
window. You can’t use the with the object name. For example, the following
statement results in the error message "Can't understand arguments
of command hide":

hide the window "navigator"

Hidden fields aren’t in the tab order. (They are skipped when you move the
text insertion cursor from one visible field to the next by pressing the Tab key.)
The find command does search through them, however, and you can put
values into them and put their values elsewhere.

Hidden card and background pictures are not displayed when a Browse,
Button, or Field tool is chosen, but if you attempt to use a Paint tool manually, a
dialog box appears asking if you want to make the picture visible; clicking OK
displays the picture. (You can draw on hidden pictures from a script.) Whether
or not you are working in the background determines whether your actions
pertain to the card or background picture.

If there is another card window behind the current stack’s card window and
you hide the current stack’s card window, the card window behind it becomes
the current card window.

If you use either the hide card window or hide window stackName form
of the hide command to hide the current card or specified stack, the cards in
that stack won’t be visible again until you set the card window or stack
window’s visible property to true, use the show card window or show
window stackName command, or close the stack and reopen it.

You can move hidden windows without changing their visible state with the
location property, which is described in Chapter 12, “Properties.”

See also the picture and show commands, later in this chapter, and the
visible property in Chapter 12, “Properties.”
222 Hide

C H A P T E R 1 0

Commands
Import Paint 10

SYNTAX

import paint from file fileName

FileName is an expression that yields a valid Macintosh filename.

DESCRIPTION

The import paint command reads in the specified paint file and makes it the
current selection. The import paint command allows you to put digitized
images and other pictures created with Macintosh paint programs onto
backgrounds or cards.

You can use the export paint and import paint commands together to
enhance graphics created with HyperCard. For example, you could export a
card image to a file and open it in your favorite paint application. You could
then paste in your own pictures and make changes to the file containing the
HyperCard card art with your paint program. Once you complete the art work,
import the finished paint file to the original card or new card or background.

NOTES

If an error is generated while using the import paint command, the error is
stored in the HyperCard function the result.

The import paint command only works when a Paint tool is chosen. If you
use import paint while using the Browse, Button, or Field tools, an error
message is put into the result.

Imported pictures are clipped to the size of the current card. The maximum
area of an imported paint file that can be displayed is 576 pixels by 720 pixels.

See also the export paint command in this chapter and the result
function in Chapter 11, “Functions.”
Import Paint 223

C H A P T E R 1 0

Commands
KeyDown 10

SYNTAX

keyDown char

Char is an expression yielding a character (spaces count as characters).

EXAMPLE

keyDown "h"

DESCRIPTION

The keyDown command passes a character, char, which represents any charac-
ter on the keyboard. The keyDown command causes HyperCard to enter the
character passed with the command at the insertion point in a field, if one is
open for text editing, or, otherwise, in the Message box.

NOTES

keyDown is also a system message sent to the current card when the user
presses a character key. When the keyDown message reaches HyperCard, it
invokes the keyDown command.

See also the commandKeyDown and controlKey commands in this chapter.
224 KeyDown

C H A P T E R 1 0

Commands
Lock 10

SYNTAX

lock screen|error dialogs|messages|recent

EXAMPLES

lock screen

lock error dialogs

lock messages

lock recent

DESCRIPTION

The lock command can be used for four different unrelated purposes. Using
the lock command, you can

■ prevent HyperCard from updating the screen by setting the lockScreen
global property to true

■ prevent HyperCard from displaying error dialogs in response to an error in
an executing script by setting the lockErrorDialogs property to true

■ prevent HyperCard from sending automatic open, close, suspend, and
resume system messages by setting the lockMessages property to true

■ prevent HyperCard from recording miniature representations of each card to
the Recent card by setting the lockRecent global property to true

NOTE

See also the unlock command in this chapter and the lockErrorDialogs,
lockRecent, lockMessages, and lockScreen properties in Chapter 12,
“Properties.”
Lock 225

C H A P T E R 1 0

Commands
Mark 10

SYNTAX

mark card
mark cards where condition
mark all cards

mark cards by finding [international] text [in field]
mark cards by finding chars [international] text [in field]
mark cards by finding string [international] text [in field]
mark cards by finding whole [international] text [in field]
mark cards by finding word [international] text [in field]

Card is an expression that yields a card descriptor. Condition is an expression
that evaluates to true or false. Text is any text. Field is an expression that
yields a field descriptor.

EXAMPLES

mark [the] next card

mark cards where "We be shaking" is in field 2

mark all cards

mark cards by finding whole chicken in field 1

mark cards where the short name of this bkgnd is "Clients"

mark cards where the number of buttons > 0

DESCRIPTION

The mark command sets the marked property for the specified card or cards to
true. Cards can also be marked with the Card Marked option in the Card Info
dialog box. By default, cards are unmarked.

The by finding form of the mark command uses chars, word, whole, and
string to define the search criteria the same way the find command does.
See the description of the find command for information about how to use
these forms.
226 Mark

C H A P T E R 1 0

Commands
You can use the international option with the find command to enable
searching that recongnizes international characters like æ and ø as unique from
a and o. This is important in languages such as Danish, where such characters
are distinguished.

The mark command can be used with the unmark command in searches where
you want to find and mark cards containing particular information while
excluding other unnecessary information.

For example, say you want to mark and print all cards with information about
“San Francisco” but not “earthquake.” You might have a script that uses the
following statements:

unmark all cards

mark cards where "San Francisco" is in field 1

unmark cards where "earthquake" is in field 1

You could then show, print, or display the number of cards containing that
combination of search criteria.

show marked cards

print marked cards

put the number of marked cards into word 3 of field 2

NOTES

See also the marked property in Chapter 12, “Properties,” and the unmark
command, later in this chapter.

You can’t mark cards in a read-only stack, even if the userModify property is
set to true. See the userModify property in Chapter 12, “Properties.”
Mark 227

C H A P T E R 1 0

Commands
Multiply 10

SYNTAX

multiply [chunk of] container by number

Chunk is an expression that yields a chunk expression. Container is a con-
tainer holding a numeric value, and number is an expression that yields a
numeric value.

EXAMPLES

multiply Subtotal by Tax

multiply field 1 by field 3

multiply line 3 of card field 2 by 25

multiply It by 2 -- puts result into It,

-- replacing the old value

DESCRIPTION

The multiply command multiplies the value in [chunk of] container by the
value of number and puts the result in [chunk of] container.

SCRIPT

The following example handler adds 6 percent to the value of items in
a list:

on taxMe

put "12.45,15.00,150.00,76.95,10.00,14.95" into taxables

repeat with count = 1 to the number of items in taxables

multiply item count of taxables by 1.06

end repeat -- the new values are stored in taxables

end taxMe
228 Multiply

C H A P T E R 1 0

Commands
NOTES

The value previously in the container must be a number; it is replaced with the
new value.

The result is calculated to a precision of up to 19 decimal places and, if put into
a field or the Message box, is displayed according to the numberFormat global
property.

See also the numberFormat global property in Chapter 12, “Properties,” and
the discussion of numbers in Chapter 6, “Values.”

Open 10

SYNTAX

open [fileName with] application

Application is the name of any application, and fileName is the name of any
document on your Macintosh computer. Either one can be an expression that
yields such a name.

EXAMPLES

open "Apps:BigApp"

open "Letter" with "Apps:MacWrite"

open Field 3

open FavoriteApp

DESCRIPTION

The open command launches the named application. A specific document may
be opened with its own creator or a compatible application by using the open
filename with application form of the open command.
Open 229

C H A P T E R 1 0

Commands
SCRIPT

The following example handler queries the user for a document and
application before executing the open command:

on mouseUp

ask "Open what document?" with empty

if It is not empty then

put It into doc

ask "Use what application?" with empty

if It is not empty then open doc with It

end if

end mouseUp

The open command can also bring HyperCard itself to the front—when it is
running under system software version 7.0 or later. When you need to make
HyperCard the frontmost process, use command lines like these in your
own script:

get the long name of HyperCard -- get pathname of HyperCard

open it

This is useful if, for instance, you want to transfer data from another applica-
tion to HyperCard via the Clipboard. Neither MultiFinder nor the System 7
Process Manager allows access to the Clipboard when an application is in
the background. So, if you want to automate a copy and paste between some
other application and HyperCard, you must also automate switching between
applications.

NOTES

If the document or application you specify isn’t at the top level of the file
hierarchy (the “disk” level), then the path to it must be specified on the
appropriate Search Path card of the Home stack. Alternatively, you can specify
the full pathname with the open command:

open "MyHardDisk:Apps:Apples"
230 Open

C H A P T E R 1 0

Commands
Note that handlers that override the open command may use the function
the params to determine the parameters of the original command.

If HyperCard can’t find the requested document or application, it displays
the dialog box for locating files to the user. Error messages go into the container
the result of the source program when the open command fails.

When running single Finder in System 6 and you quit the application, you go
to the card you were on in HyperCard when you executed the open command.
However, any global variables you had previously declared are now gone, and
any portions of handlers that remained unfinished when you executed the
open command do not finish.

Open File 10

SYNTAX

open file fileName

FileName is the name of any file accessible to your Macintosh computer, or an
expression that yields such a name.

EXAMPLES

open file "textOnly"

open file field 1

DESCRIPTION

The open file command opens the named file for reading or writing.
Usually, the file is an ASCII text file opened in preparation for importing or
exporting text. If the specified file doesn’t exist, HyperCard creates it.
Open File 231

C H A P T E R 1 0

Commands
SCRIPT

The following example handler opens a given file, reads a line of data from it,
then closes the file:

on openCard

open file "myUpdate"

read from file "myUpdate" until return

put It into card field 1

close file "myUpdate"

end openCard

NOTES

If the specified file is already open, an error is generated. The error is stored in
the HyperCard function the result. The result is empty if the command
is successful. Use the close file command to close files explicitly after you
use them. HyperCard automatically closes all open files when an exit to
HyperCard statement is executed, when you press Command-period, or when
you quit HyperCard.

You must provide the full pathname of the file if it’s not at the same directory
level as HyperCard. (See “Identifying a Stack” in Chapter 5, “Referring to
Objects, Menus, and Windows,” for an explanation of pathnames.)

See also the read, write, and close file commands in this chapter and the
result function in Chapter 11, “Functions.”

Open Printing 10

SYNTAX

open printing [with dialog]
232 Open Printing

C H A P T E R 1 0

Commands
DESCRIPTION

The open printing command starts a print job to be ended later by a
close printing command.

The settings specified in the Print Stack dialog box are used unless with
dialog is specified, in which case the dialog box is displayed and new settings
can be chosen.

SCRIPT

The following example handler prints a selection of cards:

on printSelection

put "1,3,8,15,21" into myCards

open printing with dialog

repeat with count = 1 to the number of items in myCards

go card item count of myCards

print this card

end repeat

close printing –– print the cards

end printSelection

NOTES

Printing cards with open printing is similar to printing with the Print Stack
command in the File menu, except that Print Stack prints all cards in the stack,
while open printing prints only the ones you specify with the print card
command, described later in this chapter.

You must use some form of the print command and then the close
printing command to print and then close a print job begun with open
printing. Don’t use the print fileName with application command
while a print job is active.

See also the close printing, open report printing, print, and
print card commands in this chapter.
Open Printing 233

C H A P T E R 1 0

Commands
Open Report Printing 10

SYNTAX

open report printing [with template templateName]
open report printing [with dialog]

TemplateName is an expression that yields the name of a previously defined
print template.

EXAMPLES

open report printing

open report printing with template "fieldsOnly"

open report printing with dialog

DESCRIPTION

The open report printing command prepares a report printing job. The
print report job is sent to the printer and closed with a close printing
command.

SCRIPT

The following script sets the report template and prints the marked cards in the
current stack:

on PrintLabels

open report printing with template mailing labels

-- choose the "mailing labels" template

print marked cards -- specify which cards to print

close printing -- generate the report & print

end PrintLabels
234 Open Report Printing

C H A P T E R 1 0

Commands
NOTES

Settings previously specified in the Print Report dialog box are used unless
the with dialog form is used, in which case the Print Report dialog box is
displayed and new settings can be chosen.

If you do not specify a print report template with the with template
templateName form or do not use the with dialog form, the settings from the
last print report template accessed in the Print Report dialog box are used for
the current print job. If no print report template has been used previously
for printing and you neither specify a print report template nor use the with
dialog form, nothing is printed.

Printing cards with open report printing is similar to printing with the
Print Report command in the File menu, except that you can specify the report
template to use in the script without using the Print Report dialog box.

You must use some form of the print command and the close printing
command to send the job to the printer and then close a print job begun with
open report printing. If you start another print job without closing the
previous one, HyperCard notifies you that it will close the previous print job
before starting the new one. Don’t use the print fileName with application
command while a print job is active.

When you choose Cancel after opening the Print Report dialog box with open
report printing, the function the result is set to Cancel.

See also the close printing, open printing, print, and print card
commands in this chapter.

Palette 10

SYNTAX

palette paletteName[, point]

PaletteName is an expression that yields the name of the palette you wish to
invoke. Point is an expression that yields two comma-separated integers that
represent the horizontal and vertical coordinates at which the palette should
appear. Point is the offset from the upper-left corner of the current card window
to the upper-left corner of the palette minus the title bar. Point needs to be in
quotation marks or passed in a container.
Palette 235

C H A P T E R 1 0

Commands
EXAMPLES

palette "Navigator", "50,100"

palette "GeneralPalette", "150,80"

DESCRIPTION

The palette command displays the specified custom XCMD palette or the
HyperCard palette called Navigator. If you do not specify a point parameter,
the palette appears at the default location of 10,20 inside the current card
coordinate system if it’s the first time it’s been displayed. After the first time,
it appears at its last location if you don’t specify a point parameter. Point is
reset to the default location at the beginning of each HyperCard session.

The palette command and associated palette properties have no effect on the
Tools palette or Patterns palette.

NOTES

If you specify a palette that is already visible, the palette command moves
the palette to the location specified by the point parameter.

You can set the location property of a palette window after the palette is
displayed with the palette command:

set the loc of window "Navigator" to "65,80"

You can close a palette that is displayed by using the close command:

close window "Navigator"

After a palette has been displayed with the palette command, you can hide
and show a palette by using the hide and show commands or setting the
visible property. The hide and show commands have no effect if the palette
hasn’t been displayed yet by the palette command. Here are some examples
of statements that hide or show palettes:

hide window "Navigator"

set the visible of window "Navigator" to true

show window "GeneralPalette"
236 Palette

C H A P T E R 1 0

Commands
There is a group of properties that apply only to HyperCard XCMD palettes.
The palette properties are buttonCount, commands, hilitedButton, and
properties.

You can use the buttonCount property to determine the total number of
buttons in a palette.

Commands returns a return-delimited list of the commands or messages
associated with the palette’s buttons. The commands are listed according to the
number of the button they are associated with, that is, first the command
associated with button number 1, then the command associated with button
number 2, and so forth.

The HilitedButton property determines or sets the number of the currently
highlighted button of the specified palette. Setting HilitedButton does not
cause the message associated with the button to be sent. For example, the
statement

set the hilitedButton of window "Navigator" to 3

does not send the doMenu "Help" message associated with button 3 of the
Navigator palette.

In the case of action palettes, such as Navigator, the value of the
hilitedButton property is always -1.

The properties palette property returns a comma-separated list of the names
of the properties that apply to the specified palette.

HyperCard palettes consist of two resources: one of type 'PLTE' and one of
type 'PICT'. The 'PLTE' resource contains the functional code for the palette,
and the 'PICT' resource supplies the palette image. The two resources must
have the same name and resource ID number. Because the palette image is a
'PICT' resource, palettes can be in color.

See also the hide and show commands in this chapter.
Palette 237

C H A P T E R 1 0

Commands
Picture 10

SYNTAX

picture [fileName,sourceType,windowStyle,visible,depth,floatingLayer]

FileName is the name of a file or resource of type 'PICT' or 'PNTG' on your
Macintosh computer or an expression that yields such a name.

SourceType is resource, file, or clipboard. (The default source type
is file.)

WindowStyle is the style of window in which the picture is displayed. The
window styles are plain, rect, zoom, roundRect, dialog, document,
shadow, and windoid. (The default window type is zoom.)

Visible is a Boolean value: true for visible, false for invisible. This parameter
allows you to create an invisible window and set its properties before
displaying it with a show command. See the description for more information
about the picture window properties.

Depth is the bit depth of the offscreen buffer that the picture command
creates. Bit-depth values between 0 and 32 inclusive are supported. The
picture command allocates an offscreen buffer of the bit depth you specify
(rounded down to a power of 2) or the bit depth of the picture file, whichever is
smaller. This allows you to display picture files with a deeper bit depth in less
memory, but at the cost of lower resolution. If the value is 0, the picture
command doesn’t create an offscreen buffer; instead, the 'PICT' file is drawn
directly into the window. A value of 0 for depth makes scrolling and zooming
slower and prevents dithering from working. If available system memory
is extremely low and the bit depth is set to 0, the file is spooled to the display,
but picture properties do not work. It does, however, allow you to display
pictures in less memory and animated 'PICT' files and format-1 'PICT' files
with color.

FloatingLayer is a true or false value that signals whether the new picture is
in the floating layer, whose elements always appear above elements in the
document layer (where cards and scripts reside), or in the document layer,
which is always behind miniwindows and palettes. If you don’t specify this
parameter, HyperCard selects a layer appropriate to the window style—the
floating layer for windoid, shadow, and rect styles; the document layer for
plain, zoom, roundRect, dialog, and document styles.
238 Picture

C H A P T E R 1 0

Commands
EXAMPLES

picture "Clowns",resource,plain,false,0

picture "MyPICT",file,rect

picture "Picnic",clipboard,roundRect

DESCRIPTION

The picture command displays color or gray-scale pictures in an external
window. The pictures can come from the Clipboard, from PICT or MacPaint
files, or from 'PICT' resources in the current stack or any stack in the
message-passing hierarchy.

The picture command works best if HyperCard’s application memory size in
the Get Info dialog box is set to 2 megabytes or more. If the picture cannot be
displayed because of insufficient memory, an error describing the condition is
returned in the result function.

There is a set of properties that apply to windows created with the picture
command. They are rect, globalRect, globalLoc, scroll, zoom, scale,
and dithering. The properties are in addition to the standard HyperTalk
properties location and visible, which also apply to windows created
with the picture command.

The rect and globalRect properties are set just like the rectangle property
for other HyperCard windows. The rect property applies to the rectangle of
the window created with the picture command in coordinates local to the
current card window. The globalRect property applies to the rectangle of the
window created with the picture command in global screen coordinates. See
the rectangle property in Chapter 12, “Properties.”

The rect or globalRect property is specified as four comma-separated
integers representing the bounding window rectangle. The first two integers
represent the top-left corner position of the window on the screen, and the
second two integers represent the bottom-right corner of the window. Four
literals can also be used to set the rect and globalRect properties. They are
cardScreen (or card), largestScreen (or largest), deepestScreen (or
deepest), and mainScreen (or main). These literals display the picture
window centered on the same screen as the card window, on the screen with
the largest area, on the screen with the greatest bit depth, and the main screen,
respectively.
Picture 239

C H A P T E R 1 0

Commands
Here are examples that set the rect and globalRect properties:

set the rect of window "Clowns" to "120,225,300,480"

set the globalRect of window "Clowns" to "largest"

The loc (also called location) property applies to the location of the window
created with the picture command in coordinates local to the current card
window. The globalLoc property applies to the location of the window
created with the picture command in global screen coordinates. For more
information on the loc (location) and globalLoc properties, see
Chapter 12, “Properties.”

The loc or globalLoc property specifies a point in the screen’s coordinate
system where the top-left corner of the window is to be displayed. The point is
specified as two integers that represent the horizontal and vertical offsets,
respectively. Four literals can also be used to set the loc and globalLoc
properties. They are cardScreen (or card), largestScreen (or largest),
deepestScreen (or deepest), and mainScreen (or main). These literals
display the picture window centered on the same screen as the card window,
on the screen with the largest area, on the screen with the greatest bit depth,
and the main screen, respectively. Here are examples that set the loc and
globalLoc properties:

set the loc of window "Flowers" to "65,100"

set the globalLoc of window "Clowns" to "card"

The scroll property for windows created with the picture command is
like the scroll property for cards in card windows. See the scroll property
in Chapter 12, “Properties.” Scroll is specified as two comma-separated
integers representing the horizontal and vertical offsets, in the picture’s
coordinate system, to be displayed at the top-left corner of the window. Here
is an example that sets the scroll property for a window:

set the scroll of window "Water" to "45,60"

The dithering property is a Boolean value: true for dithering, false for
no dithering. (The default for the dithering property is false.) Here is an
example that sets the dithering property for a window:

set the dithering of window "Garlic" to true
240 Picture

C H A P T E R 1 0

Commands
The scale property scales a picture in a window created with the picture
command. The value for scale is an integer between -5 and 5, inclusive.
Negative integers scale down the picture, and positive integers scale up the
picture. Scaling is done using 2 raised to the scale power. For example, if the
scale is –2, the picture is scaled to 25 percent. The default value for scale is 0.
Here is an example that sets the scale property for a picture in a window:

set the scale of window "Summer fun" to 4

The zoom property applies to windows created with a window style that
supports a zoom box. It zooms a window in or out. The possible values
for zoom are in and out. Here is an example that sets the zoom property
for a window:

set the zoom of window "Alligators" to out

NOTES

If you do not provide a valid name for the fileName parameter, a standard
dialog box for opening files is displayed from which you can choose a 'PICT'
or 'PNTG' file. The one exception to this is when you specify clipboard for
the sourceType parameter. In that case any name can be used. If you cancel the
standard file dialog box, HyperCard sets the result to cancel.

If the sourceType parameter is a resource and the filename specified in the
fileName parameter can’t be found, the picture command converts
the fileName parameter to a number and looks for a 'PICT' resource with
the specified number as its ID.

If you do not set the rect or globalRect property, HyperCard displays the
picture in a window that is the same size, or as close to the same size as
possible, as the original picture.

If you do not set the scroll property, the picture is displayed with its 0,0
coordinate at the top-left corner of the external window.

The new 32-bit Color QuickDraw is fully supported. You can display 16-, 24-,
and 32-bit images with the picture command. The dithering property is
ignored if 32-bit Color QuickDraw isn’t installed in the System Folder.
Picture 241

C H A P T E R 1 0

Commands
The rect and shadow window types are created behind all the HyperCard
windows. This allows you to create picture windows that appear to pop up
above the card window.

You can close windows created with the picture command by clicking the
close box or with the close command as follows:

close window "fileName"

FileName is the filename specified in the fileName parameter for the picture
command. It is also the name displayed in the title bar of the window.

If an error occurs when creating a window, the picture command sets the
result to an error message that begins with "Couldn't display picture".

If the picture file is displayed successfully, the result is empty.

When you click a window created with the picture command, two system
messages are sent. When the mouse button is down, a mouseDownInPicture
message is sent. When the mouse button is released, a mouseUpInPicture
message is sent. Each message is sent with two parameters: the name of
the window and the point within the picture’s default (not scaled) local
coordinates at which the mouse button was clicked. You can place handlers for
these messages anywhere in the message-passing hierarchy or in the stack
script of the stack that invokes the picture command. You can use these
messages to simulate button actions, card flipping, or anything else that you
would use mouseUp and mouseDown system messages for.

The following handler checks for a mouseDownInPicture message sent by a
window created by the picture command and puts its name and the location
where the mouse button was clicked into the Message box:

on mouseDownInPicture wName,cLoc

put "You clicked window" &"e& wName "e&& ¬

"at location" && cLoc

end mouseDownInPicture

See also the close command in this chapter, and the system messages
mouseUpInWindow, mouseDownInWindow, openPicture, and
closePicture in Chapter 8, “System Messages.”
242 Picture

C H A P T E R 1 0

Commands
Play 10

SYNTAX

play sound [tempo tempo] [notes]
play stop

Sound is an expression that yields the name of a digitized sound (boing,
flute, and harpsichord are included with HyperCard). Tempo is an
expression that yields the speed at which the sound plays, and notes is an
expression that yields a list of one or more notes representing the pitch at
which the sound plays and the duration of the notes. Digitized sounds are
of the Macintosh sound resource formats 1 and 2, which are described in
Inside Macintosh: Sound.

EXAMPLES

play "boing" tempo 200 "c4e c dq c f eh" -- Happy Birthday

play "harpsichord" "ch d e f g a b c5w"

DESCRIPTION

The play command makes the Macintosh computer play notes through its
speaker (or through the audio jack if it’s plugged in). You can write a song by
specifying a series of notes after the play command. The play stop form
stops the current sound immediately; otherwise, it plays until it’s done
and stops by itself. In most cases, HyperCard continues to execute handlers
and perform other actions while a sound plays. In the event of a low-memory
situation, such as when playing a large sound while a large Home stack or
several other stacks are in use and HyperCard is set to the default memory
allocations, HyperCard may suspend other actions until the sound is finished
playing. Increasing HyperCard’s memory allocation should alleviate this
problem.

Digitized sounds are of the Macintosh sound resource formats 1 and 2, which
are described in Inside Macintosh: Sound. The resources must exist in a stack in
the hierarchy or in HyperCard application. If the sound can’t be found or can’t
be loaded into memory, the result gets set to "Couldn't load sound".
If the sound isn’t played because the volume is set to 0 (in the Sound control
Play 243

C H A P T E R 1 0

Commands
panel), HyperCard is running in the background, or an XCMD is using
HyperCard’s sound channel, the result gets "Sound is off".

SCRIPT

The following example handler goes to each card in a stack and synchronizes
playing the specified notes with each card change:

on tour

repeat the number of cards

play "harpsichord" tempo 200 "ce4 fe ae c5q ae4 cq5"

go next card

wait until the sound is "done"

end repeat

end tour

NOTES

Tempo is a number specifying the speed at which the group of notes is played
(100 is a medium tempo; higher numbers are faster). The sound and tempo are
specified once for each play command.

The notes are specified in the following form:

noteName accidental octave duration

NoteName is the name of the note played (A through G); accidental is # or b,
specifying sharp or flat, respectively; octave is a number specifying the pitch of
the scale (4 is the “middle C” scale); and duration specifies the relative time
value of the note played:

w whole note s 16th note

h half note t 32nd note
q quarter note x 64th note
e eighth note
244 Play

C H A P T E R 1 0

Commands
You can use a period (.) or numeral 3 following duration to specify a dotted or
triplet note, respectively.

Octave and duration may be changed for each note played; if they are not
changed, subsequent notes are in the same octave and have the same duration
as the previous note.

The 254-character limit on note strings that existed in earlier versions of
HyperCard no longer applies.

See also the sound function in Chapter 11, “Functions.”

Pop Card 10

SYNTAX

pop card [preposition [chunk of] container]

Preposition is into, before, or after; chunk is a chunk expression, and
container is an expression that identifies a container.

EXAMPLE

pop card into field 3 of card WhereIbeen

DESCRIPTION

The pop card command retrieves the identification (full ID and stack
pathname) of a card previously saved with the push card command. If you
don’t provide a destination for the identification, you go directly to the card
whose address is popped.
Pop Card 245

C H A P T E R 1 0

Commands
SCRIPT

The following example handler pushes whatever card you’re on, goes
to another stack, gets the value of a field property, then returns to the
original card:

on getTheFont

global myStack,theFont

push card

go myStack

put textFont of field 1 into theFont

pop card -- goes to the card formerly pushed

end getTheFont

NOTES

After the card has been popped, its identification is removed from the memory
stack—it can’t be popped again. If a container is given, however, the card’s
identification is put into the container, but you don’t go anywhere.

See also the push command, later in this chapter.

Print 10

SYNTAX

print fileName with application
print field
print expression
print button

FileName is an expression that yields the name of any document on your
Macintosh computer, and application is an expression that yields the name of
the application to which it belongs (or with which it is compatible). Field is an
expression that yields any field descriptor. Expression is an arbitrary expression
or container.
246 Print

C H A P T E R 1 0

Commands
EXAMPLES

print "memo" with "MacWrite"

print field 1 with field "Program"

print "HD:MY DOCS:letter" with "HD:Applications:MacWrite"

print bkgnd field 1

DESCRIPTION

The print command prints the specified file, field, or expression.

The print fileName with application form of the print command suspends
HyperCard, launches the named application, opens the named document,
prints the document, then resumes running HyperCard. The specified
application must support printing.

The print field form of the print command prints the specified field using
the current font, size, style, and line height of that field.

The print expression form prints any arbitrary HyperTalk expression. Expres-
sions are printed using global print properties, such as printTextFont.

SCRIPT

The following example handler queries the user for the name of a document to
print and an application with which to print it:

on mouseUp

ask "Print what document?" with empty

if It is not empty then

put It into doc

ask "Use what application?" with empty

if It is not empty then print doc with It

end if

end mouseUp
Print 247

C H A P T E R 1 0

Commands
NOTES

If the document or application you specify isn’t at the top level of the file
hierarchy (the “disk” level), then the path to it must be specified on the
appropriate Search Path card of the Home stack. Alternatively, you can specify
the full pathname with the print command.

Error messages go into the container the result of the source program when
the print command fails.

Don’t use the print command while a print job started with the open
printing command is active.

See also the print card command described in this chapter.

Print Card 10

SYNTAX

print card [from point1 to point2]
print marked cards

print all cards

print number cards

Card is an expression that yields a card descriptor or the word card, which
refers to the current card.

Point1 is an expression that yields two comma-separated numbers representing
the upper-left corner of a rectangular region you want to print on the specified
card. Point2 is an expression that yields two comma-separated numbers
representing the lower-right corner of a rectangular region you want to print
on the specified card. Number is an expression that yields an integer or the
word all.

EXAMPLES

print card from 0,123 to 345,512

print last card

print card id 3011

print all cards
248 Print Card

C H A P T E R 1 0

Commands
print marked cards

print howMany cards -- howMany contains an integer

print card

DESCRIPTION

The print card command makes HyperCard print the specified card. It
differs from the Print Card command (Command-P) in the File menu in that
the File menu command prints at full size, while print card prints at the size
specified in the Print Stack dialog box. The print number cards form prints
the number of cards specified by number, beginning with the current card. The
print marked cards form prints a group of marked cards. The print card
form makes HyperCard go to the specified card, print it, and return to the
current card.

SCRIPT

The following example handler queries the user for a number of cards to print
whenever Print Card is chosen from the File menu:

on doMenu var

if var is "print card" then

ask "Print how many cards?" with one

open printing

if It is a number then print It cards

close printing

else pass doMenu -- make sure other menu choices

-- continue to work

end doMenu

NOTES

You don’t need to use the open printing command before using the print
card command. If nothing is printing, the print card command prints the
specified card or cards immediately; if an open printing command is in
effect, no cards are printed until a page is full (depending on how many cards
per page are specified in the printing dialog box) or the close printing
command is given.
Print Card 249

C H A P T E R 1 0

Commands
Chapter 5, “Referring to Objects, Menus, and Windows,” defines card descrip-
tors. See also the marked property in Chapter 12, “Properties,” and the close
printing, mark, open printing, and open report printing commands
described earlier in this chapter.

Push 10

SYNTAX

push card
push card [of stack stackName]
push background [of stack stackName]
push stack

Card is an expression that yields the descriptor of any card. StackName is the
name of an open stack.

EXAMPLES

push recent card
push first card
push card

DESCRIPTION

The push command saves the identification of the specified card or stack
in a LIFO (last-in, first-out) memory stack (an area of memory, not a
HyperCard stack).

SCRIPT

The following example handler saves the current card, goes to a random card,
then returns to the original card:
on nonSense

push card -- save current card
go any card
pop card -- restore current card

end nonSense
250 Push

C H A P T E R 1 0

Commands
NOTES

The card identification can be retrieved later with the pop card command
(usually so that you can go directly back to the pushed card). The card
identification that’s saved is the full card ID and stack pathname. HyperCard
holds the IDs of up to 20 cards.

Card descriptors are described in Chapter 5, “Referring to Objects, Menus,
and Windows.”

See also the pop card command, earlier in this chapter.

Put 10

SYNTAX

put expression [preposition [chunk of] container]
put itemName preposition [menuItem of] menu ¬

[with menuMsg message]

Expression is an expression that yields a text string or number; preposition is
into, before, or after; chunk is a chunk expression; and container is an
expression that identifies a container.

ItemName is an expression that yields a single menu item name or a list of
comma-separated or return-delimited names to be added to the specified
menu. MenuItem is an expression that yields the word menuItem followed
by either the name or number (integer or ordinal number) of a standard
HyperCard menu item or a user-defined menu item in the specified menu.
Menu is an expression that yields the word menu followed by either the name
or number (integer or ordinal number) of a standard HyperCard menu or a
user-defined menu in the menu bar. Message is an expression that yields a
single message or a list of comma-separated or return-delimited menu
messages to be sent when a specified menu item is chosen. The menu messages
in the list correspond one to one for each menu item.
Put 251

C H A P T E R 1 0

Commands
EXAMPLES

put "Hello" into field 1

put "go " before field "WhereTo"

put empty into It

put It -- puts contents of It into Msg

put "Tom" into first word of field "Name"

put "." after first character of last word of field 3

put fld 2 + fld 3 into fld 4 -- adds numbers in fields

put the date into varName

put "Paths" after menuItem "Preferences" of menu "Home"

put "Paths" after first menuItem of menu "Home" with ¬

menuMsg "go card 4"

put "Vanilla,Chocolate,Strawberry" into menu ¬

"Flavors" with menuMsg "put Yummy,put Tastie,put ¬

BerryGood"

DESCRIPTION

The first form of the put command causes HyperCard to evaluate expression
and copy the result into container. You use the second form of the put
command to add menu items to an existing menu. Optionally, you can specify
a message to be sent when the menu item it belongs to is chosen.

User-defined items with the same name as standard HyperCard menu items
inherit the standard behavior of the HyperCard menu item. For example, if you
put an item called Background into a menu called Special, choosing it has the
same effect as the standard Background menu item from the Edit menu unless
you assign a custom menu message or intercept the doMenu message.

HyperCard does not automatically check, uncheck, enable, or disable user-
defined menu items as it does for its own standard menu items. It is your
responsibility to make sure user-defined menu items act according to the
standard Macintosh user interface. See the commands and properties listed
in the notes section for more information about controlling the behavior of
menu items.
252 Put

C H A P T E R 1 0

Commands
SCRIPT

The following example handler initializes three global variables when the stack
it’s in is opened:

on openStack

global var1,var2,var3

put 0 into var1

put empty into var2

put empty into var3

end openStack

NOTES

If you don’t specify the destination container, the value is copied into the
Message box. (HyperCard shows the Message box if it’s hidden.) If you specify
a container that HyperCard doesn’t recognize, it creates a new local variable of
that name and puts the value into the variable.

For the put expression form, using into replaces the contents of the container,
before places the source value at the beginning of the previous contents, and
after appends the source value to the end of the previous contents.

You can use the put command to put text into buttons. The lines of the text of a
pop-up button become the menu items of the pop-up menu that appears when
the user clicks the button. Here’s an example:

set style of button 1 to popup

put menu font into button 1

If expression is a container holding an arithmetic expression, the expression is
not evaluated but is copied literally into the destination. Use the value
function with the container name to have HyperCard evaluate its contents.

You can delete the contents of a container by putting the constant empty or ""
into it (but this doesn’t delete the container). You can specify a chunk expres-
sion to insert, replace, or delete a portion of the contents.

Always use the form put itemName before|after menuItem of menu to add
a menu item to a menu that already has menu items in it. If you use the form
put menuItem into menu, you replace the contents of the menu, deleting any
other menu items already in the menu.
Put 253

C H A P T E R 1 0

Commands
Because menus are like containers, you can get a list of the current menu items
in a menu by using the term menu as an expression. For example, the following
statement puts a return-delimited list of all the menu items in the Home menu
into card field “MenuItemList”:

put menu "Home" into card field "MenuItemList"

You can get a specified menu item name with a statement like

put menuItem 3 of menu "Home"

The maximum number of menu items in a menu is 64.

See also the checkMark, commandChar, enabled, menuMessage, name, and
textStyle properties in Chapter 12, “Properties.” See also the create menu,
delete, disable, and enable commands in this chapter.

Read 10

SYNTAX

read from file fileName [at [-]start]
for numberOfChars|until char|constant

FileName is an expression yielding the name of any file on your Macintosh; start
is an integer expression identifying the position in the file where reading starts:
a positive number indicates the character offset from the beginning of the file,
and a negative number indicates the character offset from the end of the file.

NumberOfChars is an integer expression for the total number of characters to
be read.

Char is an expression identifying the last ASCII character to be read (upper-
and lowercase are distinguished).

Constant is one of the following: end, eof, formFeed, quote, return, space,
or tab.
254 Read

C H A P T E R 1 0

Commands
EXAMPLES

read from file "import" at 4 for 20

read from file "import" until tab

read from file "File Names" until return -- reads one line

read from file "myFile" at -20 until eof -- starts reading

-- at 20 characters from the end of file

DESCRIPTION

The read command reads from the specified file, which must be opened
already with the open file command, into the local variable It. Reading
starts either at the position specified or, if no start is specified, from the
character following the last point read with a previously executed read
command. Reading continues until the specified character or constant is
reached or until the specified number of characters has been read.

SCRIPT

The following example handler opens a file, reads to the end of the file while
placing its contents into a global variable, and closes the file:

on mouseUp

global fileName, textHolder

open file fileName

read from file fileName until eof

put It into textHolder

close file fileName

end mouseUp

NOTE

If you specify more than one character with the read until form, HyperCard
stops reading when it finds the first character in the file.
Read 255

C H A P T E R 1 0

Commands
Tab characters
HyperCard reads tab characters from a file into It. When
text containing tabs is put into a field, the tabs are
displayed as spaces. The tabs are not removed when the
text is altered; however, if null characters (ASCII 0) are
read in, HyperCard changes them to spaces (ASCII 32). ◆

Use the close file command to close files explicitly after you use them.
HyperCard automatically closes all open files when an exit to HyperCard
statement is executed, when you press Command-period, or when you quit
HyperCard.

You must provide the full pathname of the file if it’s not at the same directory
level as HyperCard. (See “Identifying a Stack” in Chapter 5 for an explanation
of pathnames.)

If an error is generated while using the read command, an error dialog
appears. See also the close file, open file, and write commands in
this chapter, and the result function in Chapter 11, “Functions.”

Reply 10

SYNTAX

reply expression [with keyword aeKeyword]
reply error expression

Expression yields a HyperTalk statement. AeKeyword is an Apple event keyword.

EXAMPLES

reply "Hello there, nice to hear from you"

reply error “Error in the remote stack”
256 Reply

C H A P T E R 1 0

Commands
DESCRIPTION

You use the reply command to answer an incoming Apple event. If you don’t
specify a keyword for the reply parameter, then the parameter becomes the
direct parameter of the reply.

You can use the form reply expression only to reply to a send command from
another running copy of HyperCard. This form sets the result in the
sending program to expression, where expression is any string or container.

You use the reply error expression form to reply to any Apple event. This
form signals an error to the sending program.

SCRIPT

The following script handles Apple events of class 'WILD' and type 'defn' by
searching for a string in a background field named “Glossary Entry” and
returning the contents of a background field named “Definition.”

on appleEvent eventClass, eventID, sender

if eventClass is "WILD" and eventID is "defn"

request appleEvent data

find it in field "Glossary Entry"

if the result is empty -- find is successful

then reply field "Definition"

else reply error "Not found"

else pass appleEvent

end appleEvent

NOTES

The reply command sets the result to No current Apple event when
there is no current Apple event to handle.
Reply 257

C H A P T E R 1 0

Commands
Request 10

SYNTAX

request expression from program
request expression of|from program id programID
request expression of|from this program
request appleEvent data with keyword aeKeyword
request appleEvent data|class|id|sender|return id|sender id

Expression is an expression that can be evaluated by the target program.
Program yields a valid program pathname in this form: zone:targetComputer:
targetProgram, where zone is a set of Macintosh computers on a local
network, targetComputer is the name of the target computer, and targetProgram
is the name of the target program. ProgramID is an application’s signature
(4-character string). AeKeyword is an Apple event keyword.

EXAMPLES

request "the number of cards" from ¬

program "KZone:PMac:HyperCard"

request "the name of this stack" of program "HyperCard"

request "{target}" from program "MPW Shell"

DESCRIPTION

The request command sends an “evaluate expression” Apple event from
HyperCard to another application running remotely or on the same machine.
You can use this command to send an expression to any program that under-
stands the standard 'eval' Apple event. If the target program is another
copy of HyperCard, the expression you use as your request can be a built-in
HyperTalk function or property (such as the time or the long name of
this stack) or a user-defined function call (such as day()). When the target
program executes the statement, the result of the request (the value of the
expression) goes into the local variable It.

The request appleEvent data with keyword form puts the parameter
or attribute with the specified keyword into the local variable It. For example,
258 Request

C H A P T E R 1 0

Commands
you can obtain a parameter of keyword errs, the standard Apple event
keyword for an error string, as follows:

request appleEvent data with keyword "errs"

put it into errorString

If there is no attribute or parameter with the keyword you specify, HyperCard
sets the result to Not found.

If you don’t supply a keyword, HyperCard assumes you’re requesting the
direct object of the Apple event, which is defined by the Apple event manager
as the parameter with keyword "----". The other request appleEvent
forms support special cases for important attributes of Apple events.

SCRIPT

The following handler shows how the request command can get information
from another HyperCard program:

on getStackName -- Card handler in source stack

request "the long name of this stack" ¬

from program HildaPath

if the result is empty

then answer It

else answer the result

end getStackName

NOTES

The parameter zone can be omitted from the program pathname when the
target computer is in the same zone as the source computer.

The signature of an application program is a four-character field stored in its
signature resource, which the application assigns to the creator field of its
documents. For example, HyperCard’s signature is 'WILD'.

When the reply to the 'eval' Apple event sent by HyperCard doesn’t contain
a direct parameter, the request command puts empty into the local variable
It. If the Apple event server encounters an error when evaluating the expres-
sion and returns an error message in the reply event, the request command
Request 259

C H A P T E R 1 0

Commands
puts that message into the result. The following error messages go into
the result when the request command fails:

See also the send keyword.

Reset Menubar 10

SYNTAX

reset menubar

DESCRIPTION

The reset menubar command reinstates the default HyperCard menus and
removes any custom menus created with the create command and custom
menu items put into standard HyperCard menus with the put command.

Condition the result contents

Error while handling a 'misc'
'eval' event

Can’t take the value of that
expression

Information returned is not recognized
by HyperCard as text

Unknown data type

No attribute or parameter with the
specified keyword

Not found

System software prior to version 7.0 Not supported by this version of
the system

Target program didn’t handle event Not handled by target program

Target program returned error number
in reply, or AESend returned some
other error

Got error <errorNum> when
sending Apple event

Target program returned error string
in reply

<errorString>

Target program timed out Timeout

User canceled “Link to program” dialog Cancel
260 Reset Menubar

C H A P T E R 1 0

Commands
NOTES

If you are creating a stack to be used by others, use this command with some
restraint, because it removes all custom menus and menu items, not just those
you created for your stack.

When your stack is closed, remove any custom menus or menu items you
created by deleting them. Use a closeStack, suspend, or suspendStack
system message handler to remove your custom menus when your stack is
closed or is no longer the current stack, and an openStack, resume, or
resumeStack system message handler to reinstate your custom menus when
your stack is opened or resumed.

See also the create menu and put commands, earlier in this chapter, and
Chapter 8, “System Messages.”

Reset Paint 10

SYNTAX

reset paint

DESCRIPTION

The reset paint command reinstates the default values of all the painting
properties. The painting properties and their default values are

brush 8 pattern 12

centered false polySides 4

filled false textAlign left

grid false textFont geneva

lineSize 1 textHeight 16

multiple false textSize 12

multiSpace 1 textStyle plain
Reset Paint 261

C H A P T E R 1 0

Commands
NOTE

The painting properties are described in Chapter 12, “Properties.”

Reset Printing 10

SYNTAX

reset printing

DESCRIPTION

The reset printing command reinstates the default values of all the
printing properties. The printing properties and their default values are

NOTE

The printing properties are described in Chapter 12, “Properties.”

ReturnInField 10

SYNTAX

returnInField

printMargins 0,0,0,0

printTextAlign left

printTextFont Geneva

printTextHeight 13

printTextSize 10

printTextStyle Plain
262 Reset Printing

C H A P T E R 1 0

Commands
DESCRIPTION

The returnInField command enters a return character into a field that is
open for text editing.

NOTES

The returnInField message, which invokes the returnInField command
if it reaches HyperCard, is normally generated by pressing the Return key on
the keyboard, but you can also send it from the Message box or execute it as a
line in a script.

See also the returnInField system message in Table 8-3.

ReturnKey 10

SYNTAX

returnKey

DESCRIPTION

The returnKey command sends a statement typed into the Message box to
the current card.

NOTES

The returnKey message, which invokes the returnKey command if it reaches
HyperCard, is normally generated by pressing the Return key on the keyboard,
but you can also send it from the Message box or execute it as a line in a script.

See also the returnKey system message in Table 8-3.
ReturnKey 263

C H A P T E R 1 0

Commands
Save 10

SYNTAX

save stack stackName as [stack] fileName
save [this] stack as [stack] fileName

StackName is an expression that yields a valid stack name. FileName is an
expression that yields a valid Macintosh filename.

EXAMPLE

save stack "Pottery" as "NewPottery"

DESCRIPTION

The save command saves a copy of the specified stack with the given filename.
The stack is saved without a dialog box. Both stackName and fileName must be
enclosed in quotation marks.

NOTE

If the save command produces an error, the error is stored in the HyperCard
function the result.

Select 10

SYNTAX

select object
select [preposition] chunk of field
select [preposition] text of field
select line number [to number] of field
select line number of button
select empty
264 Save

C H A P T E R 1 0

Commands
Object is an expression that yields the descriptor of a button or field, or me, or
target; preposition is before or after; chunk is a chunk expression; field is
the descriptor of a field; number is an expression that evaluates to an integer;
and button is the descriptor of a pop-up button.

(Button and field descriptors and the special descriptor me are explained in
Chapter 5, “Referring to Objects, Menus, and Windows.” The special descriptor
target is explained in Chapter 4, “Handling Messages.”)

EXAMPLES

select button 1

select before char 1 of field 2

select after text of field 2

select char 1 to 5 of card field "name"

select line 1 to 2 of field 1

select line 4 of button "My Pop-up"

DESCRIPTION

The select command creates a selection or highlights lines in a list field or
pop-up button. The select object form chooses the appropriate tool and
selects the object specified as though you had chosen the tool and clicked the
object manually with the mouse. The forms specifying a field select text in
the specified field and open the field for editing, unless the field is a list field.
Before and after can be used to place the insertion point relative to the
specified text or chunk of text. Using a chunk expression without a preposition
selects the entire chunk, highlighting the characters in the chunk.

If the specified field is a list field (that is, its autoSelect and lockText
properties are both true), you can use the select line form to select one
or more whole lines, which then appear highlighted. You can also specify a
pop-up button with the select line form to select one line from its contents,
which then appears within the button rectangle.

The select empty form deselects highlighted text or removes the insertion
point from a non-list field. It does not affect highlighted text in a list field or
pop-up button.
Select 265

C H A P T E R 1 0

Commands
NOTES

For button families, the selectedButton function returns the descriptor of
the button that is currently highlighted—selected by the user from the choices
the button family represents. To set the selectedButton in a family from a
script, set its hilite property to true.

You can select only the parts on the current card, so using select button 1
of next card won’t work. You do not get an error message when you try to
do this.

See also the selectedButton, selectedChunk, selectedField,
selectedLine, and selectedText functions in Chapter 11, “Functions.”

Set 10

SYNTAX

set [the] property [of element] to value

Property is a characteristic of a HyperCard object, menu, menu item, window,
or chunk of a field. Element is an expression that yields the descriptor of an
object, menu, menu item, window, or chunk of a field. Value is an expression
that yields a valid setting for the particular property.

EXAMPLES

set name of field 1 to "Soccer"

set location of button "newButton" to the mouseLoc

set the visible of field 1 to "false" -- hide the field

set userLevel to 5 -- scripting

set the cmdChar of menuItem "Home Cards" of ¬

menu "Home" to 5

set loc of window "ask" to 10,10

set the textStyle of word 1 to 2 of field "Name" to bold
266 Set

C H A P T E R 1 0

Commands
DESCRIPTION

The set command changes the state of a specified property. If the element
to which the property belongs is not specified, the property must be a global
property.

Some properties cannot be changed with the set command. These exceptions
are pointed out in the property descriptions in Chapter 12, “Properties.”

SCRIPT

The following example handler automatically draws a circle on the
current card:

on mouseUp

choose oval tool

set linesize to 2

set centered to true

set dragspeed to 75 -- speed of expansion

drag from 155,70 to 285,200

choose browse tool

end mouseUp

NOTES

The properties of objects depend on the type of object. Generally, they are the
characteristics shown in the Info dialog boxes under the Objects menu. All of
the HyperCard properties are described in detail in Chapter 12, “Properties.”

Among the commands that set properties are: disable, enable, hide, mark,
reset menubar, reset printing, show, and unmark, which are described
in this chapter.
Set 267

C H A P T E R 1 0

Commands
Show 10

SYNTAX

show background picture

show card picture

show groups

show menuBar

show object [at point]
show picture of background
show picture of card
show titlebar

show window stackName [at point]
show window windowName [at point]

Object yields one of the following objects:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

Point is an expression yielding two integers separated by commas representing
the horizontal and vertical pixel offsets, respectively, on the screen. Card yields
the descriptor of a card in the current stack. Background yields the descriptor of
a background in the current stack. WindowName is the name of a window
created with the picture command or a custom external window. StackName
is the name of an open stack.
268 Show

C H A P T E R 1 0

Commands
EXAMPLES

show msg at 50,300

show tool window

show field "Names" at 1,1

show groups

show Message Watcher

DESCRIPTION

The show command displays a specified window or object at a specified
location on the screen. If positioning offsets aren’t given, the window or object
is displayed at its previous location.

The picture form of the show command displays a graphic bitmap on the
card or background that has been hidden with the hide command. The show
groups form of the show command makes a gray 2-pixel underline below
group-style text. The show groups command affects all group-style text in all
fields globally.

The show titlebar form of the show command shows the stack window
title bar, if it was hidden. If it wasn’t hidden, it has no effect.

SCRIPT

The following example handler displays the Tools palette, the Patterns palette,
and the Message box at their default locations when HyperCard first starts
running:

on startUp

show tool window

show pattern window

show msg

end startUp

NOTES

The show command sets the visible and, optionally, location properties of
the window or object.
Show 269

C H A P T E R 1 0

Commands
If the menu bar is hidden and the screen is locked, show menubar has no effect.
See the lock and unlock commands in this chapter and the lockScreen
property in Chapter 12, “Properties.”

On Macintosh Plus and Macintosh SE screens, visible horizontal offsets range
from 0 to 511, and visible vertical offsets range from 0 to 341. Members of the
modular Macintosh family have variable visible offsets depending on the
monitor currently in use.

Message can be abbreviated msg. Background can be abbreviated bkgnd or
bg. Button can be abbreviated btn. Field can be abbreviated fld. Card can
be abbreviated cd.

For buttons and fields of the current card, point specifies the distance from the
top-left corner of the card window to the center of the button or field.

Card window refers to the current card window; for it and all stack windows,
point specifies the distance from the top-left corner of the screen to the top-left
corner of the card window, disregarding the title bar at the top of the window.
For the other windows, point specifies the distance from the top-left corner of
the card window to the top-left corner of the other window, disregarding the
drag bar at the top of the window.

The default location for the Message Watcher window is the lower-left corner
of the screen. The default location for the Variable Watcher is the lower-right
corner of the screen.

The menu bar always shows at the top of the screen.

You can use the show and hide commands with the Navigator window only
after it has been invoked with the palette command.

Valid window names for the show command are any of the windows returned
by the windows function.

When you change a card window’s location property with the show card
window at location form, the system message moveWindow is sent. The
moveWindow message is also sent when you drag the window to a new
location or zoom it in or out with the zoom box, causing the location property
to change.

See also the hide, palette, and set commands in this chapter; the show
system message in Table 8-3; the windows function in Chapter 11, “Functions”;
and the location and visible properties in Chapter 12, “Properties.”
270 Show

C H A P T E R 1 0

Commands
Show Cards 10

SYNTAX

show [number] cards
show all cards

show marked cards

Number is an expression yielding an integer.

EXAMPLES

show all cards

show ten cards

show 26 cards

show marked cards

show howMany cards -- howMany contains an integer

show cards

DESCRIPTION

The show cards command displays the specified cards in the current stack in
turn, beginning with the next card or, for the show marked cards form, the
first marked card. If no parameter is used, show cards displays all cards in
the stack continuously.

SCRIPT

The following example handler “prewarms” the stack when you open it, so
that going to cards in the stack subsequently will be faster, by caching the cards
in RAM:

on openStack

set lockScreen to true

show all cards

set lockScreen to false

end openStack
Show Cards 271

C H A P T E R 1 0

Commands
NOTES

The show all cards form shows all cards in the stack. HyperCard doesn’t
send the openCard system message when a card is displayed by show cards,
nor do visual effects occur. After the cards are shown, the last one shown (where
you began in the case of show all cards) is the current card.

See also the marked property in Chapter 12, “Properties.”

Sort 10

SYNTAX

sort [sortDirection] [sortStyle] by sortKey
sort [this] stack [sortDirection] [sortStyle] by sortKey
sort [marked] cards [of this stack] [sortDirection] ¬

[sortStyle] by sortKey
sort background [sortDirection] [sortStyle] by sortKey
sort [marked] cards of background [sortDirection] ¬

[sortStyle] by sortKey
sort [lines|items of] container [sortDirection] ¬

[sortStyle] [by sortKey]

Container is a field expression, variable, or the variable each.

SortDirection can be either ascending or descending; the default value is
ascending.

SortStyle can be text, numeric, dateTime, or international; the default
is text.

SortKey is any expression.

Background is an expression that yields a background descriptor.
272 Sort

C H A P T E R 1 0

Commands
EXAMPLES

sort lines of field 1 by last word of each

sort items of field 5 descending numeric by word 2 of each

sort numeric by second word of field 1

sort descending text by last word of field "Names"

sort cards of this stack by field "Names"

sort marked cards descending numeric by bg field 2

sort marked cards of background "Notes" by bg field 2

sort this background by field 1

sort lines of field 3 ascending

sort items of field 3 dateTime

sort field 3

sort it numeric

DESCRIPTION

The sort command can sort and order

■ the lines or items in a container; if you do not specify lines or items when
sorting a container, the default is lines (if you choose items, remember
that HyperCard recognizes an item by its comma delimiter)

■ all the cards or marked cards in a single background or a stack

You can customize the sort command by

■ setting sortDirection to ascending or descending; it is ascending
by default

■ setting sortStyle to text, numeric, dateTime, or international; the
default is text

■ setting sortKey to any expression; for example, you could sort the lines in a
field by the last word in each line by setting sortKey to

the last word of each
Sort 273

C H A P T E R 1 0

Commands
SCRIPT

The following example handler shuffles the cards in a stack randomly when
the user goes to it from another stack:

on openStack

sort numeric by random(the number of cards)

end openStack

NOTE

The international sort style assures correct sorting of non-English text
containing diacritical marks and special characters, according to the interna-
tional resources in your System file, your version of HyperCard, the Home
stack, and the current stack.

The dateTime style sorts the stack using one of the forms of date or time
(shown with the convert command, in this chapter), with earliest placed first
in the ascending direction. The dateTime style also works correctly with
non-English forms of date and time that have been modified by international
resources in the System file.

See also the marked property in Chapter 12, “Properties,” and the mark
command in this chapter.

Start Using 10

SYNTAX

start using stack stackName

StackName is an expression that yields a stack name.

EXAMPLE

start using stack "HD80:myStack"
274 Start Using

C H A P T E R 1 0

Commands
DESCRIPTION

The start using command inserts the specified stack between the current
stack and the Home stack in the message-passing hierarchy. Each successive
stack that is added to the message-passing hierarchy is inserted just after the
current stack. If a stack that is already in use is “used” again, its previous
place in the message-passing hierarchy changes to the place just after the
current stack.

The start using command allows you to use the stack script and resources
of any other HyperCard stack, not just the Home stack. Once the start
using statement is executed, the handlers in the script of the specified stack
and the XCMDs and other resources in its resource fork are available for use.

SCRIPT

To change the message-passing hierarchy when opening a stack, simply place a
start using statement in the openStack handler:

on openStack

start using stack "myStack:ScriptStack"

end openStack

To remove the stack from the hierarchy when closing a stack, place a stop
using statement in the closeStack handler:

on closeStack

stop using stack "myStack:ScriptStack"

end closeStack

NOTE

See also the description of the message-passing hierarchy in Chapter 4,
“Handling Messages,” and the next command, stop using.
Start Using 275

C H A P T E R 1 0

Commands
Stop Using 10

SYNTAX

stop using stack stackName

StackName is an expression that yields a stack name.

EXAMPLE

stop using stack "HD80:myStack"

DESCRIPTION

The stop using command removes the specified stack from the message-
passing hierarchy.

SCRIPT

To remove the stack from the message-passing hierarchy when closing a stack,
place a stop using statement in the closeStack handler.

on closeStack

stop using stack "myStack:ScriptStack"

end closeStack

NOTE

See also the description of the message-passing hierarchy in Chapter 4,
“Handling Messages,” and the previous command, start using.
276 Stop Using

C H A P T E R 1 0

Commands
Subtract 10

SYNTAX

subtract number from [chunk of] container

Number is an expression that yields a number. Chunk is an expression that
yields a chunk of a container. Container is an expression that identifies a
container, such as a field, the Message box, the selection, or a variable.

EXAMPLES

subtract 2 from It

subtract field 1 from field 2

DESCRIPTION

The subtract command subtracts the value of number from the value of
[chunk of] container, leaving the result in [chunk of] container. The value
previously in container must be a number; it is replaced with the new value.

TabKey 10

SYNTAX

tabKey

DESCRIPTION

The tabKey command opens the first unlocked field on the current back-
ground or card (placing the text insertion point in the field) and selecting its
entire contents. If a field is already open, tabKey closes it and opens the next
field, selecting its contents.
Subtract 277

C H A P T E R 1 0

Commands
SCRIPT

The following example handler sets the insertion point in the first field so that
the user can type something when the card is opened:

on openCard

tabKey

end openCard

NOTES

The tabKey system message, which invokes the tabKey command if it reaches
HyperCard, is normally generated by pressing the Tab key on the keyboard.
But you can also send it from the Message box or execute it as a line in a script.

The tabKey command opens fields in the following order: from the lowest
number to the highest, through the background fields first, then through the
card fields.

See also the tabKey system message in Table 8-3.

Type 10

SYNTAX

type text [with commandKey]

Text is an expression that yields a text string.

CommandKey can be abbreviated cmdKey.

EXAMPLES

type "Now is the time for all good persons."

type "p" with commandKey -- print card
278 Type

C H A P T E R 1 0

Commands
DESCRIPTION

The type command enters the value of text at the text insertion point, as
though you had typed it manually. If the with commandKey form is used,
no text appears at the insertion point; rather, the action defined for the
Command-key combination is carried out.

SCRIPT

The following example handler chooses the Browse tool, clicks the center of the
specified field, and types a literal string:

on autoType

choose browse tool

click at the loc of field "whereToType"

type "Automatic writing apppears before your eyes..."

end autoType

NOTES

The text insertion point is placed by clicking an unlocked field with the Browse
tool or by sending the tabKey message. Manipulating the text insertion point
is described in the HyperCard Reference.

Paint text can be typed at the text insertion point on a card or background with
the Paint Text tool selected.

Unlock 10

SYNTAX

unlock screen with [visual [effect]] effectName [speed]¬
[to image]

unlock messages|error dialogs|recent

EffectName is an expression that yields any of the effect names described under
the visual command later in this chapter. Speed is one of the following: fast,
very fast, slow, slowly, very slow, or very slowly. Image is one of the
following: black, card, gray, grey, inverse, or white.
Unlock 279

C H A P T E R 1 0

Commands
EXAMPLES

unlock screen with dissolve to black

unlock error dialogs

unlock recent

DESCRIPTION

The unlock command can be used for four different unrelated purposes.
Using the unlock command, you can reset HyperCard to

■ update the screen by setting the lockScreen global property to false. In
addition, you can specify a single visual transition to occur when the screen
is updated by using the visual effect option.

■ send system messages such as openCard, closeCard, and so on, by setting
the lockMessages property to false.

■ display error dialogs in response to errors in executing scripts by setting the
lockErrorDialogs property to false.

■ record miniature representations of each card on the Recent card by setting
the lockRecent global property to false.

NOTE

Visual effects can’t be compounded using unlock screen, as they can be
using the visual command.

See also the visual and lock commands in this chapter and the
lockErrorDialogs, lockMessages, lockRecent, and lockScreen
properties in Chapter 12, “Properties.”
280 Unlock

C H A P T E R 1 0

Commands
Unmark 10

SYNTAX

unmark card
unmark cards where condition
unmark all cards

unmark cards by finding [international] text [in field]
unmark cards by finding chars [international] text [in field]
unmark cards by finding string [international] text [in field]
unmark cards by finding whole [international] text [in field]
unmark cards by finding word [international] text [in field]

Card is an expression that yields a card descriptor. Condition is an expression
that yields the criteria on which you want to base the unmarking of cards. Text
is an expression that yields any text. Field is an expression that yields a field
descriptor.

EXAMPLES

unmark the next card

unmark cards where "We be shaking" is in field 2

unmark all cards

unmark card by finding word "fire" in bkgnd field 3

DESCRIPTION

The unmark command sets the marked property for the specified card or cards
to false. The marked property of a card can also be changed with the Card
Marked option in the Card Info dialog box. By default, the marked property of
a card is false.

The by finding form of the mark command uses chars, word, whole, and
string to define the search criteria the same way the find command does.
See the description of the find command for information about how to use
these forms.
Unmark 281

C H A P T E R 1 0

Commands
The unmark command can be used with the mark command in searches where
you want to find and mark cards containing particular information while
excluding other unnecessary information. See the description and script
example used for the mark command, which is described earlier in this chapter.

NOTE

See also the marked property in Chapter 12, “Properties,” and the mark
command, earlier in this chapter.

Visual 10

SYNTAX

visual [effect] effectName [speed] [to image]

EffectName is one of the following:

Speed is one of the following:

barn door close | open scroll up | down

checkerboard shrink to top | center | bottom

dissolve stretch from top | center | bottom

iris close | open venetian blinds

plain wipe left | right

push left | right wipe up | down

push up | down zoom close | open

scroll left | right zoom in | out

fast very fast

slow[ly] very slow[ly]
282 Visual

C H A P T E R 1 0

Commands
Image is one of the following:

EXAMPLES

visual effect barn door open

visual dissolve slowly to white

DESCRIPTION

The visual command specifies a visual transition for HyperCard to use the
next time it opens a card, as the current card is closed. The default plain
visual effect causes all of the current image to be replaced immediately by the
image of the next card. If you use the to image form, the visual effect occurs as
a transition from the current card to a completely white, gray, or black screen
image, to the inverted image of the next card, or to the image of the next card;
to card is the default.

SCRIPT

The following example handler stacks two visual effects, which occur in
succession, so that the transition appears as a fade to black, then to the
next card:

on fadeOut

visual effect dissolve to black

visual effect dissolve to card

go next card

end fadeOut

black inverse

card white

gray
Visual 283

C H A P T E R 1 0

Commands
NOTES

Visual effects don’t happen when you use the arrow keys or the show cards
command to change cards; they occur only when go is executed, so they must
be set up in a handler that also contains a go command. If a go command is not
executed, visual effects set up in the handler are canceled when the handler
finishes executing.

You can stack up several visual effects that will occur one after the other when
you go to the next card.

See also the unlock command, earlier in this chapter.

Wait 10

SYNTAX

wait [for] time [seconds|ticks]
wait while | until condition

Time is an expression that yields an integer, and condition is an expression that
yields true or false.

EXAMPLES

wait 60 seconds

wait until the mouse is down

DESCRIPTION

The wait command causes HyperCard to pause before executing the rest of
the handler, either for a specific length of time, until a specified condition
becomes true, or while a specified condition remains true.

If seconds is not specified for time, HyperCard uses ticks (1⁄60 second).
284 Wait

C H A P T E R 1 0

Commands
SCRIPT

The following example handler allows time to view each card:

on slideshow

repeat the number of cards

visual effect dissolve slowly

go next card

wait 2 seconds

end repeat

end slideshow

Write 10

SYNTAX

write text to file fileName [at [-]start|end|eof]

Text is an expression that yields text. FileName is an expression that yields
a filename.

Start is an integer expression identifying the position in the file where reading
starts. A positive number indicates the character offset from the beginning of
the file; a negative number specifies a character offset from the end of the file.

EXAMPLES

write field "address" to file "myDisk:myFile"

write "first line" & return & "second line" to file ¬

"twoliner"

write someStuff to file "myFile" at -15
Write 285

C H A P T E R 1 0

Commands
DESCRIPTION

The write command causes HyperCard to copy the specified text to the
specified disk file.

You can choose to specify the starting point at which to write the text. A
negative number indicates the starting point to be a number of characters from
the end of the file. If you specify either of the constants end and eof as the
place to start, HyperCard appends the new text to the end of the file.

If you don’t specify a starting point, the first write command executed after
opening a file replaces the previous contents of a file. HyperCard does not ask
if you want to write over the existing file.

For the write command to work, you must have already opened the file with
the open file command, and you should close it, when writing is completed,
with the close file command.

SCRIPT

The following example handler opens a file specified in a global variable,
writes the entire contents of the specified field to the file starting at character 5,
then closes the file:

on writeFile

global filename

open file filename

write background field 1 to file filename

close file filename

end writeFile

NOTES

If a file is open for writing and you write to a file at a certain offset or a
specified position, like eof or end, then HyperCard will not replace the file
with the new text.

HyperCard replaces the previous contents of a file when it is opened and then
written to sequentially, using write commands that do not specify the offset
at which to write into the file. If any one of them does specify the offset, the file
will contain all of the newly written data but will also include any of the
preexisting text that was not specifically overwritten.
286 Write

C H A P T E R 1 0

Commands
You must provide the full pathname of the file if it’s not at the same directory
level as HyperCard. (See “Identifying a Stack” in Chapter 5 for an explanation
of pathnames.)

If the file is locked or its disk is full, HyperCard displays an error dialog
box and closes the file. HyperCard automatically closes all open files when
an exit to HyperCard statement is executed, when you press Command-
period, or when you quit HyperCard.

See also the close file, open file, and read commands in this chapter.
Write 287

C H A P T E R 1 1

Figure 11-0
Listing 11-0
Table 11-0
Functions 11
This chapter describes HyperTalk’s built-in functions.

A function is a named value that is calculated by HyperCard when the state-
ment it is in executes. The value of a function changes according to conditions of
the system or according to values of parameters that you pass to the function
when you use it. When HyperCard reads a function name in a line of HyperTalk,
it places the function’s current value—its result—in that location before
completing other actions.

Function Calls 11

To make a function call, that is, to use it in a HyperTalk statement, you must
either use the word the before the function name or append parentheses after
it. If a single parameter is passed to a function, the parameter can be enclosed
in the parentheses or can follow the word of. (When of is used in this way
to indicate the function call, the word the preceding the function name is
optional.) If more than one parameter is passed to a function, all parameters
must be enclosed in the parentheses and separated from each other by commas.
Here are some examples of function calls:

put the time into msg

put time() into background field "Time"

put the length of myVariable into card field "howLong"

put average(total_1,total_2,total_3) into Projection

get the clickChunk

You can define your own functions in HyperTalk using the function handler
structure described in Chapter 9.
Function Calls 289

C H A P T E R 1 1

Functions
User-defined functions override
built-in ones with the same name
If you define your own function having the same name
as a built-in one, yours overrides the built-in one if the
function call is made with the parentheses syntax
(unless the function call is made farther along the
hierarchy than the handler’s script). ◆

You can call the built-in functions of HyperCard directly and bypass any user-
defined functions by using the word the before the function name. You can
also use of, rather than using the parentheses syntax; however, functions
having more than one parameter always require parentheses.

Syntax Description Notation 11

The syntax descriptions use the following typographic conventions. Words or
phrases in this font are HyperTalk language elements or are those that you
type to the computer literally, exactly as shown. Words in italics describe
general elements, not specific names—you must substitute the actual instances.
Brackets ([]) enclose optional elements that may be included if you need
them. (Don’t type the brackets.)

It doesn’t matter whether you use uppercase or lowercase letters; names that
are formed from two words are shown in lowercase letters with a capital in the
middle (likeThis) merely to make them more readable.

The terms factor and expression are defined in Chapter 7, “Expressions.” Briefly,
a factor can be a constant, literal, function, property, number, or container, and
an expression can be a single factor or a complex expression built with factors
and operators. Also, a factor can be an expression within parentheses.

The term yields indicates a specific kind of value, such as a number or a text
string, that must result from evaluation of an expression when a restriction
applies (for example, the factor or expression used with the abs function must
yield a number). However, any HyperTalk value can be treated as a text string.
290 Syntax Description Notation

C H A P T E R 1 1

Functions
Function Descriptions 11

The rest of this chapter describes the functions supported by HyperCard 2.2.

Abs 11

SYNTAX

the abs of factor
abs(expression)

Factor and expression yield numbers.

EXAMPLE

put abs(a-b) into field "theOffset"

DESCRIPTION

The abs function returns the absolute value (makes the sign positive) of the
number passed to it.

Annuity 11

SYNTAX

annuity(rate, periods)

Rate and periods are expressions that yield numbers.
Function Descriptions 291

C H A P T E R 1 1

Functions
EXAMPLES

put myPayment*annuity(.015,12) into presentValue

put myPayment*annuity(.015,12)*compound(.015,12)¬

into futureValue

DESCRIPTION

The annuity function is used to compute the present or future value of an
ordinary annuity. Rate is the interest rate per period, and periods is the number
of periods over which the value is calculated. The formula for annuity is

annuity(rate, periods) = (1-(1+rate)-periods)/rate

The annuity function is more accurate than computing the formula above
using basic arithmetic operations and exponentiation, especially when rate
is small.

NOTE

See also the compound function, later in this chapter.

Atan 11

SYNTAX

the atan of factor
atan(expression)

Factor and expression yield numbers.

EXAMPLE

put atan(1.0) into field "arcTan" -- yields 0.785398
292 Atan

C H A P T E R 1 1

Functions
DESCRIPTION

The atan function returns the trigonometric arc tangent (inverse tangent) of
the number passed to it: that is, the angle whose tangent is equal to the given
value. The result is expressed in radians.

Radians can be converted to degrees by multiplying by 180 and dividing the
result by the value of the constant pi.

SCRIPT

The following example handler converts a value in radians to degrees and puts
the result into the Message box:

on radiansToDegrees var

put round((atan(var)*180)/pi) into msg

end radiansToDegrees

Average 11

SYNTAX

average(list)

List is a sequence of comma-separated expressions that yield numbers, or it is a
single container that contains such a sequence.

EXAMPLE

put average(1,2,3) into field "avg"

DESCRIPTION

The average function returns the average of the numbers passed to it.
Average 293

C H A P T E R 1 1

Functions
SCRIPT

The following example handler displays the average of a list of numbers
contained in one line of a field:

on avgSupplyPrice

put "12.95,10.50,14.75,15.00,9.95" into line 3 of¬

field "suppliers"

answer "Average widget cost:" && average (line 3 of¬

field "suppliers")

end avgSupplyPrice

CharToNum 11

SYNTAX

the charToNum of factor
charToNum(expression)

Factor and expression yield a character.

EXAMPLE

put the charToNum of "a" into It -- yields 97

DESCRIPTION

The charToNum function returns an unsigned integer representing the ASCII
equivalent value of the character passed to it.

NOTES

If more than one character is passed, charToNum returns the ASCII value of
the first character. If factor is a literal, it must appear within quotation marks.

See also the numToChar function, later in this chapter.
294 CharToNum

C H A P T E R 1 1

Functions
ClickChunk 11

SYNTAX

the clickChunk

clickChunk()

EXAMPLES

put the clickChunk into card field "ExpressMyClick"

get the clickChunk

DESCRIPTION

The clickChunk function returns a chunk expression referring to the text
clicked in a field and is typically something like char 1 to 3 of bkgnd
field 3.

ClickChunk refers to the single word clicked, with the definition of a word
being any characters delimited by white space (commas, tabs, spaces, returns,
and so on). If the location clicked has the style group, then the largest contig-
uous run of text that has the group style is returned, thus allowing ranges or
phrases rather than just single words to be referred to. Group is a possible
value of the textStyle property.

SCRIPT

Because chunks of text also have properties, you could use the clickChunk
function to examine the textstyle property of a chunk of text in a field and
then take the appropriate action based on that style of text. For example, you
might have an application that provides definitions for any boldface words
when one of the words is clicked.

The following handler placed in a script of a locked field examines the style of
a chunk of text clicked in that field and, if that text is boldface, calls up another
field containing definitions:

on mouseUp
if the textStyle of the clickChunk is bold
then show card field "definitions"

end mouseUp
ClickChunk 295

C H A P T E R 1 1

Functions
NOTE

See also the clickLine, clickLoc, and clickText functions in this chapter
and the textStyle property in Chapter 12, “Properties.”

ClickH 11

SYNTAX

the clickH

clickH()

EXAMPLE

put the clickH into card field "horizontalOffset"

DESCRIPTION

The clickH function returns an integer that represents the number of hori-
zontal pixels from the left side of the card window to the place where the
mouse was last clicked.

NOTE

See also the clickV function in this chapter.

ClickLine 11

SYNTAX

the clickLine

clickLine()
296 ClickH

C H A P T E R 1 1

Functions
EXAMPLES

put the clickLine into card field "MyClick"

get the clickLine

DESCRIPTION

The clickLine function returns the specification of the line (based on actual
return characters, not display lines) that was clicked. A typical result is line 5
of card field 2. One sentence or line of text may not fit in the width of a
field and have to wrap onto subsequent lines on the display. It may appear as
though more than one line is in the field, but if the lines are not delimited with
return characters, clickLine returns an expression like line 1 of card
field 5 when a user clicks the text in that field. If you want clickLine to
return a unique line number for each line that is displayed within a field, be
sure to end each line in the field with a return character.

NOTE

See also the clickChunk, clickLoc, and clickText functions in this chapter.

ClickLoc 11

SYNTAX

the clickLoc

clickLoc()

EXAMPLE

put the clickLoc into card field "mostRecentClick"

DESCRIPTION

The clickLoc function returns the point on the screen where the user most
recently clicked before the handler started executing. The location is deter-
mined at the time the message is first sent—the mouse could be elsewhere by
ClickLoc 297

C H A P T E R 1 1

Functions
the time the message is received. The location point is returned as two integers
separated by a comma, representing horizontal and vertical pixel offsets from
the top-left corner of the card.

SCRIPT

The following example handler, when it is in the script of a locked field, selects
a word in the field when the user clicks the word:

on mouseUp

set locktext of me to false -- unlock the locked field

-- next two lines double-click the location

click at the clickLoc

click at the clickLoc

put "You clicked the word:" && the selection

set lockText of me to true -- must lock it again

end mouseUp

ClickText 11

SYNTAX

the clickText

clickText()

EXAMPLES

put the clickText into card field "ExpressMyClick"

get the clickText

DESCRIPTION

ClickText returns the text of a single word clicked, with the definition of a
word being any characters delimited by white space (commas, tabs, spaces,
returns, and so on). If the location clicked has the style group, then the largest
298 ClickText

C H A P T E R 1 1

Functions
contiguous run of text that has the group style is returned, thus allowing
ranges or phrases rather than just single words to be referred to and analyzed.
Group is a possible value of the textStyle property.

SCRIPT

The clickText function can be used to implement glossary lookup or provide
other hypertext-type functions with something like the following handler,
which should be placed in the script of the field being clicked:

on mouseUp

get the clickText -- must be done before leaving card

lock screen

go stack "Glossary"

find it in field "Words" -- is it a glossary entry?

if the result = "Not found" then go back

else unlock screen with dissolve -- display glossary

-- entry

end mouseUp

NOTE

See also the clickChunk, clickLoc, and clickLine functions in this
chapter and the textStyle property in Chapter 12, “Properties.”

ClickV 11

SYNTAX

the clickV

clickV()

EXAMPLE

put the clickV into card field "verticalOffset"
ClickV 299

C H A P T E R 1 1

Functions
DESCRIPTION

The clickV function returns an integer that represents the number of vertical
pixels from the top of the card window to the place where the mouse was
last clicked.

NOTE

See also the clickH function in this chapter.

CommandKey 11

SYNTAX

the commandKey

commandKey()

EXAMPLE

if the commandKey is up then put "Wow" into msg box

DESCRIPTION

The commandKey function returns the constant up if the Command key is not
pressed or down if it is pressed.

NOTES

The commandKey function name can be abbreviated cmdKey.

See also the optionKey and shiftKey functions, later in this chapter.
300 CommandKey

C H A P T E R 1 1

Functions
Compound 11

SYNTAX

compound(rate, periods)

Rate and periods are expressions that yield numbers.

EXAMPLES

put futureValue/compound(.10,12) into presentValue

put presentValue*compound(.10,12) into futureValue

DESCRIPTION

The compound function is used to compute the present or future value of a
compound interest–bearing account. Rate represents the interest rate per
period, and periods is the number of periods over which the value is calculated.
The formula for compound is

compound(rate, periods) = (1 + rate)periods

The compound function is more accurate than computing the formula expres-
sion above using standard arithmetic operations and exponentiation, especially
when rate is small.

SCRIPT

The following example handler calculates the value in one year of an account
earning 71⁄2 percent interest compounded monthly:

on calcInterest

ask "Enter the beginning balance:" with empty

set numberFormat to ".00" -- dollars and cents format

put "Value in 1 year $" & it * compound(.075/12,12)

end calcInterest
Compound 301

C H A P T E R 1 1

Functions
NOTE

See also the annuity function, earlier in this chapter.

Cos 11

SYNTAX

the cos of factor
cos(expression)

Factor and expression yield numbers.

EXAMPLE

put the cos of 2 -- puts -.416147 into the Message box

DESCRIPTION

The cos function returns the cosine of the angle that is passed to it. The angle
must be expressed in radians.

NOTE

Radians can be converted to degrees by multiplying by 180 and dividing the
result by the value of the constant pi.

Date 11

SYNTAX

the [adjective] date
date()

Adjective is long, short, or abbreviated (or abbrev or abbr); the default
adjective is short.
302 Cos

C H A P T E R 1 1

Functions
EXAMPLE

put last word of the long date into background field "Year"

DESCRIPTION

The date function returns a string representing the current date set in your
Macintosh. There are three forms of the date function. Here are examples
of the format used by each:

the short date 7/20/93

the long date Tuesday, October 7, 1989

the abbrev date Tue, Oct 20, 1992

SCRIPT

The following example handler puts the current date into a field when another
field (whose script contains the handler) is changed:

on closeField

put the long date into field "lastUpdate"

end closeField

NOTES

The format of the date is initially specified by the international resources in the
System file. These resources can and are altered for the purpose of customi-
zation or localization, so that a French system, for example, can display dates
using French names for months and days of the week in the standard French
formats.

Therefore, though the date function always returns the same basic data—the
current date—the format of the data is not fixed. This issue is important for
anyone who wants to build Stackware that works anywhere without
modification.

You cannot assume that the long date always returns a date in this format:
<day of week>, <month> <day>, <year>. If your stack is used on a Swedish
system, a script that assumes that item 1 of the long date is the day of the week
will not work since the Swedish format is not delimited by commas and has
this format: <day of week> < day> <month> <year>.
Date 303

C H A P T E R 1 1

Functions
Make sure you convert and store all dates in the invariant dateItem format
before doing calculations to prevent problems that are due to different local
date formats. (See the convert command in Chapter 10.)

Destination 11

SYNTAX

the destination

destination()

EXAMPLE

on closeStack

global stacksInMySuite

if the destination is in stacksInMySuite then

-- don't cleanup

else

-- cleanup: remove stack in use, restore menubar

end if

pass closeStack

end closeStack

DESCRIPTION

Returns the name of the destination stack when HyperCard is in the process of
going to another stack. The destination is available to handlers for closeCard,
closeBackground, closeStack, and suspendStack. If HyperCard is not
going to another stack, this function returns the pathname of the current stack.
304 Destination

C H A P T E R 1 1

Functions
DiskSpace 11

SYNTAX

the diskSpace

diskSpace()

EXAMPLE

if the diskSpace < 100000 then answer ¬

"Your disk is getting full."

DESCRIPTION

The diskSpace function returns an integer representing the number of bytes
of free space on the disk that contains the current stack.

SCRIPT

The following function handler is used by the second handler (for the
writeFile message) to ensure that there is enough space on a disk
to write to a file on that disk:

function thereIsRoom size

return (the diskSpace > size)

end thereIsRoom

on writeFile

global var -- the text to be saved

put "MyFilename" into fileName

if thereIsRoom(length of var) then

open file fileName

write var to file fileName

close file fileName

else answer "Can't write that file; the disk is full."

end writeFile
DiskSpace 305

C H A P T E R 1 1

Functions
Exp 11

SYNTAX

the exp of factor
exp(expression)

Factor and expression yield numbers.

EXAMPLE

put the exp of 2 -- puts 7.389056 into the Message box

DESCRIPTION

The exp function returns the mathematical exponential of its argument
(the constant e, which equals 2.7182818, raised to the power specified by
the argument).

Exp1 11

SYNTAX

the exp1 of factor
exp1(expression)

Factor and expression yield numbers.

EXAMPLE

put the exp1 of 2 -- puts 6.389056 into the Message box
306 Exp

C H A P T E R 1 1

Functions
DESCRIPTION

The exp1 function returns 1 less than the mathematical exponential of its
argument (1 less than the result of the constant e raised to the power specified
by the argument). That is, it computes

exp(number) - 1

Exp2 11

SYNTAX

the exp2 of factor
exp2(expression)

Factor and expression yield numbers.

EXAMPLE

put the exp2 of 16 -- puts 65536 into the Message box

DESCRIPTION

The exp2 function returns the value of 2 raised to the power specified by
the argument.

FoundChunk 11

SYNTAX

the foundChunk

foundChunk()
Exp2 307

C H A P T E R 1 1

Functions
EXAMPLE

put the foundChunk

DESCRIPTION

The foundChunk function returns a chunk expression describing the location
of the text found in a field with the find command. For example, if field 1
contained Now is the time, the commands (placed inside a handler)

find "Now"

put the foundChunk

would put char 1 to 3 of bkgnd field 1 into the Message box.

NOTE

See also the find command in Chapter 10.

FoundField 11

SYNTAX

the foundField

foundField()

EXAMPLE

put the foundField

DESCRIPTION

The foundField function returns the descriptor of the field in which the
text was found with the find command. The result is in a form such as
card field 1.
308 FoundField

C H A P T E R 1 1

Functions
SCRIPT

The following handler uses foundField to put the field descriptor of a field
containing the specified word in the Message box:

on getField theWord

lock screen

push card

find theWord

if the result is "not found" then

put "It's not here"

else

put the number of this card into cardNum

put "Your word was found in" && the foundField && ¬

"of card number" && cardNum

end if

pop card

unlock screen

end getField

To make the script work, put it in the stack or background script, then enter
getField followed by the word you want to find in the Message box.

FoundLine 11

SYNTAX

the foundLine

foundLine()

EXAMPLE

put the foundLine
FoundLine 309

C H A P T E R 1 1

Functions
DESCRIPTION

The foundLine function returns a chunk expression describing the line in
which the beginning of the text was found with the find command. The result
is in a form such as line 1 of card field 2.

FoundText 11

SYNTAX

the foundText

foundText()

EXAMPLE

put the foundText

DESCRIPTION

The foundText function returns the characters that are enclosed in the box
after the find command has executed successfully; for example, the commands

find "Hyper"

put the foundText

would put HyperCard in the Message box if it were the word containing the
matching string.

HeapSpace 11

SYNTAX

the heapSpace
310 FoundText

C H A P T E R 1 1

Functions
EXAMPLE

put the heapSpace into card field "Heap O'Fun"

DESCRIPTION

The heapSpace function returns an integer representing the remaining
number of bytes of heap space currently available to HyperCard. The
amount of heap space determines performance-related issues, such as
whether the user can use the Paint tools, or whether HyperCard can open
a stack in a new window.

SCRIPT

The following handler ensures that there is enough memory available for
HyperCard to open a palette:

on openPalette

get the heapSpace

if it is < 100 then

answer "Not enough memory to open this palette."

end if

end openPalette

Length 11

SYNTAX

the length of factor
length(expression)

Factor and expression yield text strings.
Length 311

C H A P T E R 1 1

Functions
EXAMPLES

put length("tail") into It -- yields 4

if the length of word n of field 5 > 25

then add 1 to fogIndex

DESCRIPTION

The length function returns the number of characters (including spaces, tabs,
and return characters) in the text string passed to it.

NOTE

If expression is a literal, it must appear within quotation marks. The length
function is identical in effect to the following form of the number function:

the number of characters in factor

Ln 11

SYNTAX

the ln of factor
ln(expression)

Factor and expression yield numbers.

EXAMPLE

put the ln of 10 -- puts 2.302585 into Message box

DESCRIPTION

The ln function returns the base-e (natural) logarithm of the number passed
to it.
312 Ln

C H A P T E R 1 1

Functions
Ln1 11

SYNTAX

the ln1 of factor
ln1(expression)

Factor and expression yield numbers.

EXAMPLE

put the ln1 of 10 -- puts 2.397895 into Message box

DESCRIPTION

The ln1 function returns the base-e (natural) logarithm of the sum of 1 plus the
number passed to it. That is, it computes

ln(1 + number)

If number is small, ln1 of number is more accurate than ln(1+number).

Log2 11

SYNTAX

the log2 of factor
log2(expression)

Factor and expression yield numbers.

EXAMPLE

put the log2 of 10 -- puts 3.321928 into the Message box

DESCRIPTION

The log2 function returns the base-2 logarithm of the number passed to it.
Ln1 313

C H A P T E R 1 1

Functions
Max 11

SYNTAX

max(list)

List is a sequence of comma-separated expressions that yield numbers, or it is a
single container that contains such a sequence.

EXAMPLE

put max(5,10,7.3) -- puts 10 into the Message box

DESCRIPTION

The max function returns the highest-value number from a list of numbers
passed to it. If the source of the list is a container with more than one line in it,
only the first line is used.

SCRIPT

The following example handler displays the highest number in a list contained
in a variable:

on highStock

put "12.50,10,7.95,14.76,13.70" into stockPrices

answer "The highest price for the month is:" ¬

&& max(stockPrices)

end highStock
314 Max

C H A P T E R 1 1

Functions
Menus 11

SYNTAX

the menus

menus()

EXAMPLES

put the menus into card field 2

put menus() into MyVar -- MyVar is a variable

DESCRIPTION

The menus function returns a return-delimited list of all the menus currently in
the HyperCard menu bar, including the Apple menu and any custom menus.
In System 7, the list includes system menus.

NOTE

See also the create menu command in Chapter 10.

Min 11

SYNTAX

min(list)

List is a sequence of comma-separated expressions that yield numbers, or it is a
single container that contains such a sequence.

EXAMPLE

put min(5,10,7.3) -- puts 5 into the Message box
Menus 315

C H A P T E R 1 1

Functions
DESCRIPTION

The min function returns the lowest-value number from a list of numbers
passed to it. If the source of the list is a container with more than one line in it,
only the first line is used.

SCRIPT

The following example handler displays the lowest number in a list contained
in a variable:

on lowStock

put "12.50,10,7.95,14.76,13.70" into stockPrices

put "The lowest price for the month is:" ¬

&& min(stockPrices)

end lowStock

Mouse 11

SYNTAX

the mouse

mouse()

EXAMPLE

if the mouse is up then put "Press the mouse button"

DESCRIPTION

The mouse function returns the constant up if the mouse button is not pressed,
down if it is pressed.
316 Mouse

C H A P T E R 1 1

Functions
SCRIPT

The following example handler determines whether the user has single-clicked
or double-clicked the button whose script contains the handler:

on mouseUp

put the ticks into start

repeat until the ticks-start > 4 -- click speed

if the mouse is "down" then

go last card -- put your double-click action here

exit mouseUp

end if

end repeat

go next card -- put your single-click action here

end mouseUp

MouseClick 11

SYNTAX

the mouseClick

mouseClick()

EXAMPLE

if the mouseClick then put the mouseLoc

DESCRIPTION

The mouseClick function determines if the mouse button is clicked. If no click
is sensed, the mouseClick immediately returns the constant false. The
mouseClick function returns the constant true when the mouse button is
clicked. The mouseClick function does not return true more than one time
for a given mouse click.
MouseClick 317

C H A P T E R 1 1

Functions
SCRIPT

The following example handler demonstrates operation of the mouseClick
function by informing the user whether or not it sensed a click during its
execution:

on mouseUp

put "Click or don't click..."

wait 5 seconds

if the mouseClick then

put "You clicked."

else

put "You didn't click."

end if

end mouseUp

MouseH 11

SYNTAX

the mouseH

mouseH()

EXAMPLE

if the mouseH > 319 then put "Stop"

DESCRIPTION

The mouseH function returns an integer representing the number of horizontal
pixels from the left side of the card to the current location of the pointer.
318 MouseH

C H A P T E R 1 1

Functions
MouseLoc 11

SYNTAX

the mouseLoc

mouseLoc()

EXAMPLE

show button "everReady" at the mouseLoc

DESCRIPTION

The mouseLoc function returns the point on the screen where the pointer is
currently located. This point is returned as two integers separated by a comma,
representing horizontal and vertical pixel offsets from the top-left corner of
the card.

SCRIPT

The following example handler, in a button script, allows the user to drag the
button around the screen:

on mouseDown

repeat until the mouse is up

set the loc of me to the mouseLoc

end repeat

end mouseDown
MouseLoc 319

C H A P T E R 1 1

Functions
MouseV 11

SYNTAX

the mouseV

mouseV()

EXAMPLE

if the mouseV > 199 then put "Stop"

DESCRIPTION

The mouseV function returns an integer representing the number of vertical
pixels from the top of the card to the current location of the pointer.

Number 11

SYNTAX

[the] number of objects
[the] number of chunks in expression
[the] number of backgrounds [in this stack]

[the] number of cards in background
[the] number of cards [in this stack]

[the] number of marked cards

[the] number of menus

[the] number of menuItems of menu
[the] number of [card|background] parts

[the] number of windows

Objects is [background] buttons, [card] fields, backgrounds, cards,
or parts. Chunks is characters (or chars), words, items, or lines, and
expression yields a container or text string. Background is an expression that yields
the descriptor of a background in the current stack. Menu is an expression that
yields a menu descriptor.
320 MouseV

C H A P T E R 1 1

Functions
EXAMPLES

put the number of buttons into It

put number of items of line 1 of field 2 into listSize

put the number of chars in msg into line 3 of field 2

if number of chars in myVar > 10 then put "Big" into msg

get the number of cards of bkgnd 3

DESCRIPTION

The number function returns the number of buttons, fields, or parts on the
current card or on its background, the number of backgrounds or cards in
the current stack, the number of chunks of a specified kind in a designated
container or text string, the number of cards that are associated with a specified
background, the number of marked cards in the current stack, the number
of menus in the menu bar, the number of menu items in a specified menu, or
the number of windows currently available to HyperCard.

SCRIPT

The following example handler uses the number function to delete all the card
fields on a card, regardless of how many there are:

on deleteFields

repeat with whichField = the number of card fields ¬

down to 1

-- you must count down like this, not up

delete card field whichField

end repeat

end deleteFields

NOTES

If backgrounds is not specified with buttons, the number of card buttons is
returned; if card is not specified with fields, the number of background
fields is returned; if backgrounds is not specified with parts, the number of
card parts is returned. If the number function is used with a chunk name, it
returns the number of chunks of that kind within the designated container or
other factor yielding a text string.
Number 321

C H A P T E R 1 1

Functions
The factor can be a chunk expression, so you can get the number of chunks of
one kind within another chunk:

the number of chars in first word of field 1

You can also use the syntax that uses parentheses with the number function—
for example:

number(cards)

number(menus)

number(bkgnds)

number(fields)

Backgrounds can be specified with the abbreviation bkgnds or bgs.

See also the number and marked properties in Chapter 12, and Chapter 5,
“Referring to Objects, Menus, and Windows.”

NumToChar 11

SYNTAX

the numToChar of factor
numToChar(expression)

Factor and expression yield positive integers.

EXAMPLE

put numToChar(67) into word 4 of line 9 of field ¬

"ASCII Chart" -- yields C

DESCRIPTION

The numToChar function returns the character whose ASCII equivalent value
is that of the integer passed to it.
322 NumToChar

C H A P T E R 1 1

Functions
SCRIPT

The following example handler turns all of the lowercase letters in a field into
uppercase letters:

on upperCase

put card field 4 into temp

-- variables are faster than fields

repeat with count = 1 to the length of temp

get character count of temp

if charToNum of It > 96 and ¬

charToNum of It < 123 then

put numToChar(charToNum(It)-32) into ¬

character count of temp

end if

end repeat

put temp into card field 4

end upperCase

NOTE

See also the charToNum function, earlier in this chapter.

Offset 11

SYNTAX

offset(string1,string2)

String1 and string2 are both expressions yielding text strings.

EXAMPLES

put offset("hay",field 1) into the Message box

offset("a","abc") -- typed in msg, returns 1
Offset 323

C H A P T E R 1 1

Functions
DESCRIPTION

The offset function returns the number of characters from the beginning of
the string2 string to the character at which string1 begins. If string1 doesn’t
appear within string2, 0 is returned.

SCRIPT

The following function handler finds every occurrence of a string within a
container, and it replaces every occurrence with a second string:

function searchAndReplace container,original,replacement

put length of original - 1 into theEnd

repeat until original is not in container

-- loop until all are replaced

put offset(original,container) into start

-- set start to location of original

put replacement into char start to ¬

start + theEnd of container

end repeat

return container

end searchAndReplace

NOTE

The parameters passed to the offset function can both be arithmetic or
logical (as well as text) expressions; after evaluation, the results are treated
as strings.

OptionKey 11

SYNTAX

the optionKey

optionKey()
324 OptionKey

C H A P T E R 1 1

Functions
EXAMPLE

if the optionKey is down then choose button tool

DESCRIPTION

The optionKey function returns the constant up if the Option key is not
pressed, down if it is pressed.

NOTE

See also the commandKey and shiftKey functions in this chapter.

Param 11

SYNTAX

the param of factor
param(expression)

Factor and expression yield integers.

EXAMPLE

if param(1) is empty then answer¬

"The first parameter is null."

DESCRIPTION

The param function returns a parameter value from the parameter list
passed to the currently executing handler. The parameter returned is the
nth parameter, where n is the integer derived from factor or expression. The
value of param(0) is the message name.
Param 325

C H A P T E R 1 1

Functions
SCRIPT

The following example handler sums the numeric arguments passed to it,
regardless of how many there are:

on addUp -- adds a variable number of arguments

put 0 into total

repeat with i = 1 to the paramCount

add param(i) to total

end repeat

put total

end addUp

NOTE

See also the paramCount and params functions, in this chapter, and the
discussion of parameter passing in Chapter 4, “Handling Messages.”

ParamCount 11

SYNTAX

the paramCount

paramCount()

EXAMPLE

if the paramCount < 3 then ¬

put "I need at least three arguments."

DESCRIPTION

The paramCount function returns the number of parameters passed to the
currently executing handler.
326 ParamCount

C H A P T E R 1 1

Functions
SCRIPT

The following example handler draws an oval differently depending on the
number of parameters passed to it:

on drawOval

if the paramCount is 2 then set lineSize to param(2)

choose oval tool

drag from 30,30 to 30 + param(1),30 + param(1)

choose browse tool

reset paint

end drawOval

NOTE

See also the param and params functions, in this chapter, and the discussion of
parameter passing in Chapter 4, “Handling Messages.”

Params 11

SYNTAX

the params

params()

EXAMPLE

put the params into field "messageReceived"

DESCRIPTION

The params function returns the entire parameter list, including the message
name, passed to the currently executing handler.
Params 327

C H A P T E R 1 1

Functions
SCRIPT

The following example handler is useful primarily for debugging, to see if the
parameters passed to a handler are correct:

on myMessage

put the params

-- rest of myMessage handler goes here

end myMessage

NOTE

See also the param and paramCount functions, in this chapter, and the
discussion of parameter passing in Chapter 4, “Handling Messages.”

Programs 11

SYNTAX

the programs

programs()

EXAMPLES

answer the programs

put programs() into field id 4

DESCRIPTION

The programs function produces a return-delimited list of all the System 7–
friendly processes currently running on your machine.

NOTE

See also the answer command in Chapter 10 and the discussion of Apple
events in Chapter 1.
328 Programs

C H A P T E R 1 1

Functions
Random 11

SYNTAX

the random of factor
random(expression)

Factor and expression yield positive integers.

EXAMPLE

set the loc of button "jumpy" to random(320),random(200)

DESCRIPTION

The random function returns a random integer between 1 and the integer
derived from factor or expression, inclusive. Random supports integers up
to 231–2.

SCRIPT

The following example handler draws 10 unique random numbers between 1
and 100:

on mouseUp

put empty into randomList

put the itemDelimiter into delim

repeat until the number of items in randomList is 10

get random of 100

if (delim&it&delim) is not in (delim&randomList) then

put it & delim after randomList

end if

end repeat

-- get rid of extra item delimiter

delete last char of randomList

put randomList

end mouseUp
Random 329

C H A P T E R 1 1

Functions
Result 11

SYNTAX

the result

result()

EXAMPLE

if the result is not empty then answer "Try again."

DESCRIPTION

The result function returns an explanatory text string if an immediately
preceding close file, convert, create stack, find , go, import
paint, export paint, open file, picture, read, or save command was
unsuccessful. The result function returns empty if the command executed
successfully. The value of the result can also be set by a return statement
in a message handler or by an external command. The value of the result
is reset by execution of another command and at the end of the handler.

SCRIPT

The following example handler searches for a string and displays either the
string or the error message if it doesn’t find the string:

on doMenu var

if var is "Find..." then

global findMe

repeat

ask "Find what string:" with findMe

if It is not empty then find It

else exit doMenu -- cancel clicked

if the result is not empty then

put the result into findMe -- display error

next repeat
330 Result

C H A P T E R 1 1

Functions
else

put It into findMe -- display string

exit repeat

end if

end repeat

else pass doMenu

end doMenu

NOTES

It is safer to depend on the empty result of a successful execution than on the
particular value of some error message, because those values could be different
in future versions of HyperCard.

If any of the commands listed in the result function description are sent from
the Message box and generate an error, HyperCard displays the text of the
result function in a dialog box. For example, if you sent a go command using
the without dialog form from the Message box and used the name of a
stack that doesn’t exist, a dialog box containing “No such stack” is displayed
after the command is sent. The same command sent in a handler would put the
error message into the result but would not display a dialog box. If you
want a dialog box displayed, you could include an answer statement in your
handler that displays the result—for example:

on mouseUp

go stack quote& clickText "e without dialog

put the result into goError

if goError is not empty

then answer goError with "OK"

end mouseUp

Chapter 9 discusses the return statement. Appendix A contains information
about external commands.
Result 331

C H A P T E R 1 1

Functions
Round 11

SYNTAX

the round of factor
round(expression)

Factor and expression yield numbers.

EXAMPLE

put round(resultVariable) into field 1

DESCRIPTION

The round function returns the source number rounded off to the
nearest integer.

Any odd integer plus exactly 0.5 rounds up; any even integer (or 0) plus exactly
0.5 rounds down. If the source number is negative, HyperCard internally
removes the negative sign, rounds its absolute value, then puts the negative
sign back on.

SCRIPT

The following function handler rounds off an amount to the nearest dollar:

function roundToDollar amount

set numberFormat to ".00" -- sets dollar format

return round(amount)

end roundToDollar
332 Round

C H A P T E R 1 1

Functions
ScreenRect 11

SYNTAX

the screenRect

screenRect()

EXAMPLE

put the screenRect into menuLoc

DESCRIPTION

The screenRect function returns the rectangle of the screen in which
HyperCard’s menu bar is displayed; the value returned is four integers,
separated by commas, representing the pixel offsets of the left, top, right,
and bottom edges, respectively, from the top-left corner of the screen.

Seconds 11

SYNTAX

the seconds

seconds()

EXAMPLE

put (the seconds-startTime) into runTime

DESCRIPTION

The seconds function returns an integer showing the number of seconds
between midnight, January 1, 1904, and the current time set in your Macintosh.
The seconds function can be abbreviated secs.
ScreenRect 333

C H A P T E R 1 1

Functions
SCRIPT

The following example handler counts the number of seconds the user holds
down the mouse button:

on mouseDown

put the long time into now -- what time is it now?

convert now to seconds

wait while the mouse is down

-- wait until mouse is released

put the seconds-now into msg

-- how many seconds have elapsed?

end mouseDown

NOTE

See also the convert command in Chapter 10, “Commands.”

SelectedButton 11

SYNTAX

the selectedButton of family
selectedButton(family)

Family specifies a card or background button family.

EXAMPLES

put the selectedButton of card family 1

get the selectedButton of family 4 of card 4
334 SelectedButton

C H A P T E R 1 1

Functions
DESCRIPTION

The selectedButton function returns the descriptor of the currently high-
lighted button in the specified card or background button family, such as
card button 3. If no button in the family is highlighted, selectedButton
returns empty.

NOTE

To change the value returned by selectedButton for a family, set the
hilite property of one of the buttons. The select command has a different
effect: select button 1 chooses the Button tool and selects the specified
button for editing.

SelectedChunk 11

SYNTAX

the selectedChunk

selectedChunk()

EXAMPLES

get selectedChunk()

put the selectedChunk

DESCRIPTION

The selectedChunk function returns a chunk expression describing the
location of the selected text or the insertion point in a card or background field.
For selected text, it is in the form of first character selected to last character
selected of the field containing the selected text: for example, char 7 to 15
of card field 3.
SelectedChunk 335

C H A P T E R 1 1

Functions
If no text is selected but the insertion point is in a field, selectedChunk
returns the number of the character on either side of the insertion point in
reverse order with the highest number first. For example, if the insertion point
is located between characters 9 and 10 in card field 2, selectedChunk returns
char 10 to 9 of card field 2. If nothing is selected and the insertion
point is not in a field, it returns empty.

NOTES

If you use the selectedChunk() form, be sure to leave the parentheses
empty or you will get an error message.

Changing the highlight state of a button (clicking a button with autoHilite
set to true) deselects the text and causes the selectedChunk function to
return empty. Many other actions, such as clicking the card, clicking a locked
field, or running an idle message handler that periodically changes some
part of the display, also deselect the text, so you should put the result of
selectedChunk into a container before any other action takes place.

You can put the selectedChunk result into the Message box or other container
from a script, but you get an empty result if you make a selectedChunk
function call from the Message box. This is the correct result of the call, since
typing in the Message box and pressing the Return key or Enter key deselects
any selected text.

You can get and set the text properties textFont, textSize, and textStyle
of the selectedChunk function. See Chapter 12, “Properties,” for more
information about the text properties.

SelectedField 11

SYNTAX

the selectedField

selectedField()
336 SelectedField

C H A P T E R 1 1

Functions
EXAMPLES

get selectedField()

put the selectedField

DESCRIPTION

The selectedField function returns the descriptor of the field containing the
selected text or the insertion point. If the selection or insertion point is in the
Message box, selectedField returns the string message box.

NOTES

Changing the highlight state of a button (clicking a button with autoHilite
set to true) deselects the text and causes the selectedField function to
return empty. Many other actions, such as clicking the card or clicking a locked
field, also deselect the text, so you should put the result of selectedField
into a container before any other action takes place.

You can put the selectedField result into the Message box or other
container from a script, but you get an empty result if you make a
selectedField function call from the Message box. This is the correct
result of the call, since typing in the Message box and pressing the Return
key or Enter key deselects any selected field.

The selectedField function does not apply to list fields.

SelectedLine 11

SYNTAX

the selectedLine [of button|field]
selectedLine([button|field])

Button is a pop-up style button descriptor, and field is a field descriptor.
SelectedLine 337

C H A P T E R 1 1

Functions
EXAMPLES

get selectedLine()

put the selectedLine of card field 3

put word 2 of (selectedLine(btn 1))

DESCRIPTION

For pop-up buttons, the selectedLine function returns a chunk expression
describing the currently selected line of the button’s contents as a string in
the form

line number of card|bkgnd button number

For fields specified explicitly, the selectedLine function returns a chunk
expression describing the line containing the selected text or insertion point
in the form

line number to number of card|bkgnd field number

If no field or button is specified, the selectedLine function returns a chunk
expression describing the line of a field or the Message box that contains the
current selection or insertion point. The expression is of the form

line number of card|bkgnd field number

NOTES

Lines in fields are defined as ending with the return character, and because text
can wrap in fields, there may be several lines of text on the screen between
return characters. For example, line 8 always specifies the text between the
seventh and eighth return characters.

The selectedLine function can also be spelled selectedLines.

For fields other than list fields, many actions, such as clicking a button or other
field, deselect the text, so you should put the result of selectedLine into a
container before any other action takes place. In contrast, list fields retain their
selectedLine value until the user changes it specifically.
338 SelectedLine

C H A P T E R 1 1

Functions
If no lines are selected in an explicitly specified field, selectedLine returns
empty. If no field or button is specified with the function call, and there is no
current selection or insertion point, selectedLine returns empty.

SCRIPT

The following handler belongs in a list field (autoHilite, lockText, and
dontWrap are true; multipleLines in this field should be false). Each line
in the list field contains a glossary term. Each term corresponds to a card in the
glossary stack, and the terms can be located by card number in the stack (that
is, the term in line 2 of the field corresponds to card 2 of the glossary stack).

on mouseUp

put the selectedLine of me into selLine

put word 2 of selLine into whichEntry

select line 0 of me -- deselect

go card whichEntry of stack "Glossary" in a new window

end mouseUp

SelectedLoc 11

SYNTAX

the selectedLoc

selectedLoc()

EXAMPLES

get selectedLoc()

put the selectedLoc
SelectedLoc 339

C H A P T E R 1 1

Functions
DESCRIPTION

The selectedLoc function returns a point at which the selected text
begins. The selectedLoc function returns the point as two comma-
separated integers that represent the offset from the top-left corner of
the card to the bottom (baseline) left of the selected text.

The value returned by the selectedLoc function is the same as the
value returned by the TEGetPoint routine, which is described in Inside
Macintosh: Text.

SelectedText 11

SYNTAX

the selectedText [of button|field]
selectedText([button|field])

Button is a pop-up style button descriptor, and field is a field descriptor.

EXAMPLES

get selectedText(card field 1)

put the selectedText

get the selectedText of button "My Pop-Up Button"

DESCRIPTION

The selectedText function returns the currently selected text in a field or
pop-up button specified with the function call. If no field or button is specified,
selectedText returns the text of the current selection in a nonlist field or the
Message box. If there is no text selected, selectedText returns empty.
340 SelectedText

C H A P T E R 1 1

Functions
NOTES

When no field or button is specified, selectedText returns the same result as
the selection or the value of the selectedChunk.

For fields other than list fields, many actions, such as clicking a button or other
field, deselect the text, so you should put the result of selectedLine into a
container before any other action takes place. In contrast, list fields retain their
selectedLine value until the user changes it specifically.

You can put the selectedText result into the Message box or other container
from a script, but you get an empty result if you make a selectedText
function call from the Message box. This is the correct result of the call, since
typing in the Message box and pressing the Return key or Enter key deselects
any selected text.

ShiftKey 11

SYNTAX

the shiftKey

shiftKey()

EXAMPLE

if the shiftKey is down then put ¬

numToChar(charToNum(msg)-32) into msg

DESCRIPTION

The shiftKey function returns the constant up if the Shift key is not pressed,
down if it is pressed.
ShiftKey 341

C H A P T E R 1 1

Functions
SCRIPT

The following handlers in the script of a field enable the user to change
uppercase characters to lowercase and vice versa. The user selects a chunk of
text (not including any Return characters) and presses Enter. If the Shift key is
down, the script changes the case of the characters.

on enterInField

if the shiftKey is down then

toggleCaps the selectedChunk,the selectedText

end if

pass enterInField

end enterInField

on toggleCaps theChunk,theText

if theChunk is empty or ¬

(word 2 of theChunk > word 4 of theChunk)

then exit toggleCaps

repeat with i = 1 to length(theText)

put swapcase(char i of theText) into ¬

char i of theText

end repeat

do "put" && quote & theText & quote ¬

&& "into" && theChunk

end toggleCaps

function swapcase theChar

get charToNum(theChar)

if it ≥ 65 and it ≤ 90 then return numToChar(it+32)
if it ≥ 97 and it ≤ 122 then return numToChar(it-32)
return theChar

end swapCase

NOTE

See also the commandKey and optionKey functions earlier in this chapter.
342 ShiftKey

C H A P T E R 1 1

Functions
Sin 11

SYNTAX

the sin of factor
sin(expression)

Factor and expression yield numbers.

EXAMPLE

put the sin of 2 -- puts 0.909297 into the Message box

DESCRIPTION

The sin function returns the sine of the angle that is passed to it. The angle
must be expressed in radians.

NOTE

Radians can be converted to degrees by multiplying by 180 and dividing the
result by the value of the constant pi.

Sound 11

SYNTAX

the sound

sound()

EXAMPLE

wait until the sound is "done"
Sin 343

C H A P T E R 1 1

Functions
DESCRIPTION

The sound function returns the name of the sound resource currently playing
(such as "boing") or the string "done" if no sound is currently playing. The
sound function enables you to synchronize sounds with other actions, because
in most cases scripts continue to run while sounds play. In the event of a
low-memory situation, such as when playing a large sound while a large Home
stack or several other stacks are in use and HyperCard is set to the default
memory allocations, HyperCard may suspend other actions until the sound is
finished playing. Increasing HyperCard’s memory allocation should alleviate
this problem.

SCRIPT

The following example handler repeats a series of visual effects until a tune
specified by the play command finishes:

on boogie

play "harpsichord" tempo 200 ¬

"ce gq fe ee de ce gq fe ee ce gq fe ee ce"

repeat until the sound is "done"

visual effect dissolve to black

visual effect zoom open to white

visual effect barn door close to card

go this card

end repeat

end boogie

NOTES

The "done" string is returned as a literal; it’s not a HyperTalk constant like
up or true.

See also the play command in Chapter 10.
344 Sound

C H A P T E R 1 1

Functions
Sqrt 11

SYNTAX

the sqrt of factor
sqrt(expression)

Factor and expression yield numbers.

EXAMPLE

put the sqrt of msg

-- converts the number in msg to its square root

DESCRIPTION

The sqrt function returns the square root of the positive number passed to it.
If you pass a negative number, you get the result -NAN(001), which means
“not a number.”

Stacks 11

SYNTAX

the stacks

stacks()

EXAMPLE

put the stacks into card field 2

DESCRIPTION

The stacks function returns a return-delimited list of the pathnames of all the
currently open stacks. The stack returned in the first line is the active stack.
Sqrt 345

C H A P T E R 1 1

Functions
StackSpace 11

SYNTAX

the stackSpace

stackspace()

EXAMPLE

put the stackSpace into howMuch

DESCRIPTION

The stackSpace function returns an integer that represents the space
remaining on the Macintosh operating system stack. Stack in this case
refers to an internal data structure rather than a HyperCard stack.

Sum 11

SYNTAX

sum(list)

List is a sequence of comma-separated expressions that yield numbers, or it is a
single container that contains such a sequence.

EXAMPLE

get sum (1,2,3,4)

DESCRIPTION

The sum function returns the sum of a list of numbers passed to it. If the source
of the list is a container with more than one line in it, only the first line is used.
346 StackSpace

C H A P T E R 1 1

Functions
SystemVersion 11

SYNTAX

the systemVersion

systemVersion()

EXAMPLE

put the systemVersion

DESCRIPTION

The systemVersion function returns a decimal string that represents the
running version of system software.

You might use this function to determine if a particular HyperCard command
or handler will run correctly under that version of the software.

SCRIPT

The following code makes sure that the machine that HyperCard is running on
is using System 7; if not, HyperCard posts an appropriate message:

if the systemVersion < 7

then answer "This stack requires System 7." with "Quit"

doMenu "quit Hypercard"

Tan 11

SYNTAX

the tan of factor
tan(expression)

Factor and expression yield numbers.
SystemVersion 347

C H A P T E R 1 1

Functions
EXAMPLE

put the tan of 2 -- puts -2.18504 into the Message box

DESCRIPTION

The tan function returns the tangent of the angle that is passed to it. The angle
must be expressed in radians.

NOTE

Radians can be converted to degrees by multiplying by 180 and dividing the
result by the value of the constant pi.

Target 11

SYNTAX

the target

EXAMPLE

if the target is "card id 2875" then pass mouseUp

DESCRIPTION

The target function returns a string indicating the original recipient of the
message. The string returned is one of the following:

stack "name"
bkgnd of card "name"|id number
card "name"|id number
bkgnd field "name"|id number
card field "name"|id number
bkgnd button "name"|id number
card button "name"|id number
348 Target

C H A P T E R 1 1

Functions
For example, the target function enables you to tell, in a mouseUp handler in
a background, whether

■ the mouse was clicked over a field or button (which either would have had
no mouseUp handler or would have passed the message on explicitly): the
target would return the button or field name, if it has one, or ID number
if not

■ the mouse was clicked outside the area of all buttons and fields: the
target would return the card name, if it has one, or ID number if not

■ the message was sent directly to the background with the send command:
the target would return the background name, if it has one, or ID
number if not

You can use the target in place of an object descriptor to determine any of
the target’s properties:

get the short name of the target

NOTES

The send command resets the value of the target to the value of the object the
message is being sent to.

If the target is a button or field, the expression target (without the) evaluates
to the contents of the button or field.

Ticks 11

SYNTAX

the ticks

ticks()

EXAMPLE

put the ticks into clock
Ticks 349

C H A P T E R 1 1

Functions
DESCRIPTION

The ticks function returns an integer representing the number of ticks
(1⁄60 second) since the Macintosh was turned on or restarted.

SCRIPT

The following example handler measures how long it takes to go to the Help
stack and find the word ticks:

on mouseUp

put the ticks into startTicks

go "HyperCard Help"

find "ticks"

put (the ticks - startTicks) into howLong

answer "It took" && howLong div 60¬

&& "second(s) to find Help."

end mouseUp

Time 11

SYNTAX

the [adjective] time
time()

Adjective can be long, short, or abbreviated (or abbrev, or abbr).

EXAMPLE

put the time into the Message box
350 Time

C H A P T E R 1 1

Functions
DESCRIPTION

The time function returns the time as a text string. The short and
abbreviated forms are the same, returning the hour and minutes,
such as 8:55 AM. The long time form returns seconds as well, such as
8:55:23 AM.

SCRIPT

The following example records the time at which a field is updated:

on closeField

put return & the time after card field "updateList"

end closeField

NOTES

An adjective can’t be used to modify the form of the time function that uses
parentheses.

The time string returned by the time function can be in either 24- or 12-hour
format depending on the time format set in the Date and Time control panel.
The time format can also be altered in the international resources of the System
file. If you are going to perform calculations on the time, you should first
convert it to the invariant seconds format. See the convert command in
Chapter 10.

Tool 11

SYNTAX

the tool

tool()

EXAMPLE

if the tool is "field tool" then choose browse tool
Tool 351

C H A P T E R 1 1

Functions
DESCRIPTION

The tool function returns the name of the currently chosen tool. Possible
values returned by the tool function are

SCRIPT

The following example handler chooses the proper tool to manipulate a button
or field when you move the pointer over either object:

on mouseWithin -- in card, background, or stack script

if "button" is in the target and the optionKey is down

then choose button tool

else if "field" is in the target and ¬

the optionKey is down

then choose field tool

end mouseWithin

NOTE

See also the choose command in Chapter 10.

browse tool oval tool

brush tool pencil tool

bucket tool polygon tool

button tool rectangle tool

curve tool regular polygon tool

eraser tool round rect tool

field tool select tool

lasso tool spray tool

line tool text tool
352 Tool

C H A P T E R 1 1

Functions
Trunc 11

SYNTAX

the trunc of factor
trunc(expression)

Factor and expression yield numbers.

EXAMPLE

put the trunc of someNumber into msg

DESCRIPTION

The trunc function returns the integer part of the number passed to it. Any
fractional part is disregarded, regardless of sign.

SCRIPT

The following example handler draws rectangles in increasing sizes, using
the trunc function to ensure that the computed values used with the drag
command are integers:

on mouseUp

push card

doMenu "New Card"

reset paint

choose rectangle tool

put 50 into left

put 150 into right

put 50 into top

put 150 into bottom
Trunc 353

C H A P T E R 1 1

Functions
repeat 5 -- the drag command only takes integers

drag from left,top to right,bottom

put trunc(left/1.2) into left

put trunc(right/1.2) into right

put trunc(top/1.2) into top

put trunc(bottom/1.2) into bottom

end repeat

choose browse tool

end mouseUp

Value 11

SYNTAX

the value of factor
value(expression)

Factor and expression yield any values.

EXAMPLE

put the value of field "formula" into field "result"

DESCRIPTION

The value function evaluates the string derived from factor or expression as an
expression. Note that multitoken literal expressions evaluate to themselves:

put value ("HyperCard 2.2") -- returns HyperCard 2.2
354 Value

C H A P T E R 1 1

Functions
SCRIPT

The following example handler demonstrates the value function by forcing a
second level of evaluation of a variable:

on mouseUp

put "3 + 4" into expression

put expression -- yields "3 + 4"

wait 2 seconds

put value of expression -- yields 7

end mouseUp

Windows 11

SYNTAX

the windows

windows()

EXAMPLES

put the windows into it -- puts the windows value

 -- into the variable It

windows()

put the windows into card field 1

DESCRIPTION

The windows function returns a return-delimited list containing the names of
all of the windows currently available to HyperCard and the current stack. The
order of the window names corresponds to the front-to-back ordering of the
windows. The windows include built-in palettes (Tool and Pattern), FatBits,
the Message box, open card windows, and external windows (for example,
Message Watcher, Navigator palette, Scroll window, Variable Watcher).

NOTE

The windows returned in the list may not currently be visible.
Windows 355

C H A P T E R 1 2

Figure 12-0
Listing 12-0
Table 12-0
Properties 12
This chapter describes HyperCard properties. Properties are the defining
characteristics of objects, other elements such as menus and windows,
and the HyperCard environment.

Object properties determine how objects look and act. Global properties control
aspects of the overall HyperCard environment. Painting properties control
aspects of the HyperCard painting environment, which is invoked when you
choose a Paint tool. Window properties determine how card windows, the
Message box, the Tools and Patterns palettes, and external windows are
displayed. Menu, menu bar, and menu item properties control aspects of
HyperCard menus. There are also a few properties that apply to the Message
Watcher or the Variable Watcher.

This chapter includes a set of tables that list the HyperCard properties by
category. Button properties, field properties, window properties, and so on are
each listed in a separate table. The tables are followed by complete descriptions
of all the properties in alphabetical order.

Retrieving and Setting Properties 12

HyperTalk lets you retrieve most properties by using the property name as a
function in a script or the Message box. You must precede the property name
with the word the or follow it with of if it’s an object or window property.
You can’t use parentheses after the property name, as you do with built-in
functions. The following example retrieves the location property of button 1
and puts it into the Message box:

put the loc of button 1 into msg
Retrieving and Setting Properties 357

C H A P T E R 1 2

Properties
You set properties with the set command:

set loc of button 1 to 100,100

Some properties can’t be set, although other actions affect them. For example,
the size of a stack is read-only, but it can be changed by compacting it and by
adding objects.

You can get the value of most properties with the get command:

get the property of object

Most of the examples in this chapter do not include the syntax for the get
property command, because it is faster to put a property directly into a
container or variable (rather than using the get command and then the
put command).

Object Properties 12

You can see the value of many object properties by looking at an object’s
Info dialog box, an example of which is shown in Figure 12-1. (You bring
up an object’s Info dialog box by choosing the appropriate command from
the Objects menu.)

Figure 12-1 An object’s Info dialog box
358 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
You can also set many properties for the current object from the Info dialog
boxes. To set the properties of any object in the current stack, you use the set
command, either in a script or in the Message box.

Different HyperCard objects have different properties. For example, fields have
a property determining their text style, but cards do not.

Stack Properties 12

Stack properties pertain to any stack on any disk or file server currently
accessible to your Macintosh. A stack is specified as explained in Chapter 5,
“Referring to Objects, Menus, and Windows.” Settable properties of the current
stack can be manipulated from a script or through the Stack Info dialog box
invoked from the Objects menu.

The stack properties are listed in Table 12-1. More detailed information about
each property is given later in this chapter.

Table 12-1 Stack properties

Stack property name Description

cantAbort Controls whether or not the user can use
Command-period to stop execution of scripts.

cantDelete Controls whether or not the user can delete the
specified stack.

cantModify Controls whether or not the stack can be changed
in any way.

cantPeek Controls whether or not the user can look at button
or field scripts with Command-Option.

freeSize Determines the amount of free space of the
specified stack in bytes.

name Determines or changes the name of the specified
stack, which is its Macintosh filename.

reportTemplates Determines the report-printing templates of
the stack.

script Retrieves or replaces the script of the
specified stack.

continued
Retrieving and Setting Properties 359

C H A P T E R 1 2

Properties
Background Properties 12

Background properties pertain to any background in the current stack. The
background is specified as explained in Chapter 5, “Referring to Objects,
Menus, and Windows.” Background properties can be manipulated from a
script or from the Message box. Properties of the current background can also
be manipulated through the Bkgnd Info dialog box invoked from the Objects
menu, or in the script editor window in the case of scriptingLanguage.

The background properties are listed in Table 12-2. More detailed information
about each property is given later in this chapter.

scriptingLanguage Determines or changes the scripting language of
the stack.

size Determines the size of the specified stack in bytes.

version Determines the versions of HyperCard that created
and modified the specified stack.

Table 12-2 Background properties

Background
property name Description

cantDelete Controls whether or not the user can delete the
specified background.

dontSearch Determines whether or not the fields in a specified
background are searched with the find command.

ID Determines the permanent ID number of any
background in the current stack.

name Determines or changes the name of the specified
background.

number Determines the number of any background in the
current stack.

continued

Table 12-1 Stack properties (continued)

Stack property name Description
360 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
Card Properties 12

Card properties pertain to any card in the current stack. The card is specified as
explained in Chapter 5, “Referring to Objects, Menus, and Windows.” You can
manipulate card properties from a script, in the Message box, or through the
Card Info dialog box invoked from the Objects menu, or in the script editor
window in the case of scriptingLanguage.

The card properties are listed in Table 12-3. More detailed information about
each property is given later in this chapter.

script Retrieves or replaces the script of the specified
background.

scriptingLanguage Determines or changes the scripting language of
the specified background.

showPict Determines whether or not the picture of the
specified background in shown.

Table 12-3 Card properties

Card property name Description

cantDelete Controls whether or not the user can delete the
specified card.

dontSearch Determines whether or not the fields in a specified
card are searched with the find command.

ID Determines the permanent ID number of any card
in the current stack.

marked Determines or changes whether a specified card
is marked.

name Determines or changes the name of the
specified card.

continued

Table 12-2 Background properties (continued)

Background
property name Description
Retrieving and Setting Properties 361

C H A P T E R 1 2

Properties
Field Properties 12

Field properties pertain to any card field or background field in the current
stack. The field is specified as explained in Chapter 5, “Referring to Objects,
Menus, and Windows.” You can manipulate field properties from a script
or from the Message box, or through the Field Info dialog box invoked
from the Objects menu, or in the script editor window in the case of
scriptingLanguage. (You must have the Field tool chosen and a specific
card or background field selected or have the insertion point in a field to
activate the Field Info dialog box.)

The field properties are listed in Table 12-4. More detailed information about
each property is given later in this chapter.

number Determines the number of any card in the
current stack.

owner Returns the name of the background shared by
this card.

rect[angle] Determines or changes the size of the rectangle
occupied by the specified card. See also Table 12-6.

script Retrieves or replaces the script of the specified card.

scriptingLanguage Determines or changes the scripting language of
the specified card.

showPict Determines whether or not the picture of the
specified card is shown.

Table 12-3 Card properties (continued)

Card property name Description
362 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
Table 12-4 Field properties

Field
property name Description

autoSelect Enables a field to behave as a list when its
dontWrap and lockText property are also true.

autoTab Determines or changes whether or not the specified
nonscrolling field sends the tabKey message to the
current card.

dontSearch Determines or changes whether or not the specified
field is searched with the find command.

dontWrap Determines or changes whether or not text at the
edge of the specified field automatically wraps
around to the next line.

fixedLineHeight Determines or changes whether or not the lines in
the specified field have a fixed line height.

ID Determines the permanent ID number of the
specified field.

location Determines or changes the location of the
specified field.

lockText Determines or changes whether editing of text
within the specified field in the current stack is
allowed or prevented.

multipleLines Determines or changes whether or not the user can
select multiple lines in a list field.

name Determines or changes the name of the
specified field.

number Determines the number of the specified field.

partNumber Determines or changes the number that represents
the ordering of the buttons and fields within
their enclosing card or background. Setting this
property can have the effect of either bringing the
field closer or moving it farther (behind) other
buttons and fields.

continued
Retrieving and Setting Properties 363

C H A P T E R 1 2

Properties
rect[angle] Determines or changes the location and size of the
rectangle occupied by the specified field. See also
Table 12-6.

script Retrieves or replaces the script of the specified field.

scriptingLanguage Determines or changes the scripting language of
the specified field.

scroll Determines or changes how much material is
hidden above the top of the specified scrolling
field’s rectangle.

sharedText Determines or changes whether the text in the
specified background field appears on each card of
that background.

showLines Determines or changes whether the text baselines
in the specified field appear or are invisible.

style Determines or changes the style of the specified
field in the current stack.

textAlign Determines or changes the way lines of text are
aligned in the specified field.

textFont Determines or changes the font in which text in the
specified field appears.

textHeight Determines or changes the space between baselines
of text in the specified field.

textSize Determines or changes the type size in which text
in the specified field appears.

textStyle Determines or changes the style in which text in the
specified field appears.

visible Determines or changes whether the specified field
is shown or hidden. The default value of the visible
property is true.

wideMargins Determines or changes whether some extra space is
included at the left and right sides of each line in
the specified field (to make the text easier to read).

Table 12-4 Field properties (continued)

Field
property name Description
364 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
Button Properties 12

Button properties pertain to any card button or background button in the
current stack. The button is specified as explained in Chapter 5, “Referring to
Objects, Menus, and Windows.”

You can manipulate the properties of any button in the current stack from
a script or from the Message box. Additionally, you can manipulate the
properties of a button on the current card or background through the Button
Info dialog box invoked from the Objects menu, or in the script editor window
in the case of scriptingLanguage. (You must have the Button tool and
a specific card or background button selected to activate the Button Info
dialog box.)

The button properties are listed in Table 12-5. More detailed information about
each property is given later in this chapter.

Table 12-5 Button properties

Button
property name Description

autoHilite Determines or changes whether the specified
button highlights when that button is pressed.

enabled Determines or changes whether the specified
button appears and behaves in an enabled or
disabled state.

family Groups two or more buttons together into a family
specified by the numbers 1 to 15, inclusive.

hilite Determines or changes whether the specified
button is highlighted (displayed in inverse video).

icon Determines or changes the icon for the specified
button in the current stack.

ID Determines the permanent ID number of the
specified button.

loc[ation] Determines or changes the location of the
specified button.

name Determines or changes the name of the
specified button.

continued
Retrieving and Setting Properties 365

C H A P T E R 1 2

Properties
number Determines the number of the specified button.

partNumber Determines or changes the number that represents
the ordering of the buttons and fields within their
enclosing card or background.

rect[angle] Determines or changes the location and size of the
rectangle occupied by the specified button. See also
Table 12-6.

script Retrieves or replaces the script of the
specified button.

scriptingLanguage Determines or changes the scripting language of
the specified field.

sharedHilite Determines or changes whether the specified
background button is displayed highlighted on
all cards of that background.

showName Determines or changes whether the name of the
specified button (if it has one) is displayed in its
rectangle on the screen.

style Determines or changes the style of the specified
button in the current stack.

textAlign Determines or changes the way lines of text are
aligned in the specified button.

textFont Determines or changes the font in which text in the
specified button appears.

textHeight Determines or changes the space between baselines
of text in the specified button.

textSize Determines or changes the type size in which text
in the specified button appears.

textStyle Determines or changes the style in which text in the
specified button appears.

continued

Table 12-5 Button properties (continued)

Button
property name Description
366 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
Rectangle Properties 12

The properties described in this section pertain to the screen rectangles of the
menu bar, buttons and fields, the Tools and Patterns palettes (called windows in
scripts), the Scroll window, the FatBits window, card windows, stack windows,
the Message box, and external windows (if the XCMD that created the window
supports control of rectangle properties).

The rectangle property itself also applies to buttons, fields, windows, and
the menu bar. The rectangle property is two points, the top-left and bottom-
right corners of an object’s rectangle. The points are represented as four
integers separated by commas: left (item 1), top (item 2), right (item 3), bottom
(item 4). The rectangle properties affect these four items, one at a time or two at
a time.

The rectangle properties are listed in Table 12-6. More detailed information
about each property is given later in this chapter.

titleWidth Determines or changes the width of the area in
which a pop-up button’s name appears.

visible Determines or changes whether the specified
button is shown or hidden. The default value of the
visible property is true.

Table 12-6 Rectangle properties

Rectangle
property name Description

bottom Determines or changes the value of item 4 of the
rectangle property when applied to the specified
object or window.

bottomRight Determines or changes items 3 and 4 of the value of the
rectangle property when applied to the specified
object or window.

continued

Table 12-5 Button properties (continued)

Button
property name Description
Retrieving and Setting Properties 367

C H A P T E R 1 2

Properties
Environmental Properties 12

Some of the global properties, such as the userLevel property, can be set
on the User Preferences card of the Home stack; others, such as the
lockMessages property, can be retrieved and set only through HyperTalk.
(However, the User Preferences card uses HyperTalk to set properties, and it
could be extended to set any of the others.) The window properties, which
pertain to the Message box and the tear-off palettes, can be set by clicking and
dragging the windows themselves, as well as through HyperTalk. Painting
properties, which pertain to the painting environment, can be controlled with
the menus and palettes that appear when a Paint tool is selected, as well as
through HyperTalk.

height Determines or changes the vertical distance in pixels
occupied by the rectangle of the specified button or field.

left Determines or changes the value of item 1 of the
rectangle property when applied to the specified
object or window.

right Determines or changes the value of item 3 of the
rectangle property when applied to the specified
object or window.

top Determines or changes the value of item 2 of the
rectangle property when applied to the specified
object or window.

topLeft Determines or changes items 1 and 2 of the value of the
rectangle property when applied to the specified object
or window.

width Determines or changes the horizontal distance in pixels
occupied by the rectangle of the specified button or field.

Table 12-6 Rectangle properties (continued)

Rectangle
property name Description
368 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
Global Properties 12

You use global properties to choose how particular aspects of the HyperCard
environment perform. You set global properties from any script or from the
Message box, and their settings pertain to all objects—if you set userLevel to
3, for example, it remains 3 until you reset it (although a protected stack might
impose some other user level while you are in that stack).

All of the printing properties, such as printMargins, can be restored simul-
taneously to their default values with the reset printing command,
described in Chapter 10, “Commands.”

The global properties are listed in Table 12-7. More detailed information about
each property is given later in this chapter.

Table 12-7 Global properties

Global property name Description

address Determines where your HyperCard application
is running. If you’re connected to a network,
this property returns a string in the form
“zone:Macintosh:program.” If you’re not on a
network, or on a network with just one AppleTalk
zone, HyperCard substitutes an asterisk (*) for the
network name.

blindTyping Determines or changes whether you can type
messages into the Message box and send them
(execute them) without having the Message
box visible.

cursor Changes the image that appears at the pointer
location on the screen.

debugger Determines or changes the name of the current
HyperTalk debugger. Custom debuggers can be
created as XCMDs and called with HyperTalk.

dialingTime Determines how long HyperCard waits before
closing the serial connection to a modem after
dialing. Time units for this property are in ticks
(1/60th of a second) with the default time set to
180 ticks (3 seconds).

continued
Retrieving and Setting Properties 369

C H A P T E R 1 2

Properties
dialingVolume Determines or changes the volume of the touch
tones generated through the Macintosh speaker
by the dial command.

dragSpeed Determines or changes how many pixels per
second the pointer moves when manipulated
by all subsequent drag commands.

editBkgnd Determines or changes where any painting or
creating of buttons or fields happens—on the
current card or on its background.

environment Determines the environment of the currently
running HyperCard application; returns
development if it is the fully enabled development
version, and player if the HyperCard Player
is running.

ID Determines the permanent signature of HyperCard,
'WILD'.

itemDelimiter Determines what delimiter is used to separate a list
of items. HyperCard resets the delimiter to its
default, the comma, when the computer is idle.

language Determines or changes the language dialect in
which HyperTalk scripts are written and displayed.

lockErrorDialogs Determines or changes whether HyperCard
displays an error dialog. This property is set
to false at idle time, so it has no effect if you
enter it through the Message box.

lockMessages Determines or changes whether HyperCard sends
system messages such as openCard, closeCard,
and so on.

lockRecent Determines or changes whether HyperCard adds
miniature representations to the Recent card.

lockScreen Determines or changes whether HyperCard
updates the screen when you go to another card.

continued

Table 12-7 Global properties (continued)

Global property name Description
370 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
longWindowTitles Determines or changes whether HyperCard
displays the long name of a stack in its title bar.

messageWatcher Determines or changes the name of the current
message watcher. A custom message watcher can
be created as an XCMD and called with HyperTalk.

numberFormat Determines or changes the precision with which
the results of mathematical operations are
displayed in fields and the Message box.

powerKeys Determines or changes whether keyboard shortcuts
for painting actions are available.

printMargins Specifies the page margins to use when printing
reports and expressions.

printTextAlign Specifies the text alignment to use in the header of a
print report and when printing variables.

printTextFont Specifies the text font to use in the header of a print
report and when printing variables.

printTextHeight Specifies the line height to use in the header of a
print report and when printing variables.

printTextSize Specifies the text size to use in the header of a print
report and when printing variables.

printTextStyle Specifies the text style to use in the header of a
print report and when printing variables.

scriptEditor Determines or changes the current script editor
to use. A custom script editor can be created as
an XCMD and called with HyperTalk.

scriptingLanguage Determines or changes the scripting language of
the Message box.

scriptTextFont Determines or changes which font to use in the
script editor.

scriptTextSize Determines or changes which font size to use in the
script editor.

continued

Table 12-7 Global properties (continued)

Global property name Description
Retrieving and Setting Properties 371

C H A P T E R 1 2

Properties
Painting Properties 12

Painting properties are aspects of the painting environment invoked when you
choose a Paint tool from the Tools palette. Most of these properties are usually
manipulated from the Options and Patterns menus that appear when a Paint
tool is selected. The text attributes pertain to Paint text; they are usually
manipulated from the dialog box that appears when you double-click the Paint
Text tool in the Tools palette or when you choose Text Style from the Edit
menu. Changes to the settings made from HyperTalk are reflected on their
respective palettes and menus.

All of the painting properties can be restored to their default values simulta-
neously with the reset paint command, described in Chapter 10, “Commands.”

stacksInUse Determines which stacks are currently in the
message-passing hierarchy.

suspended Determines whether HyperCard is currently
running in the background under MultiFinder
or System 7.

textArrows Alters the function of the Right Arrow, Left Arrow,
Up Arrow, and Down Arrow keys.

traceDelay Determines the time between execution of
statements while tracing.

userLevel Sets or retrieves the value of the current HyperCard
user level.

userModify Determines or changes whether or not a user can
type into fields or use Paint tools in a stack that
has been write-protected.

variableWatcher Determines or changes the name of the current
variable watcher. Custom variable watchers can be
created as XCMDs and called with HyperTalk.

version Determines the version number of the HyperCard
application currently running or the versions of
HyperCard that created and modified a specified
stack.

Table 12-7 Global properties (continued)

Global property name Description
372 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
The painting properties are listed in Table 12-8. More detailed information
about each property is given later in this chapter.

Table 12-8 Painting properties

Painting
property name Description

brush Determines or changes the current brush shape used by the
Brush tool.

centered Determines or changes the Draw Centered setting.

filled Determines or changes the Draw Filled setting.

grid Determines or changes the painting Grid setting.

lineSize Determines or changes the thickness of the lines drawn by
the line and shape tools.

multiple Determines or changes the Draw Multiple setting.

multiSpace Determines or changes the amount of space left between
edges of the multiple images drawn by the shape tools when
the multiple property is true.

pattern Determines or changes the current pattern used to fill
shapes and to paint with the Brush tool.

polySides Determines or changes the number of sides of the polygon
created by the Regular Polygon tool.

textAlign Determines or changes the way characters are aligned
around the insertion point as you type them with the
Paint Text tool.

textFont Determine or changes the font in which Paint text appears.

textHeight Determines or changes the space between baselines of
Paint text.

textSize Determines or changes the font size in which Paint text
appears on the screen.

textStyle Determines or changes the style in which Paint text appears.
Retrieving and Setting Properties 373

C H A P T E R 1 2

Properties
Window Properties 12

Window properties let you find out about and change the way that the
Message box, Tools palette, Patterns palette, card window, Scroll window,
Navigator window, Message Watcher window, Variable Watcher window, stack
window, and external windows are displayed. The window names these
properties apply to are

Message can be abbreviated msg.

The properties that apply only to the Message Watcher and Variable Watcher
are listed in Table 12-11.

The window properties are listed in Table 12-9. If the property only applies to a
specific window, it is called out in the description column. More detailed
information about each property is given later in this chapter.

card window window "Navigator"

message [box] window "patterns"

message [window] window "Scroll"

msg window stackName

pattern window window "tools"

tool window window "Variable Watcher"

window "Message Watcher" window windowName

Table 12-9 Window properties

Window
property name Description

ID Determines the permanent ID number of a window
in the current stack.

loc[ation] Determines or changes the location at which the
window is displayed.

name Determines the name of the specified window.

number Determines the ordinal position in the window layers
of any window on your screen.

continued
374 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
Menu, Menu Bar, and Menu Item Properties 12

The menu item properties described in this section pertain to any specified
menu item created with the put command. You can manipulate the properties
of menu items from a script or from the Message box.

You can use the delete, disable, and enable commands to delete, disable,
or enable the Tools, Patterns, Font, and Apple menus, but you cannot alter the
contents of those menus with any other HyperTalk commands. You can also
enable and disable those menus with the enabled property. However, you
cannot manipulate the menu items of these menus.

Since there is only one menu bar per computer screen, this HyperCard object
does not follow the HyperCard object identifier convention where objects can
be specified by name, number, and ID. However, HyperTalk now supports
both the visible and rectangle properties for the menu bar. Of these
properties, visible is the only one that is modifiable. The rectangle proper-
ties are useful only for determining the size of the menu bar.

owner of window Returns the name of the entity that created the
window; this could be HyperCard or the name of
an XCMD like Picture, etc.

Window is an expression yielding a valid window
identifier including either the name, ID, or layer
number of the window.

rect[angle] Determines or changes the size of card and stack
window rectangles. See also Table 12-6.

scroll Determines or changes the scroll of the specified card
picture in the card window or picture in the specified
picture window.

visible Determines or changes whether a window is shown
or hidden on the screen.

zoomed Determines or changes whether a window is set to its
maximum size and centered on the screen, as when
the user clicks its zoom box.

Table 12-9 Window properties (continued)

Window
property name Description
Retrieving and Setting Properties 375

C H A P T E R 1 2

Properties
The menu, menu bar, and menu item properties are listed in Table 12-10. More
detailed information about each property is given later in this chapter.

Message Watcher and Variable Watcher Properties 12

The Message Watcher and Variable Watcher properties described in this
chapter pertain to the built-in Message Watcher or Variable Watcher external
windows. You can manipulate their properties from a script or from the
Message box. You can also manipulate some Variable Watcher properties with
the mouse.

The Message Watcher and Variable Watcher properties are listed in Table 12-11.
More detailed information about each property is given later in this chapter.

Table 12-10 Menu, menu bar, and menu item properties

Menu property name Description

checkMark Determines or changes the current checked value of a
specified menu item; a Boolean value.

commandChar Determines or changes the current character to be
used with the Command key as a keyboard shortcut
for a specified menu item. The commandChar
property can be abbreviated cmdChar.

enabled Determines or changes the enabled or disabled state
of a specified menu or menu item; a Boolean value.

markChar Determines or changes the current character that
indicates a specified menu item is checked.

menuMessage Determines or changes the current message to be sent
when a specified menu item is chosen.

[english] name Determines and changes the language for the
specified menu or menu item name. The adjective
english lets you code tests for the names of menus
and menu items. This is a read-only property for the
Tools, Patterns, Font, and Apple menus.

textStyle Determines or changes the text style of the specified
menu item.
376 Retrieving and Setting Properties

C H A P T E R 1 2

Properties
HyperCard Property Descriptions 12

The rest of this chapter contains all of the HyperCard properties in alphabetical
order for easy reference. The first line of each description tells which objects
(stack, background, card, field, button, rectangle) or elements (menu item,
Message Watcher, or Variable Watcher) or environment (global, window, or
painting) the property applies to.

Some of the syntax statements and examples in this chapter use the soft return
(¬) character to continue long statements onto the next line. The soft return
is used here because of the line-length limitations of the page format used in
this chapter.

Table 12-11 Message Watcher and Variable Watcher properties

Property name Description

hBarLoc Determines or changes the position of the horizontal bar in
the Variable Watcher window.

hideIdle Determines or changes whether the “Hide idle” checkbox is
checked in the Message Watcher window.

hideUnused Determines or changes whether the “Hide unused
messages” checkbox is checked in the Message Watcher
window.

rect Determines or changes the size of the Variable Watcher
window. Read-only property for the Message Watcher
window.

vBarLoc Determines or changes the position of the vertical bar in the
Variable Watcher window.
HyperCard Property Descriptions 377

C H A P T E R 1 2

Properties
Address 12

APPLIES TO

Global environment

SYNTAX

put the address [of HyperCard]
get address [of HyperCard]

EXAMPLES

answer the address

put the address into HCPathname

DESCRIPTION

You use the address property to ascertain the path of the currently executing
HyperCard program. It returns the program path of your copy of HyperCard
in the format “zone:Mac:HyperCard.” For instance, if you’re running
HyperCard on a computer named Quill on a network called HyperText, the
statement

put the address

yields

HyperText:Quill:HyperCard

If your computer is not on a network or the network only has one zone, the
address property returns “*:MyMac:HyperCard”. If your computer is also not
named, it returns “*::HyperCard.” This property works only when you are
running under System 7.

NOTE

The address property is read-only, and it works only when HyperCard is
running under System 7.
378 Address

C H A P T E R 1 2

Properties
AutoHilite 12

APPLIES TO

Buttons

SYNTAX

set [the] autoHilite of button to boolean

Button is an expression that yields a button descriptor. Boolean is an expression
that yields either true or false.

EXAMPLE

set autoHilite of button 6 to true

DESCRIPTION

You use the autoHilite property to determine or change whether the
specified button highlights when that button is pressed.

NOTES

If a button is a member of a button family, then the press of the mouse button
in the button’s rectangle not only highlights that button and sets its hilite
property to true but also sets the hilite property of the rest of the buttons in
the button family to false.

The effect is that the button is highlighted (displayed in inverse video) when
the user clicks it, thus giving visual feedback for the click action. If the button is
part of a button family, clicking one of the button rectangles unhighlights the
rest of the buttons in that family when the mouse button is released.

The default value of autoHilite is false.

The autoHilite property can be set to true or false from a script or by
clicking the Auto Hilite checkbox in the Button Info dialog box.

See also the hilite and sharedHilite properties, later in this chapter.
AutoHilite 379

C H A P T E R 1 2

Properties
AutoSelect 12

APPLIES TO

Fields

SYNTAX

set [the] autoSelect of field to boolean

Field is an expression that yields a field descriptor. Boolean is an expression that
yields either true or false.

EXAMPLE

set autoSelect of field "myListField" to true

DESCRIPTION

You use the autoSelect property to determine or change whether the
specified field behaves as a list field.

NOTES

You can use the autoSelect property in conjunction with the lockText and
dontWrap properties to make a field behave as a list. That is, if autoSelect,
dontWrap, and lockText are true, when the user clicks on a line of text in
the field, the entire line is selected (and therefore appears highlighted). If the
multipleLines property is also true, the user can select multiple lines
in the list field by holding down the Shift key while clicking or by dragging
the mouse.

You can determine which lines the user selects in a list field using the
selectedLine function. You can examine the contents of the lines the
user selects in a list field using the selectedText function. You can select
one or more lines in a list field from a script using the select command.

The autoSelect property for a button or field can be set to true or false
from a script or by clicking the Auto Select checkbox in the Field Info dialog
box. When you set a field’s autoSelect property to true, HyperCard auto-
380 AutoSelect

C H A P T E R 1 2

Properties
matically sets the field’s dontWrap property to true. When you set a field’s
dontWrap property to false, HyperCard automatically sets the field’s
autoSelect property to false.

See also the dontWrap, lockText, and multipleLines properties, later in
this chapter.

AutoTab 12

APPLIES TO

Fields

SYNTAX

set [the] autoTab of field to boolean

Field is an expression that yields a nonscrolling background or card field
descriptor. Boolean is an expression that yields either true or false.

EXAMPLE

set autoTab of field 6 to true

DESCRIPTION

You use the autoTab property to determine or change whether the specified
nonscrolling field will send the tabKey message to the current card. When the
autoTab property is true, pressing Return with the insertion point in the last
line of that field moves the insertion point to the next field on that card.

The normal tabbing order for fields is as follows: if the field you are leaving is a
card field, the insertion point moves to the next higher-numbered card field or
the lowest-numbered background field if no higher-numbered card field exists;
if the field you are leaving is a background field, the insertion point moves to
the next higher-numbered background field or to the lowest-numbered card
field if no higher-numbered background field exists.
AutoTab 381

C H A P T E R 1 2

Properties
NOTE

The autoTab property can be changed from a script or by clicking the “Auto
tab” checkbox in the Field Info dialog box.

BlindTyping 12

APPLIES TO

Global environment

SYNTAX

set blindTyping to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set blindTyping to true

set blindTyping to false

put the blindTyping -- puts current value into message box

DESCRIPTION

You use the blindTyping property to determine or change whether you can
type messages into the Message box and send them (execute them) without
having the Message box visible. Blind typing is available only if the user level
is set to 5 (Scripting) and is usually set with a checkbox on the User Preferences
card of the Home stack.

NOTES

The blindTyping property is set to the value saved on the User Preferences
card of the standard Home stack by a startup handler in that stack.

If you try to type into the Message box when it’s hidden and blindTyping is
false, HyperCard makes the computer beep.
382 BlindTyping

C H A P T E R 1 2

Properties
Bottom 12

APPLIES TO

Buttons, fields, windows

SYNTAX

set [the] bottom of object to number

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
scroll window or window "scroll"
window "Fatbits"

message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

window stackName
menubar

window "Fatbits"

window stackName
scroll window or window "scroll"

Number is an expression that yields an integer representing the vertical offset in
pixels from the top of the card window to the bottom of the specified object.
When the specified object is a card window, the offset measures from the top of
the screen. StackName is an expression that yields the name of an open stack.
Bottom 383

C H A P T E R 1 2

Properties
EXAMPLES

set bottom of button "Mover" to 64

put bottom of card button 4

put the bottom of this card window

set bottom of message box to 350

DESCRIPTION

You use the bottom property to determine or change the value of item 4 of the
rectangle property (left, top, right, bottom) when applied to the specified
object or window.

NOTES

Message can be abbreviated msg.

See also the rectangle property, later in this chapter.

BottomRight 12

APPLIES TO

Buttons, fields, windows

SYNTAX

set [the] bottomRight of object to point

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
384 BottomRight

C H A P T E R 1 2

Properties
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

window stackName
scroll window or window "scroll"

window "Fatbits"

menubar

Point is an expression that yields a list of two integers separated by a comma.
Point represents the horizontal and vertical offsets, respectively, in pixels from
the top-left corner of the card to the bottom-right corner of the specified object.
StackName is an expression that yields the name of an open stack.

EXAMPLES

set bottomRight of bkgnd button id 23 to 64,100

put bottomRight of button "Mover"

put the bottomRight of window "Tools"

set bottomRight of message box to 250,30

DESCRIPTION

You use the bottomRight property to determine or change the value of items
3 and 4 of the rectangle property (left, top, right, bottom) when applied to
the specified object or window. The bottomRight property can be abbreviated
botRight.

NOTES

Message can be abbreviated msg.

See also the rectangle property, later in this chapter.
BottomRight 385

C H A P T E R 1 2

Properties
Brush 12

APPLIES TO

Painting environment

SYNTAX

set [the] brush to number

Number is an expression that yields one of the numbers for the brush shapes
shown in Figure 12-2.

EXAMPLE

set brush to 5

DESCRIPTION

You use the brush property to determine or to change the current brush shape
used by the Brush tool. It’s normally manipulated from the Brush Shape dialog
box (shown in Figure 12-2) invoked by choosing Brush Shape from the Options
menu or by double-clicking the Brush tool.

The value of the brush property can be any integer from 1 to 32, each repre-
senting a brush shape from the Brush Shape dialog box. If you set the value of
brush to a number lower than 1 or higher than 32, it automatically reverts to 1
or 32, respectively. The default brush setting is 7.
386 Brush

C H A P T E R 1 2

Properties
Figure 12-2 Brush Shape dialog box and property values

CantAbort 12

APPLIES TO

Stacks

SYNTAX

set cantAbort of stack stackName to boolean

StackName is an expression that yields a stack name. Boolean is an expression
that yields either true or false.

20

10

19

9

28

18

8

27

17

7

26

16

6

25

15

5

24

14

4

23

13

3

22

12

2

21

11

1

30

29

32

31

CantAbort 387

C H A P T E R 1 2

Properties
EXAMPLES

set cantAbort of this stack to true

set cantAbort of stack "Shoes and socks" to false

DESCRIPTION

The cantAbort property pertains to any stack accessible to your Macintosh. It
controls whether or not you can use Command-period to stop execution of a
script. This property checks or unchecks the Can’t Abort option in the Protect
Stack dialog box.

NOTE

The cantAbort property should be used with caution.

CantDelete 12

APPLIES TO

Backgrounds, cards, stacks

SYNTAX

set cantDelete of object to boolean

Object is an expression that yields a valid background, card, or stack descriptor.
Boolean is an expression that yields either true or false.

EXAMPLES

set cantDelete of first card to true

set cantDelete of this bkgnd to true

set cantDelete of this stack to false
388 CantDelete

C H A P T E R 1 2

Properties
DESCRIPTION

The cantDelete property pertains to any background, card, or stack accessible
to your Macintosh. It controls whether or not the user can delete the specified
object. The default value of cantDelete is false.

For backgrounds and cards, this property checks or unchecks the Can’t Delete
option in the object Info dialog box of the specified object.

For stacks, this property checks or unchecks the Can’t Delete Stack option in
the Protect Stack dialog box. When the cantDelete property for a stack is set
to true, the Delete Stack command in the File menu is unavailable. (If the user
has checked Can’t Delete Stack, however, and a script sets cantModify to
true and then false, Can’t Delete Stack is left checked.)

NOTE

The cantDelete property of a stack is automatically set when the user sets
the cantModify property.

CantModify 12

APPLIES TO

Stacks

SYNTAX

set cantModify of stack to boolean

Stack is an expression that yields a valid stack descriptor. Boolean is an
expression that yields either true or false.

EXAMPLE

set cantModify of this stack to true
CantModify 389

C H A P T E R 1 2

Properties
DESCRIPTION

The cantModify property controls whether or not the stack can be changed in
any way. This property checks or unchecks the Can’t Modify Stack option and
the Can’t Delete Stack option in the Protect Stack dialog box. When the
cantModify property for a stack is set to true, the Compact Stack command
in the File menu is unavailable. (If the user has checked Can’t Delete Stack,
however, and a script sets cantModify to true and then false, Can’t Delete
Stack is left checked.)

NOTES

When you set cantModify for a stack from a script, you override whatever
the user last set manually in the Protect Stack dialog box. This works in reverse
as well. The user can override the script by resetting the value in the Protect
Stack dialog box. Setting cantModify to false does not, however, override
protection provided by media that are write-protected in other ways.

See also the cantDelete and userModify properties in this chapter.

CantPeek 12

APPLIES TO

Stacks

SYNTAX

set cantPeek of stack stackName to boolean

StackName is an expression that yields a stack name. Boolean is an expression
that yields either true or false.

EXAMPLES

set cantPeek of this stack to true

set cantPeek of stack "TreeFrogs" to false
390 CantPeek

C H A P T E R 1 2

Properties
DESCRIPTION

The cantPeek property pertains to any stack accessible to your Macintosh. It
controls whether or not you can view button outlines by pressing Command-
Option, view field outlines by pressing Shift-Command-Option, or pop open
scripts by clicking the mouse button while peeking. This property also checks
or unchecks the Can’t Peek option in the Protect Stack dialog box.

Centered 12

APPLIES TO

Painting environment

SYNTAX

set [the] centered to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set centered to true

set centered to false

DESCRIPTION

You use the centered property to determine or to change the Draw Centered
setting. When centered is set to true, shapes are drawn from the center
rather than the corner. The default value of the centered property is false.

NOTE

You can also set the centered property by choosing Draw Centered on the
Options menu.
Centered 391

C H A P T E R 1 2

Properties
CheckMark 12

APPLIES TO

Menu items

SYNTAX

set [the] checkMark of menuItem of menu to boolean

MenuItem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a menu descriptor. Boolean is an
expression that yields either true or false.

EXAMPLES

set checkMark of menuItem "Get Back" of menu ¬

"Direction" to false

put the checkMark of menuItem "Get Back" of menu ¬

"Direction"

if the checkMark of menuItem "Get Back" of ¬

menu "Direction" is true then

disable menuItem "Get Back" of menu "Direction"

end if

DESCRIPTION

You use the checkMark property to set or determine whether the checkmark
character for a menu item is currently displayed. When the checkMark
property is set to true, a checkmark character appears to the left of the
menu item.

HyperCard does not automatically check or uncheck custom menu items each
time a menu item is chosen, as it does for its own standard menus. Once an
added menu item with a checkmark is chosen, the checkmark remains next to
the menu item regardless of whether it is chosen again. You need to create
handlers to keep track of the checked and unchecked menu items.
392 CheckMark

C H A P T E R 1 2

Properties
If you try to set or determine the checkMark property for a menu item that
does not exist, HyperCard displays a “No such menu item” dialog box.

NOTE

See also the create menu and put commands in Chapter 10, “Commands,”
and the markChar property in this chapter.

CommandChar 12

APPLIES TO

Menu items

SYNTAX

set [the] commandChar of menuItem of menu to char

MenuItem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a descriptor menu. Char is the
character you want to use in combination with the Command key as the
keyboard equivalent of the specified menu item.

EXAMPLES

set the commandChar of menuItem "Get Back" of menu ¬

"Direction" to "D"

put the commandChar of menuItem "Get Back" of menu ¬

"Direction"

DESCRIPTION

You use the commandChar property to set or determine the character to be
used in combination with the Command key as the keyboard equivalent
for a specified menu item. The character is displayed to the right side of the
specified menu item along with the Command key symbol, x.
CommandChar 393

C H A P T E R 1 2

Properties
Menu items usually send messages when invoked. The menu item message
is specified with the menuMessage property, which is described later in
this chapter.

CommandChar can be abbreviated cmdChar.

NOTES

If you try to set or determine the commandChar property for a menuItem that
does not exist, HyperCard displays a “No such menu item” dialog box.

Command-key equivalents do not work for menu items that have been deleted
or disabled. However, with HyperCard’s standard menu items, you can still
send a doMenu command to invoke a menu item action even when the menu
item has been deleted.

See also the menuMessage property later in this chapter and the create
menu and put commands in Chapter 10, “Commands.”

Cursor 12

APPLIES TO

Global environment

SYNTAX

set cursor to cursorType

CursorType yields one of the cursor names or numbers listed in the description.

EXAMPLES

set cursor to 4

set cursor to plus
394 Cursor

C H A P T E R 1 2

Properties
DESCRIPTION

The cursor property determines the image that appears at the pointer
location on the screen. The cursor setting is the ID number or name of a
Macintosh 'CURS' resource, which must be available in the HyperCard file
itself or in the current stack file. 'CURS' resources can be installed, removed,
and created with a Macintosh resource editor.

HyperCard resets the cursor to the one for the current tool at idle, when no
other action is happening. Each available cursor has a name, and some of them
also have a number:

SCRIPT

The following handler spins the busy cursor two full revolutions. The busy
cursor looks like a beach ball. Each time it is set, it turns 45° clockwise:

on spinMe

repeat 16 times

set the cursor to busy

wait 4 ticks

end repeat

end spinMe

NOTE

You can’t get the cursor property or use it as a function; you can only set it.

Number Name

1 I-beam

2 cross

3 plus

4 watch

hand

arrow

busy

none
Cursor 395

C H A P T E R 1 2

Properties
Debugger 12

APPLIES TO

Global environment

SYNTAX

set [the] debugger to debuggerName

DebuggerName is an expression that yields the name of the HyperCard
debugger or a custom XCMD debugger.

EXAMPLES

set the debugger to "ScriptEditor"

set the debugger to "MyDebugger"

put the debugger

DESCRIPTION

You use the debugger property to set or determine the current debugger to
use when debugging HyperTalk scripts. The default HyperTalk debugger is a
built-in XCMD named ScriptEditor.

If you set a name for the debugger that HyperCard can’t find, it uses the
built-in HyperTalk debugger.

NOTE

See the description of the HyperTalk debugger in Chapter 3, and see
Appendix A, “External Commands and Functions,” for more information
about custom debuggers.
396 Debugger

C H A P T E R 1 2

Properties
DialingTime 12

APPLIES TO

Global environment

SYNTAX

set [the] dialingTime to numberOfTicks

NumberOfTicks is a positive integer representing ticks, or sixtieths of a second;
the default value is 180 (3 seconds).

EXAMPLE

set the dialingTime to 300 -- wait 5 seconds

DESCRIPTION

This property is used to designate how long HyperCard waits before closing
the serial connection to the modem after dialing.

NOTE

See also the dial command in Chapter 10, “Commands.”
DialingTime 397

C H A P T E R 1 2

Properties
DialingVolume 12

APPLIES TO

Global environment

SYNTAX

set [the] dialingVolume to volume

Volume is an integer from 0 to 7, inclusive; the default value is 7.

EXAMPLE

if the dialingVolume is 7 -- too loud

then set the dialingVolume to 4

DESCRIPTION

This property is used to control the volume of the touch tones generated
through the Macintosh speaker by the dial command.

DontSearch 12

APPLIES TO

Backgrounds, cards, fields

SYNTAX

set [the] dontSearch of object to boolean

Object is an expression that yields any valid background, card, or field
descriptor. Boolean is an expression that yields either true or false.
398 DialingVolume

C H A P T E R 1 2

Properties
EXAMPLES

set dontSearch of bkgnd 4 to true

put the dontSearch of bkgnd 3 into msg

if the short name of bkgnd field 2 of this cd is "Secrets"

then set dontSearch of bkgnd field 2 to true

DESCRIPTION

You use the dontSearch property to set or determine whether or not the
find command searches the specified background, card, or field in the current
stack. When the dontSearch property of an object is set to true, the find
command doesn’t search that object. The default value for the dontSearch
property is false.

When the dontSearch property of a background is set to true, the find
command ignores all card or background fields on all of the cards of the
specified background.

NOTE

You can set the dontSearch property from a script or by clicking the Don’t
Search checkbox in the object’s Info dialog box.

DontWrap 12

APPLIES TO

Fields

SYNTAX

set [the] dontWrap of field to boolean

Field is an expression that yields any valid field descriptor. Boolean is an
expression that yields either true or false.
DontWrap 399

C H A P T E R 1 2

Properties
EXAMPLE

set the dontWrap of bkgnd fld 4 to true

DESCRIPTION

You use the dontWrap property to determine or change the dontWrap value
for a field in the current stack. When the dontWrap property of a field is set to
true, the text in the specified field does not wrap around to the next line at the
boundary of the field. The default value for the dontWrap property is false
(wrap at the boundary of the field).

NOTES

You can also set the dontWrap property by clicking the Don’t Wrap checkbox
in the Field Info dialog box. When you set a field’s autoSelect property to
true, HyperCard automatically sets dontWrap to true. When you set a field’s
dontWrap property to false, HyperCard automatically sets autoSelect
to false.

DragSpeed 12

APPLIES TO

Global environment

SYNTAX

set dragSpeed to number

Number is an expression that yields a positive integer; 1 is the slowest
possible speed.

EXAMPLE

set dragSpeed to 120
400 DragSpeed

C H A P T E R 1 2

Properties
DESCRIPTION

The dragSpeed property determines how many pixels per second the pointer
moves when manipulated by all subsequent drag commands.

SCRIPT

The following handler, placed in a button’s script, creates a new card to draw
on, sets a slow dragSpeed value, and slowly draws a diamond shape. It then
fills the diamond with a pattern, waits a short time, deletes the card, and sends
you back to the card where you started. You can change the dragSpeed
property to drag faster by increasing the dragSpeed value, or slower by
decreasing the value.

on mouseUp

push card

doMenu "New Card"

set dragSpeed to 60

choose line tool

drag from 100,50 to 50,100

drag from 50,100 to 100,150

drag from 100,50 to 150,100

drag from 100,150 to 150,100

choose bucket tool

set pattern to 10

click at 100,100

reset paint

wait 25 ticks

doMenu "Delete Card"

choose browse tool

pop card

end mouseUp

DragSpeed affects all of the Paint tools except the Bucket and Text tools. At
idle time, HyperCard resets the dragSpeed property to 0. In this case, a value
of 0 represents the fastest possible speed.
DragSpeed 401

C H A P T E R 1 2

Properties
EditBkgnd 12

APPLIES TO

Global environment

SYNTAX

set editBkgnd to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set editBkgnd to true

set editBkgnd to false

DESCRIPTION

The editBkgnd property determines where any painting or creating of
buttons or fields happens—on the current card (false) or on its back-
ground (true). It’s usually set with the Edit menu and is available only
when the user level is Painting (3) or higher. The default setting is false
(editing on the card).

Enabled 12

APPLIES TO

Menus, menu items, and buttons
402 EditBkgnd

C H A P T E R 1 2

Properties
SYNTAX

set [the] enabled of [menuItem of] menu to boolean
set [the] enabled of button to boolean

MenuItem is an expression that yields the descriptor of a menu item that is in
the specified menu. Menu is an expression that yields a menu descriptor. Button
is an expression that yields a button descriptor. Boolean is either true or false.

EXAMPLES

set the enabled of button "Go For It" to true

set enabled of menuItem 4 of menu "Utilities" to false

the enabled of menu "Home"

the enabled of menuItem "Repeat" of menu "Control"

put the enabled of the fifth menu

DESCRIPTION

You use the enabled property to set or determine the state (either enabled or
disabled) of a specified menu, menu item, or button. When you create any of
these, the default for the enabled property is true and the menu, menu item,
or button appears in solid outline (active). If you set enabled to false, the
object is dimmed (disabled).

When the enabled of a button is false, it does not receive mouseDown,
mouseStillDown, mouseUp, or mouseDoubleClick messages. However,
the button continues to receive mouseEnter, mouseWithin, and
mouseLeave messages.

NOTES

If you try to set or determine the enabled property for a menu, menu item, or
button that does not exist, HyperCard displays a dialog box informing you of
your error.

Command-key equivalents do not work on custom menu items that have
been disabled.

See also the menuMsg property in this chapter and the create menu,
disable, enable, and put commands in Chapter 10, “Commands.”
Enabled 403

C H A P T E R 1 2

Properties
Environment 12

APPLIES TO

Global environment

SYNTAX

put [the] environment

EXAMPLE

if the environment is "development" then set userLevel to 5

DESCRIPTION

The environment property returns development if the currently running
version of HyperCard is the fully enabled development version, and player
if the HyperCard Player is running.

Family 12

APPLIES TO

Buttons

SYNTAX

set [the] family of buttonName to number
put [the] family of buttonName

ButtonName is an expression that specifies either a background or card button
descriptor; if you don’t specify whether the owner of a family is a card or
background, the default owner is the card. Number is a positive integer between
1 and 15, inclusive, which represents the family number of a group of buttons;
the number 0 indicates that the specified button does not belong to a family.
404 Environment

C H A P T E R 1 2

Properties
EXAMPLES

set the family of button 6 to 7

set the family of button "Home" to 0 --no family

SCRIPT

The following example handler sets up a family of radio buttons so they
automatically function properly, with only one highlighted at a time:

on setFamily

repeat with i = 1 to 5

set the family of card button i to 2

end repeat

end setFamily

DESCRIPTION

HyperCard uses the family property to group related buttons of a card or
background. This grouping provides a convenient means to make sure that
only one button of a group is highlighted at one time. When someone clicks
one of the buttons in a family, then that button’s hilite property is set to
true and the hilite property of any previously highlighted button in that
family is automatically set to false.

You can assign any number of buttons to a family and can have up to 15
families of buttons on any card or background. You can use the set command
to assign a button to a family from a script, or you can do it manually by using
the Family pop-up menu in each button’s Button Info dialog box.

NOTES

Buttons can be members of either a family of background buttons or a family
of card buttons but cannot belong to both families. A group of card buttons of
family 6 are totally unrelated to the family 6 background buttons.

You can also use the Family pop-up menu in the Button Info dialog box to
assign a family to a button. When you assign a button to a family, HyperCard
sets its autoHilite property to true. HyperCard preserves the state of the
Family 405

C H A P T E R 1 2

Properties
autoHilite property of a button existing prior to assigning a family; if you
later select None in the Family pop-up menu, HyperCard restores the former
autoHilite state.

See also the sharedHilite and autoHilite properties in this chapter.

Filled 12

APPLIES TO

Painting environment

SYNTAX

set [the] filled to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set filled to true

set filled to false

DESCRIPTION

You use the filled property to determine or to change the Draw Filled
setting. When filled is true, the current pattern on the Patterns palette
is used to fill shapes as they are drawn. The default value of the filled
property is false.

NOTE

You can also set the filled property by choosing Draw Filled from the
Options menu.
406 Filled

C H A P T E R 1 2

Properties
FixedLineHeight 12

APPLIES TO

Fields

SYNTAX

set [the] fixedLineHeight of field to boolean

Field is any expression that yields the descriptor of a field. Boolean is an
expression that yields either true or false.

EXAMPLES

set the fixedLineHeight of field 6 to true

get fixedLineHeight of bkgnd field 3

if fixedLineHeight of field 6 is false then

put "fixedLineHeight is false"

end if

DESCRIPTION

You use the fixedLineHeight property to determine or specify whether a
field has fixed line spacing when the text is of different sizes. If widely varying
sizes of text are going to be used in a field, the value of the fixedLineHeight
property needs to be set to false. The default setting of fixedLineHeight
is false.

NOTES

You can also change the value of the fixedLineHeight property by clicking
the Fixed Line Height checkbox in the Field Info dialog box.

The fixedLineHeight property is true for fields created with versions
of HyperCard earlier than 2.0. When the same stacks are converted to the
HyperCard 2.0 format, fixedLineHeight remains true.
FixedLineHeight 407

C H A P T E R 1 2

Properties
The fixedLineHeight property is set to true when showLines is set to
true. If fixedLineHeight is set to false, showLines is also set to false.

See the textSize property, later in this chapter, for more information on how
to set different sizes of text in fields.

FreeSize 12

APPLIES TO

Stacks

SYNTAX

put [the] freeSize of stack stackName [into container]

StackName is an expression that yields any stack name currently available
to HyperCard, and container is any field, variable, the selection, or the
Message box.

EXAMPLE

put freeSize of stack "dogfeathers" into field "Size"

DESCRIPTION

You use the freeSize property to determine the amount of free space of the
specified stack in bytes. (Free space changes in a stack each time you add or
delete an object.)

SCRIPT

The following handler compacts a stack based on a specified freeSize value:

on closeStack

 if the freeSize of this stack > 24000

 then doMenu "Compact Stack"

end closeStack
408 FreeSize

C H A P T E R 1 2

Properties
NOTE

The freeSize property can be changed only by choosing Compact Stack from
the File menu (or executing the HyperTalk command doMenu Compact
Stack), which changes its value to 0, or by editing the stack.

Grid 12

APPLIES TO

Painting environment

SYNTAX

set [the] grid to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set grid to true

set grid to false

DESCRIPTION

You use the grid property to determine or to change the painting grid setting.
When the value of grid is true, movement of the Rectangle, Round Rect,
Oval, and Polygon Paint tools is constrained to 8-pixel intervals. The default
value of the grid property is false.

NOTE

You can set the grid property from a script or by choosing Grid from the
Options menu.
Grid 409

C H A P T E R 1 2

Properties
HBarLoc 12

APPLIES TO

Variable watcher windows

SYNTAX

set [the] hBarLoc of window "Variable Watcher" to number

Number is an expression that yields a positive integer that represents the offset
in pixels from the bottom of the Variable Watcher window title bar to the
horizontal bar in the window.

EXAMPLES

set the hBarLoc of window "Variable Watcher" to 123

put the hBarLoc of window "Variable Watcher"

DESCRIPTION

You use the hBarLoc property to determine or to change the current position
of the horizontal bar in the Variable Watcher window. The horizontal bar
determines how many of the variable name and value fields are visible in the
Variable Watcher window.

NOTES

The built-in Variable Watcher window is a HyperCard XCMD. It can
be replaced with a custom variable watcher XCMD by setting the
variableWatcher property to the name of a variable watcher XCMD.

Custom variable watcher XCMDs can respond to or ignore the hBarLoc
property.

For more information about creating and calling a custom variable watcher
XCMD, see Appendix A, “External Commands and Functions.”

See also the description of the Variable Watcher in Chapter 3, “The Scripting
Environment,” and the rect, variableWatcher, and vBarLoc properties,
later in this chapter.
410 HBarLoc

C H A P T E R 1 2

Properties
Height 12

APPLIES TO

Buttons, cards, fields, menu bar, windows

SYNTAX

set [the] height of object to number
put [the] height of object

Object is an expression that yields any valid button, card, field, or window
descriptor, or the word menubar.

Number is an expression that yields a positive integer. Number represents the
total number of pixels in the vertical height of the specified object.

EXAMPLES

set the height of bkgnd button 2 to 60

set the height of bkgnd field "phoneList" to 220

put the height of window "Home"

set the height of cd window to height of cd window div 2

DESCRIPTION

You use the height property to determine or change the vertical distance in
pixels occupied by the rectangle of the specified button, field, or window. You
can change the height of a button, field, or window rectangle with the set
command.

When you set the height of a button, field, or window, its location property
(center coordinate) remains the same.

NOTE

See also the rectangle property, later in this chapter.
Height 411

C H A P T E R 1 2

Properties
HideIdle 12

APPLIES TO

Message watcher windows

SYNTAX

set [the] hideIdle of window messageWatcher to boolean

MessageWatcher is an expression that yields the name of a message watcher
window. Boolean is an expression that yields either true or false.

EXAMPLES

set the hideIdle of window "Message Watcher" to true

put hideIdle of window "Message Watcher"

DESCRIPTION

You use the hideIdle property to determine or change whether the “Hide
idle” checkbox is checked in a message watcher window.

The name of the message watcher window can be either the built-in
HyperCard Message Watcher, window "Message Watcher", or the name of
a custom message watcher window that supports a “Hide idle” checkbox.

NOTES

See also the description of the Message Watcher in Chapter 3, “The Scripting
Environment.” For more information about creating a custom message watcher
XCMD, see Appendix A, “External Commands and Functions.”

See also the hideUnused and messageWatcher properties, later in
this chapter.
412 HideIdle

C H A P T E R 1 2

Properties
HideUnused 12

APPLIES TO

Message watcher windows

SYNTAX

set [the] hideUnused of window messageWindow to boolean

MessageWindow is an expression that yields the name of a message watcher
window. Boolean is an expression that yields either true or false.

EXAMPLES

set the hideUnused of window "Message Watcher" to true

put hideUnused of window "Message Watcher"

DESCRIPTION

You use the hideUnused property to determine or change whether the “Hide
unused messages” checkbox is checked in a message watcher window.

The name of the message watcher window can be either the built-in
HyperCard Message Watcher, window "Message Watcher", or the name
of a custom message watcher window that supports the “Hide unused
messages” checkbox.

NOTE

See also the description of the Message Watcher in Chapter 3, “The Scripting
Environment.” For more information about creating a custom message watcher
XCMD, see Appendix A, “External Commands and Functions.”

See also the hideIdle and messageWatcher properties in this chapter.
HideUnused 413

C H A P T E R 1 2

Properties
Hilite 12

APPLIES TO

Buttons

SYNTAX

set [the] hilite of button to boolean

Button is an expression that yields a background button or card button
descriptor. Boolean is an expression that yields either true or false.

EXAMPLES

set hilite of button "You're on" to true

put the hilite of bkgnd button 3

DESCRIPTION

You use the hilite property to determine or to change whether the specified
button is highlighted (displayed in inverse video). The default value of the
hilite property is false. To see what highlighting for the various button
styles looks like, see the HyperCard Reference.

NOTES

The hilite property can be changed using the set command, either from a
script or from the Message box, or, if the autoHilite property is true, by
pressing the button. In that case, for all styles of buttons except checkboxes and
radio buttons, the hilite property becomes true when you press the button,
and it becomes false when you release it.

For checkboxes and radio buttons with their autoHilite property set to
true, the hilite property toggles to its opposite state when the button is
clicked and stays that way until it is clicked again. That is, when a checkbox
is highlighted, it appears with an “X” checkmark in its box; when it’s not
highlighted, the checkmark does not appear. If autoHilite is true, an
unselected checkbox displays an “X” when you click it; if you click it again,
414 Hilite

C H A P T E R 1 2

Properties
the “X” disappears. The appearance of the checkmark correlates to the state
of the button’s hilite property. The situation is similar for radio buttons,
except that the true highlighted state is indicated by a solid dot inside the
button’s circle.

See also the description of the autoHilite, family, and sharedHilite
properties in this chapter.

Icon 12

APPLIES TO

Buttons

SYNTAX

set [the] icon of button to designator

Button is an expression that yields a background or card button descriptor.
Designator yields the ID number of an available icon resource or the name
of an icon (if it has one).

EXAMPLES

set icon of button "Instant" to 5005

set icon of button "Instant" to "DoGood"

put the icon of button "Instant"

DESCRIPTION

You use the icon property to determine or to change the icon, if any, that is
displayed with the specified button. If a button has no icon, the icon property
is 0. An icon is identified by its ID number or by its name, if it has one.

Icons are small images that exist as Macintosh files and are editable with the
HyperCard icon editor. For an icon to be displayed on a button, its resource
must be available in the current stack, another stack in the hierarchy, or the
HyperCard application.
Icon 415

C H A P T E R 1 2

Properties
NOTES

The icon can also be changed by clicking the Icon button in the Button Info
dialog box, which brings up another dialog box that displays the available
icons graphically. When you click an icon in the icon display dialog box, the ID
and name are displayed in the upper-left corner. The icon name is displayed in
the dialog box only if the icon has a name.

If you use the put command with the icon property, you get the ID number of
the icon, not the name. You cannot retrieve an icon name for a button.

ID 12

APPLIES TO

Backgrounds, buttons, cards, fields, menus, windows, HyperCard

SYNTAX

put [the] [adjective] ID of object | windowName | HyperCard ¬
[into container]

Adjective is one of the long, short, and abbreviated modifiers as described
in the section “Object ID Numbers” in Chapter 5. Object is an expression
that yields any valid background, button, card, or field descriptor. WindowName
yields a valid window descriptor. A container is the selection, a field, a variable,
or the Message box.

EXAMPLES

put the ID of HyperCard

put the long ID of bkgnd 3

if the ID of bkgnd 1 is 2282 then answer "Welcome Home"

put the short ID of card 35

put the id of field 1 into msg

put the ID of bkgnd button 3 into field "Button IDs"

put the short ID of card 35 after line 2 of field 2

put the id of window "DogPicture"
416 ID

C H A P T E R 1 2

Properties
DESCRIPTION

You use the ID property to determine the permanent ID number of any
background, button, card, field, or window in the current stack.

You can also use the ID property to determine the application signature of
HyperCard. Unless the current stack is running under a stand-alone applica-
tion whose application signature has been modified, the ID property of
HyperCard will contain WILD.

You can’t use the set command to change the ID of any object.

SCRIPT

The following script uses the name and ID properties to produce a list of
button names and IDs. You need to create a field for the button name and
ID list.

on mouseUp

put empty into field "MyField"

repeat with nums = 1 to the number of buttons

put "Button name" && quote & short name of button ¬

nums & quote && "has id number" && id of button ¬

nums & return after field "MyField"

end repeat

end mouseUp

You can place the script in any button or field, then click the button or field
to get a list of all the buttons names and IDs on the current card. If you put
the script into the same field you want to put the list into, be sure to set
the lockText property of that field to true, so that the field receives the
mouseUp message. Also, change all references to the field descriptor field
"MyField" to match the descriptor for the field you created for the list. If the
field created for the list is the same field the script is in, you can use me in place
of field "MyField".

NOTES

When HyperCard retrieves the ID of a window, field, or button, it ignores any
adjectives and always reports the ID as an unlabeled number. For instance, if
ID 417

C H A P T E R 1 2

Properties
you execute the following command line from the Message Box, you will get a
number result like the one shown on the line following it:

put the long id of window "Home"

10883218

If you ask for a long ID of a card, HyperCard returns a labeled response, as
shown in this example:

put the long id of cd 1

The response returned is

card id 3916 of stack "oh dear:Desktop Folder:Home"

You should also be aware that a window must already exist before you call for
its ID. Many windows go out of existence when you click their close boxes and
are created by XCMDs each time you call for them.

ItemDelimiter 12

APPLIES TO

Global environment

SYNTAX

the itemDelimiter

set [the] itemDelimiter to character

Character yields an ASCII character or a constant that represents an
ASCII character.

EXAMPLES

if the itemDelimiter <> comma

then set the itemDelimiter to comma

set itemDelimiter to "#"
418 ItemDelimiter

C H A P T E R 1 2

Properties
DESCRIPTION

You use the itemDelimiter property to change the character that delimits
items in a list. The default value is comma, and, if changed, the value will revert
to comma on idle.

Changing the item delimiter has no effect on comma-delimited HyperCard
structures such as dateItems, location, and rectangle.

SCRIPT

The following card script’s function handler returns the pathname of the
current stack without the stack name (useful when you need to refer to
other files at the same level). You can call this function handler by typing
shortPath() in the Message box and then pressing Return.

function shortPath -- Card handler

-- Save old item delimiter value for resetting later

put the itemDelimiter into oldDelimiter

put the value of word 2 of the long name ¬

of this stack into longName

-- saves: Volume:Stacks Folder:This Stack

-- reset item delimiter

set itemDelimiter to colon

delete last item of longName

-- 'Volume:Stacks Folder' goes in longName

-- Reset delimiter

set itemDelimiter to oldDelimiter

return longName & colon

end shortPath

The following part of a script is useful for retrieving the name of a program
from a colon-delimited list on machines running system software version 7.0
or later:

set the itemDelimiter to ":"

answer program "Select a program"

get the last item of it
ItemDelimiter 419

C H A P T E R 1 2

Properties
Language 12

APPLIES TO

Global environment

SYNTAX

set language to languageName

LanguageName is a text string that yields English or a language for which
there is a HyperTalk translator resource.

EXAMPLE

set language to French

DESCRIPTION

You use the language property to choose a HyperTalk translator, which is
a code resource that translates between HyperTalk and a foreign-language
version of HyperTalk. If the language property is not English, when the
user invokes the script editor to view a script, HyperCard translates it to the
specified language. When the user closes the script, HyperCard translates it
back to English HyperTalk before storing it with its object.

NOTES

The language property refers only to the HyperTalk scripting language; it has
no effect on scripts written in other scripting languages.

The languages available depend on the script translator resources available in
the current stack, another stack in the hierarchy, or the HyperCard application.
The default setting is English, and it’s always available.
420 Language

C H A P T E R 1 2

Properties
Left 12

APPLIES TO

Buttons, fields, menu bar, windows

SYNTAX

set [the] left of object to number

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
scroll window or window "scroll"
window "Fatbits"

message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

window stackName

Number yields an integer that is the horizontal offset in pixels from the left side
of the card to the left side of the object. When the object is the card window, the
offset is relative to the left side of the screen. StackName is an expression that
yields the name of an open stack.

EXAMPLES

set left of button 2 to 34

put left of button 2

put the left of card field 3

set left of tool window to 65
Left 421

C H A P T E R 1 2

Properties
DESCRIPTION

You use the left property to determine or change the value of item 1 of the
rectangle property (left, top, right, bottom) when applied to the specified
object or window. The left property of an object can also be set to a value off
the screen. Setting the left property of an object to a value off the screen
makes the object seem hidden.

NOTES

The left of the menu bar is a read-only property.

Message can be abbreviated msg.

See also the rectangle property, later in this chapter.

LineSize 12

APPLIES TO

Painting environment

SYNTAX

set [the] lineSize to number

Number yields a positive integer that is the total number of pixels in a line’s
width. It can be 1, 2, 3, 4, 6, or 8.

EXAMPLE

set lineSize to 8

DESCRIPTION

You use the lineSize property to determine or to change the thickness of the
lines drawn by the Line and Shape tools. The default value of the lineSize
property is 1. If you set the value of lineSize to a number lower than 1 or
higher than 8, it automatically reverts to 1 or 8, respectively.
422 LineSize

C H A P T E R 1 2

Properties
NOTE

You can also set the lineSize property by choosing Line Size from the
Options menu or double-clicking the Line tool.

Location 12

APPLIES TO

Buttons, fields, menu bar, windows

SYNTAX

set loc[ation] of object to point

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
scroll window or window "scroll"
window "Fatbits"

message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

window stackName
windows created with the picture command

Point is an expression that yields two integers separated by a comma.
StackName is an expression that yields the name of a stack in quotation marks.
Location 423

C H A P T E R 1 2

Properties
EXAMPLES

set loc of tool window to "100,100"

put the loc of field 3

put the loc of pattern window

set loc of msg to 30,150

set the loc of card window to 48,90

set the loc of window "Navigator" to "45,60"

set the loc of scroll window to "165,45"

DESCRIPTION

The location property sets or retrieves the location at which the window or
object is displayed.

The point represents the horizontal and vertical offsets, respectively, in pixels
from the top-left corner of the card to the center of a resizable window
(a button or field) or the top-left corner of a nonresizable window (Tools
palette, Patterns palette, Message box, Navigator palette, or Scroll window),
disregarding the drag bar at the top of the window. The value for point must be
within quotation marks for the Navigator palette.

The point for a card window represents the horizontal and vertical offsets,
respectively, in pixels from the top-left corner of the screen to the top-left
corner of the card window.

The point for windows created with the picture command represents the
horizontal and vertical offsets, respectively, in pixels from the top-left corner of
the current card window to the top-left corner of the picture window. The
value for point must be within quotation marks.

NOTES

The location of the menu bar is a read-only property.

If you always put the value of point within quotation marks, it works with
all of the HyperCard objects and elements for which you can set the location.
An example that places quoted values in variables is shown under the
multiSpace property, later in this chapter.

If you want to move a card on the screen, you set the location property for
the card window of the current stack, not the location of the card.
424 Location

C H A P T E R 1 2

Properties
The number that represents the horizontal offset for the card window is shifted
to the closest multiple of 16 regardless of how you set it. For example, the
statement set the loc of cd window to 50,90 would result in the
card location of 48,90. It would shift to the next 16 pixels when the horizontal
value of the location property reached the halfway point to the next higher
or lower 16 pixels. For example, a horizontal value of 38 would shift the card
window left to a horizontal offset of 32.

When you move a card window with the location property, the system
message moveWindow is sent. The moveWindow message is also sent when you
drag the window to a new location, zoom it in or out with the zoom box,
causing the location property to change, or show the card window at a new
location with the show command.

See also the rectangle property later in this chapter; the palette, picture,
and show commands in Chapter 10, “Commands”; and the moveWindow
system message in Chapter 8, “System Messages.”

LockErrorDialogs 12

APPLIES TO

Global environment

SYNTAX

set lockErrorDialogs to boolean

Boolean is an expression that yields either true or false.

EXAMPLE

set lockErrorDialogs to true

DESCRIPTION

You use the lockErrorDialogs property to prevent HyperCard from
displaying error dialogs when a script causes an error. This property is set to
false at idle time, so it has no effect if you enter it through the Message box.
LockErrorDialogs 425

C H A P T E R 1 2

Properties
NOTES

When the lockErrorDialogs property is set to true, HyperCard sends the
message errorDialog errorMessage to the current card instead of displaying
the error dialog.

Errors produced through the Message box still get dialogs, regardless of the
setting of lockErrorDialogs.

LockMessages 12

APPLIES TO

Global environment

SYNTAX

set lockMessages to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set lockMessages to true

set lockMessages to false

DESCRIPTION

You use the lockMessages property to prevent HyperCard from sending all
open, close, suspend, and resume system messages. The default setting is
false. HyperCard resets lockMessages to false at idle time (in effect, at
the end of all pending handlers).

NOTE

Setting the lockMessages property to true speeds up execution of scripts
in which you go to cards, and those in which you create and delete cards,
backgrounds, and stacks, because it prevents HyperCard from sending
426 LockMessages

C H A P T E R 1 2

Properties
messages such as openCard, closeCard, and so on. The lockMessages
property does not affect new and delete system messages such as newCard
and deleteField. Setting the lockMessages property to true also
prevents execution of handlers invoked by system messages, which may be
used to set up an environment—hiding the Message box, and so on. It’s
particularly useful when you want to go to a card to retrieve or write some
information, but you don’t want to stay there.

LockRecent 12

APPLIES TO

Global environment

SYNTAX

set lockRecent to boolean

Boolean is an expression that yields either true or false.

EXAMPLE

set lockRecent to true

DESCRIPTION

You use the lockRecent property to prevent HyperCard from adding
miniature representations to the Recent Cards dialog box. (The Recent
Cards dialog box is invoked by Command-R or by choosing Recent from
the Go menu.)

The default setting is false. HyperCard resets lockRecent to false at idle
time (in effect, at the end of all pending handlers).
LockRecent 427

C H A P T E R 1 2

Properties
NOTES

LockRecent is set to true when the lockScreen property is set to true
regardless of the current setting of lockRecent. Setting the lockRecent
property to true speeds up execution of scripts in which you go to cards.

See also the next property, lockScreen.

LockScreen 12

APPLIES TO

Global environment

SYNTAX

set lockScreen to boolean

Boolean is an expression that yields either true or false.

EXAMPLE

set lockScreen to true

DESCRIPTION

You use the lockScreen property to prevent HyperCard from updating the
screen when you go to another card.

The default setting is false. HyperCard resets lockScreen to false at idle
time (in effect, at the end of all pending handlers).

NOTES

Setting the lockScreen property to true enables you to open different cards
without displaying them on the screen, and it speeds up execution of scripts in
which you go to cards. For example, you can lock the screen, then go to another
428 LockScreen

C H A P T E R 1 2

Properties
card to read information out of a field, then return to the first card without
having the second card appear to the user.

To ensure that the display is unlocked, each set lockScreen to true
must be balanced with a set lockScreen to false.

See also the lock and unlock commands in Chapter 10.

LockText 12

APPLIES TO

Fields

SYNTAX

set [the] lockText of field to boolean

Field is an expression that yields any valid card field or background field
descriptor. Boolean is an expression that yields either true or false.

EXAMPLES

set the lockText of field "Glossary" to true

set the lockText of field "Glossary" to false

DESCRIPTION

You use the lockText property to prevent or allow editing of text within a
field in the current stack.

When the Browse tool is selected and the pointer is moved over an unlocked
field, the pointer changes to an I-beam; clicking then lets you edit the text in
the field. If the field is locked (lockText is true), the cursor doesn’t change,
and the text cannot be edited. A locked field also receives the messages
mouseDown, mouseStillDown, and mouseUp when you click it. The default
value of lockText is false.
LockText 429

C H A P T E R 1 2

Properties
NOTES

You can also change this property by clicking the Lock Text checkbox in the
Field Info dialog box.

When the cantModify property for the current stack is true and the
userModify property is false, no changes can be made in a field. When
cantModify is true, userModify is true, and lockText is false, any
editing done in a field is lost when the user moves to another card.

LongWindowTitles 12

APPLIES TO

Global environment

SYNTAX

set [the] longWindowTitles to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set longWindowTitles to true

set the longWindowTitles to false

DESCRIPTION

You use the longWindowTitles property to determine whether the stack
name or the full pathname appears in the title bar of the card window.

The default value of longWindowTitles is false and shows only the stack
name in the title bar. If longWindowTitles is set to true, the full pathname
of the stack is shown in the card window title bar.

NOTE

See also Chapter 5, “Referring to Objects, Menus, and Windows,” for more
information about stack names and the full pathname of a stack.
430 LongWindowTitles

C H A P T E R 1 2

Properties
MarkChar 12

APPLIES TO

Menu items

SYNTAX

set [the] markChar of menuItem of menu to char

MenuItem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a menu descriptor. Char is an
expression that yields the checkmark character you want to display in the
menu to the left side of the specified menu item when it is chosen.

EXAMPLES

set markChar of menuItem "Blue" of menu "Colors" to >

put the markChar of menuItem 4 of the sixth menu

DESCRIPTION

You use the markChar property to set or determine the checkmark character
for a menu item. When the markChar of a menu item is not empty, the menu
item’s checkMark property is true. To remove a checkmark character from a
menu item, set its markChar property to empty or set its checkMark property
to false.

HyperCard does not automatically check or uncheck custom menu items each
time a menu item is chosen, as it does for its own standard menus. Once an
added menu item with a checkmark is chosen, the checkmark remains next to
the menu item regardless of whether it is chosen again. You need to create
handlers to keep track of checked and unchecked custom menu items.

If you try to set or determine the markChar property of a menu item that does
not exist, HyperCard displays a “No such menu item” dialog box.

NOTE

See also the put command in Chapter 10, “Commands,” and the checkMark
property, earlier in this chapter.
MarkChar 431

C H A P T E R 1 2

Properties
Marked 12

APPLIES TO

Cards

SYNTAX

set [the] marked of card to boolean

Card is an expression that yields the descriptor of any card within the current
stack. Boolean is an expression that yields either true or false.

EXAMPLES

put [the] marked of card 35

set marked of card 2 to true

if the marked of this card is true then doSomething

DESCRIPTION

You use the marked property to set or determine the marked state of any
card in the current or specified stack. The default value of marked is false.
A marked card or group of marked cards can be referred to in complicated
searches and when printing.

NOTES

You can also set the marked property with the Card Marked option in the Card
Info dialog box.

See also the mark and unmark commands in Chapter 10, “Commands.”
432 Marked

C H A P T E R 1 2

Properties
MenuMessage 12

APPLIES TO

Menu items

SYNTAX

set [the] menuMessage of menuItem of menu to message

MenuItem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a menu descriptor. Message is an
expression that yields a message to be sent by the menu item.

EXAMPLES

set menuMessage of menuItem 7 of menu 10 to doMenu "Prev"

put the menuMessage of menuItem "Next" of menu "Pictures"

put "Maple" after menu "Syrups" with menuMsg "go card 4"

DESCRIPTION

You use the menuMessage property to specify the message sent to the current
card by a specified menu item. You can also specify a menu message for a
menu item when you create a menu item with the put command.

You may respond to the choosing of menu items in your scripts in two ways.
Whenever a menu item is chosen, HyperCard sends a doMenu message. You
can respond to the choosing of menu items by writing doMenu handlers in
your scripts (this is the first way). If the doMenu message is not intercepted
by any script, HyperCard checks the menu item’s menuMessage property. If
menuMessage is not empty, HyperCard sends that message to the current
card. Therefore you can respond to the choosing of menu items by assigning
them menu messages (this is the second way). If menuMessage is empty,
HyperCard checks whether the item is one of its standard menu items. If it
is a standard menu item, the standard behavior of that menu item occurs.
MenuMessage 433

C H A P T E R 1 2

Properties
Custom menu items with the same name as a standard HyperCard menu item
inherit the standard behavior of the HyperCard menu item. For example, if you
add Background to a menu called Special, choosing it has the same effect as
choosing the standard Background command from the Edit menu, unless you
assign a custom menu message or intercept the doMenu message.

If you try to set or determine the menuMessage property of a menu item that
does not exist, HyperCard displays a “No such menu item” dialog box.

NOTES

In the case of HyperCard’s standard menu items, the doMenu command works
even when the item is deleted. For example, if the following handler is
executed, HyperCard exits to the Finder:

on mouseDown

delete menuItem "Quit HyperCard" from menu "File"

doMenu "Quit HyperCard"

end mouseDown

The menuMessage property returns values for standard HyperCard menus
only if they have been changed from the default HyperCard menu messages.

MenuMessage can be abbreviate menuMsg.

You can’t set the menuMessage property of menu items in the Tools, Patterns,
Font, or Apple menus, except for the menuMessage property of the About
HyperCard menu item in the Apple menu, which you can set.

See also the create menu, delete, doMenu, and put commands in
Chapter 10, “Commands.”
434 MenuMessage

C H A P T E R 1 2

Properties
MessageWatcher 12

APPLIES TO

Global environment

SYNTAX

set [the] messageWatcher to name

Name is an expression that yields a valid message watcher XCMD name.

EXAMPLES

set messageWatcher to "MyWatcher"

put the messageWatcher

DESCRIPTION

You use the messageWatcher property to determine or to change the current
message watcher. The default value is messageWatcher, the built-in message
watcher XCMD. You display the current message watcher with the show
command or by setting the visible property of the message watcher window
to true.

The built-in message watcher is a HyperCard XCMD. It can be replaced with a
custom message watcher XCMD by setting the messageWatcher property to
the name of a custom message watcher XCMD.

NOTES

See also the description of the Message Watcher in Chapter 3, “The Scripting
Environment.”

For more information about creating a custom message watcher XCMD, see
Appendix A, “External Commands and Functions.”
MessageWatcher 435

C H A P T E R 1 2

Properties
Multiple 12

APPLIES TO

Painting environment

SYNTAX

set [the] multiple to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set multiple to true

set multiple to false

DESCRIPTION

You use the multiple property to determine or to change the Draw Multiple
setting. When multiple is true, multiple images are drawn as you drag a
shape tool.

Tools affected by the multiple property are the Line, Rectangle, Rounded
Rectangle, Oval, and Regular Polygon tools. The default value of the
multiple property is false.

NOTE

You can also set the multiple property by choosing Draw Multiple from the
Options menu. Setting multiple to true puts a checkmark next to the Draw
Multiple item in the Options menu. See also the multiSpace property,
described later in this chapter.
436 Multiple

C H A P T E R 1 2

Properties
MultipleLines 12

APPLIES TO

Fields

SYNTAX

set [the] multipleLines of field to boolean

Field is an expression that yields any valid field descriptor. Boolean is an
expression that yields either true or false.

EXAMPLE

set the multipleLines of card field 1 to true

DESCRIPTION

You use the multipleLines property to determine or change whether
multiple-line selections are allowed in the field when it is configured as
a list field (that is, when its autoHilite, lockText, and dontWrap
properties are true).

NOTES

You can set the multipleLines property from a script or by clicking the
Multiple Lines checkbox in the Field Info dialog box.
MultipleLines 437

C H A P T E R 1 2

Properties
MultiSpace 12

APPLIES TO

Painting environment

SYNTAX

set [the] multiSpace to number

Number is an expression that yields any positive integer.

EXAMPLE

set multiSpace to 12

DESCRIPTION

You use the multiSpace property to determine or to change the amount of
space left between edges of the multiple images drawn by the shape tools
when the multiple property is true. The default value of the multiSpace
property is 1.

SCRIPT

The following script uses the multiSpace and multiple properties to create
an interesting image. It also cleans up after it is completed.

on roundyRound

doMenu "New Card"

reset paint

choose oval tool

set multiple to true

set dragSpeed to 200

set multiSpace to 15

put "60,25" into upperLeft

put "260,175" into botRight
438 MultiSpace

C H A P T E R 1 2

Properties
put "260,25" into upperRight

put "60,175" into botLeft

drag from upperLeft to botRight with shiftKey

drag from botRight to upperLeft with shiftKey

drag from botLeft to upperRight with shiftKey

drag from upperRight to botLeft with shiftKey

wait 60 ticks

set lockScreen to true

choose browse tool

play boing

doMenu "Delete Card"

doMenu "Back"

set lockScreen to false

end roundyRound

Name 12

APPLIES TO

Backgrounds, buttons, cards, fields, HyperCard, menus, menu items, stacks

SYNTAX

set [the] name of object to objectName
set [the] name of menuItem of menu to itemName
[the] [english] name of menuNumber

Object is an expression that yields a valid background, button, card, field, or
stack descriptor. ObjectName is an expression that yields any valid HyperCard
object name. The object name can be a maximum of 31 characters.

MenuItem is an expression that yields a menu item descriptor that is in the
menu menu. Menu is an expression that yields a menu descriptor. ItemName is
an expression that yields the new text to replace the current menu item name.
MenuNumber is an expression that yields the number form of a menu descriptor.
Name 439

C H A P T E R 1 2

Properties
EXAMPLES

put the english name of menu 1

put the english name of menuitem 2 of menu 3

set name of this stack to "TooHip"

put the long name of this stack into field 2

set name of this bkgnd to "TrueGrit"

put the long name of this background into field 3

put the long name of field 3 into msg

set name of menuItem "Dogs" of menu "Animals" to "Canines"

put the name of the third menuItem of menu "Direction"

put the name of menu 8

put the name of the third menu

DESCRIPTION

You use the name property to determine or to change the name of the specified
background, button, card, field, stack, or menu item. You can use the name
property to determine the name of a menu, but not to set the name. A stack
name must be a valid Macintosh filename.

When you use the name of menuNumber form of the name property to get the
name of a menu, the descriptor for the menu is an expression that yields a valid
number of one of the current HyperCard menus or custom menus in the menu
bar. Menus are numbered from left to right, starting with number 1 for the
Apple menu.

Using the adjective english in conjunction with the name property ensures
that you can correctly refer to menu items even after they have been localized.

NOTES

If you try to retrieve an object’s name when it has none, HyperCard returns its
ID number.

If you try to modify or determine the name property of a menu item that does
not exist, HyperCard displays a “No such menu item” dialog box.

If you try to modify or determine the name property of a menu that does not
exist, HyperCard displays a “No such menu” dialog box.
440 Name

C H A P T E R 1 2

Properties
You can set the name of the About HyperCard menu item in the Apple menu to
a different value.

See also the put command in Chapter 10, “Commands.”

Number 12

APPLIES TO

Backgrounds, buttons, cards, fields, windows

SYNTAX

put [the] number of object [into container]

Object is an expression that yields any valid background, button, card, or field
descriptor. Container is the selection, any field, a variable, or the Message box.

EXAMPLES

if the number of this bkgnd is 2 then go next card

put number of last card into msg

DESCRIPTION

You use the number property to determine the number of any background,
button, card, or field in the current stack.

You can’t set the number of a background, button, card, or field; the number
of an object changes when you add or delete a background, a button, a card, or
a field. The number of a field or button may also change if you change its
partNumber property.

NOTE

See also the number function in Chapter 11, which returns the count (how
many) of various elements, not the descriptor number of an individual object.
Number 441

C H A P T E R 1 2

Properties
NumberFormat 12

APPLIES TO

Global environment

SYNTAX

set numberFormat to formatType

FormatType is an expression that yields the format (within quotation marks)
that is to be used for the display of numbers.

EXAMPLES

set numberFormat to "00.##" -- display 02.21

set numberFormat to "0" -- display 2 for the same value

set numberFormat to "0." -- display 2.2

DESCRIPTION

The numberFormat property determines the precision with which the results
of mathematical operations are displayed in fields and the Message box. Use
zeros to show how many digits you want to appear, a period to show where
you want the decimal point (if at all), and number signs (#) to the right of the
decimal point in places where you want a trailing digit to appear, but only if it
has value. Use zeros to the right of the decimal point if you always want the
same number of digits to show, whether or not they have value. HyperTalk
does calculations with up to 19 digits of accuracy.

HyperCard resets the numberFormat property to its default value,
"0.######", at idle time (in effect, at the end of all pending handlers).
442 NumberFormat

C H A P T E R 1 2

Properties
NOTE

The numberFormat property has no effect on how a number is displayed
unless you perform a mathematical operation on it first (for details, see
Chapter 6, “Values”).

Owner 12

APPLIES TO

Card or window

SYNTAX

put [the] owner of window|card

Window is the name, ID, or layer number of a window, and card is the name, ID,
or positional number of a card in the current stack.

EXAMPLES

put the owner of window 8

put the owner of card "Introduction"

DESCRIPTION

You can ask HyperCard to return the owner of either a card or a window. For a
window, this read-only property returns the name of the entity that created the
window. This might be HyperCard itself (as in the case of a stack window) or
the name of an XCMD like Picture, Message Watcher, or Variable Watcher. The
owner of a card is the name or ID of the background that card shares.
Owner 443

C H A P T E R 1 2

Properties
PartNumber 12

APPLIES TO

Button or field

SYNTAX

put [the] partNumber of button|field
set [the] partNumber of button|field to number

Button is an expression yielding a button identifier, field is an expression
yielding a field identifier, and number is a positive integer that is less than
or equal to the number of parts in the enclosing background or card.

EXAMPLES

put the partNumber of bg btn "StackKit"

put the partNumber of bg fld "Card Title"

set the partNumber of button "Apple Event Primer" to 1

-- sends that object back

DESCRIPTION

The partNumber property returns a number representing the order in which a
button or field was placed in its enclosing object. For example, the order of
buttons and fields within a card might be card field 1, card field 2, card button
1, card field 3. Even though the number of card button 1 is 1, it’s actually in the
third position within its enclosing object.

You can use partNumber to reset the ordering of parts within a background or
card. A smaller number than the object’s original partNumber sends the object
back, and a larger number brings it forward.
444 PartNumber

C H A P T E R 1 2

Properties
Pattern 12

APPLIES TO

Painting environment

SYNTAX

set [the] pattern to number

Number is an expression that yields a positive integer in the range 1 to 40,
each representing a pattern in the Patterns palette. The patterns are shown in
Figure 12-3.

EXAMPLES

set pattern to 12

put the pattern

DESCRIPTION

You use the pattern property to determine or change the current pattern used
to fill shapes (including Paint text) and to paint with the Brush tool.

Figure 12-3 Patterns palette and pattern numbers

40

30

20

10

39

29

19

9

3828

18

8

37

27

17

7

36

26

16

6

35

25

15

5

34

24

14

4

33

23

13

3

32

22

12

2

31

21

11

1

Pattern 445

C H A P T E R 1 2

Properties
The pattern numbers correspond to the 40 positions in the Patterns palette, not
to a specific pattern.

NOTE

You normally set the pattern property from the Patterns palette. You can edit
a pattern by double-clicking it on the Patterns palette.

PolySides 12

APPLIES TO

Painting environment

SYNTAX

set [the] polySides to number

Number is an expression that yields a positive integer between 3 and 50. This
integer is the number of sides in the polygon.

EXAMPLE

set polySides to 12

DESCRIPTION

You use the polySides property to determine or to change the number of
sides of the polygon created by the Regular Polygon tool. The default value is 4.

If you set the value of polySides to a number lower than 3 or higher than 50,
it automatically reverts to 3 or 50, respectively. If you choose the circle in the
Polygon Sides dialog box, the setting becomes 0.

NOTE

You normally choose the Polygon Sides setting from a dialog box invoked by
choosing Polygon Sides from the Options menu or by double-clicking the
Regular Polygon tool.
446 PolySides

C H A P T E R 1 2

Properties
PowerKeys 12

APPLIES TO

Global environment

SYNTAX

set powerKeys to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set powerKeys to true

set powerKeys to false

DESCRIPTION

You use the powerKeys property to provide keyboard shortcuts for painting
actions. The availability of power keys is usually set on the User Preferences
card of the Home stack.

The default setting is determined at startup and resume time by the setting on
the User Preferences card of the Home stack.

NOTE

Setting powerKeys to true in a script puts a checkmark next to the Power
Keys command in the Options menu and changes the setting on the User
Preferences card.
PowerKeys 447

C H A P T E R 1 2

Properties
PrintMargins 12

APPLIES TO

Global environment

SYNTAX

set [the] printMargins to rectangle

Rectangle is an expression that yields two points, reported as four positive
integers separated by commas.

EXAMPLES

set the printMargins to 78,78,340,440

the printMargins -- puts current margins in Msg box

DESCRIPTION

You use the printMargins property to determine or change the current
margin of the print area to be used when printing an expression. It may
also affect page margins when printing a field. The default value for the
printMargins property is 0,0,0,0. The value of the printMargins property
represents the top-left and bottom-right corners of the printing area.

NOTE

See also the printTextAlign, printTextFont, printTextHeight,
printTextSize, and printTextStyle properties described in this
chapter and the print and reset printing commands in Chapter 10.
448 PrintMargins

C H A P T E R 1 2

Properties
PrintTextAlign 12

APPLIES TO

Global environment

SYNTAX

set [the] printTextAlign to alignment

Alignment is an expression that yields right, left, or center.

EXAMPLES

set the printTextAlign to Right

the printTextAlign -- puts current alignment in Msg box

DESCRIPTION

You use the printTextAlign property to determine or change the current
alignment to be used when printing the contents of a variable or when you
want to modify the text alignment in the header of a print report job. The
default value for the printTextAlign property is left.

NOTE

See also the printMargins, printTextFont, printTextHeight,
printTextSize, and printTextStyle properties described in this
chapter and the print and reset printing commands in Chapter 10.
PrintTextAlign 449

C H A P T E R 1 2

Properties
PrintTextFont 12

APPLIES TO

Global environment

SYNTAX

set [the] printTextFont to font

Font is an expression that yields a valid font name in the current Macintosh
system or the name of a font in a font resource installed in HyperCard or in the
current stack.

EXAMPLES

set the printTextFont to "Palatino"

the printTextFont -- puts current font in Msg box

DESCRIPTION

You use the printTextFont property to determine or change the current font
to be used when printing the contents of a variable or when you want to
modify the font used in the header of a print report job. The default value for
the printTextFont property is Geneva.

NOTE

See also the printMargins, printTextAlign, printTextFont,
printTextSize, and printTextStyle properties described in this
chapter and the print and reset printing commands in Chapter 10.
450 PrintTextFont

C H A P T E R 1 2

Properties
PrintTextHeight 12

APPLIES TO

Global environment

SYNTAX

set [the] printTextHeight to number

Number is an expression that yields a valid line height for a font in the current
Macintosh system or a font in a font resource installed in HyperCard or in the
current stack.

EXAMPLES

set the printTextHeight to 16

the printTextHeight -- puts current line height in Msg box

DESCRIPTION

You use the printTextHeight property to determine or change the space
between baselines of text to be used when printing the contents of a variable or
when you want to modify the line height of the text in the header of a print
report job. The default value for the printTextHeight property is 13.

NOTE

See also the printMargins, printTextAlign, printTextFont,
printTextSize, and printTextStyle properties described in this
chapter and the print and reset printing commands in Chapter 10.
PrintTextHeight 451

C H A P T E R 1 2

Properties
PrintTextSize 12

APPLIES TO

Global environment

SYNTAX

set [the] printTextSize to number

Number is an expression that yields an integer that represents a valid font size
in the current Macintosh system or the size of a font in a font resource installed
in HyperCard or in the current stack.

EXAMPLES

set the printTextSize to 12

the printTextSize -- puts current text size in Msg box

DESCRIPTION

You use the printTextSize property to determine or change the current size
of the font when printing the contents of a variable or when you want to
modify the size of the text in the header of a print report job. The default value
for the printTextSize property is 10.

SCRIPT

This script sets some of the printing properties and prints the contents of card
field 1, which is put in the variable PJob:

on printField

put card field 1 into PJob

set the printTextFont to "New York"

set the printTextStyle to "Outline"

set the printTextSize to "12"

print PJob

end printField
452 PrintTextSize

C H A P T E R 1 2

Properties
NOTE

See also the printMargins, printTextAlign, printTextFont,
printTextHeight, and printTextStyle properties described in this
chapter and the print and reset printing commands in Chapter 10.

PrintTextStyle 12

APPLIES TO

Global environment

SYNTAX

set [the] printTextStyle to style

Style is an expression that yields a valid font style in the current Macintosh
system or the style of a font in a font resource installed in HyperCard or in the
current stack. Valid HyperCard font styles are bold, condense, extend,
italic, outline, plain, and underline.

EXAMPLES

set the printTextStyle to bold

the printTextStyle -- puts current font style in Msg box

DESCRIPTION

You use the printTextStyle property to determine or change the current
style of the font when printing the contents of a variable or when you want to
modify the style of the text in the header of a print report job. The default value
for the printTextStyle property is plain. The group style that is available
in the HyperCard Style menu does not apply to printing.

NOTE

See also the printMargins, printTextAlign, printTextFont,
printTextHeight, and printTextSize properties described in this
chapter and the print and reset printing commands in Chapter 10.
PrintTextStyle 453

C H A P T E R 1 2

Properties
Rect 12

APPLIES TO

Variable and message watcher windows, picture windows, card windows,
script windows

SYNTAX

set rect of window variableWatcher to location
set rect of window name to location

VariableWatcher is an expression that yields the name of a variable watcher
window. Location is an expression that yields two points, reported as four
positive integers separated by commas. Name is an expression that yields the
name of a picture or stack window.

EXAMPLES

set rect of window "Variable Watcher" to "0,0,168,185"

put rect of window "MyWatcher" into msg

DESCRIPTION

The rect property is two points, reported as four integers separated by
commas. You use the rect property to determine or change the size of
the variable watcher window.

The points represent the rectangle’s top-left (horizontal and vertical) and
bottom-right (horizontal and vertical) corner offsets in pixels, respectively, from
the top-left corner of the variable watcher window. The first point is always 0,0,
and the second point is the offset from the first point.

NOTES

Rect is also the abbreviated form of the rectangle property and works on all
of the objects and windows that the rectangle property works on.
454 Rect

C H A P T E R 1 2

Properties
Properties that work on HyperCard’s built-in external windows may not work
on custom external windows. It is the responsibility of the creator of the
custom window to provide support for HyperTalk external window properties.
See also the variableWatcher, hBarLoc, and vBarLoc properties in this
chapter.

Rectangle 12

APPLIES TO

Buttons, cards, fields, menu bar, windows

SYNTAX

set [the] rect[angle] of object to location

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
scroll window or window "scroll"
window "Fatbits"

message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

window stackName
menubar

Location is an expression that yields two points, reported as four positive
integers separated by commas. StackName is the name of a stack.
Rectangle 455

C H A P T E R 1 2

Properties
EXAMPLES

put rectangle of menubar

set the rectangle of field 4 to 23,45,68,85

put rectangle of field "Sweet" into msg

put the rect of message box -- puts h,v,h,v into Msg

set rect of card window to 64,81,576,441

set the rect of this card to 0,0,512,360

DESCRIPTION

The rectangle property is two points, reported as four integers separated by
commas. You use the rectangle property to set or determine the size of
buttons, fields, and windows. This property is a read-only property for the
Message box, Tools palette, Patterns palette, Scroll window, and menu bar.

The points represent the rectangle’s top-left (horizontal and vertical) and
bottom-right (horizontal and vertical) corner offsets in pixels, respectively, from
the top-left corner of the card. The offsets for card windows and menu bar
measure from the top-left corner of the screen.

You can set either of the rectangle points of a field or button beyond the
boundaries of the card rectangle, putting the field or button out of view
until you reset its coordinates through HyperTalk.

You can set the bottom-right corner location of a button or field to a value
smaller than the top-left corner location, effectively causing the button or
field to disappear. If you set a field to a size smaller than the minimum
(12 by 12 pixels) but large enough to see, HyperCard resets it to the minimum
size when you click it with the corresponding tool.

You can also change a button or field rectangle by dragging the top-left or
bottom-right corner of the button or field with the appropriate tool selected
(Button or Field).
456 Rectangle

C H A P T E R 1 2

Properties
SCRIPT

The following example handler, placed in a button script, is invoked when
you click the button. It waits until you move the pointer outside the button
rectangle, then beeps when you move the pointer back inside the button
rectangle:

on mouseUp

wait until the mouseLoc is not within rect of me

repeat until the mouseLoc is within rect of me

set cursor to busy -- spin beach ball while we wait

end repeat

beep

end mouseUp

NOTES

The rectangle property can be abbreviated rect. The four integers that
make up the rectangle property can also be changed individually and in
various combinations. See the descriptions of bottom, bottomRight,
height, left, right, top, topLeft, and width in this chapter. These are
known collectively as rectangle properties and are summarized in Table 12-6.

The rectangle property cannot be set for palettes or the built-in Message
Watcher.

The rectangle property of the menu bar cannot be set.

The operator within pertains to any rectangle, such as the rectangles of
buttons and fields, the Tools and Patterns palettes, the Message box, and
the screen on which the HyperCard menu bar is displayed. The syntax of
an expression in which within is valid is the following:

location is [not] within rectangle

Location is an expression that yields a list of two integers separated by a
comma, and rectangle is an expression that yields a list of four integers
separated by commas.
Rectangle 457

C H A P T E R 1 2

Properties
When you resize a card window with the rectangle property, a sizeWindow
system message is sent. The sizeWindow message is also sent when you zoom
a card window by clicking the zoom box or when you change its size with the
Scroll window (Command-E).

If the location property of a card window changes when you set the
rectangle property, a moveWindow system message is sent. The
moveWindow message is also sent when you drag the window to a new
location, zoom it in or out, or show the window at a new location with the
show command.

See also the location property, earlier in this chapter.

ReportTemplates 12

APPLIES TO

Stacks

SYNTAX

put [the] reportTemplates of stack stackName

StackName is an expression that yields the name of a stack.

EXAMPLES

put reportTemplates of stack "People" into field 2

get the reportTemplates of stack "Forecast"

DESCRIPTION

The reportTemplates property is a read-only property of stacks. It returns a
return-delimited list of the names of the report templates for the specified stack.
458 ReportTemplates

C H A P T E R 1 2

Properties
NOTES

Report templates are created and saved for a stack with the Print Report
command in the File menu. See the HyperCard Reference for more information
about creating report templates.

See also the open report printing command in Chapter 10.

Right 12

APPLIES TO

Buttons, fields, windows, menu bar

SYNTAX

set [the] right of object to number

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
scroll window or window "scroll"
window "Fatbits"

message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

window stackName
menubar

Number yields an integer that is the horizontal offset in pixels from the left side
of the card to the right side of the object. When the object is the card window,
the offset is relative to the left side of the screen. StackName is an expression
that yields the name of an open stack.
Right 459

C H A P T E R 1 2

Properties
EXAMPLES

set right of button 2 to 165

put right of button 2

put the right of the card window

set right of pattern window to 100

DESCRIPTION

You use the right property to determine or change the value of item 3 of the
rectangle property (left, top, right, bottom) when applied to the specified
object or window.

NOTE

The right of the menu bar is a read-only property.

See also the rectangle property, earlier in this chapter.

Script 12

APPLIES TO

Backgrounds, buttons, cards, fields, stacks

SYNTAX

set [the] script of object to scriptText

Object is the current background, button, card, field, or stack or any background,
button, card, field, or stack name currently available to HyperCard. ScriptText
yields any valid container that contains a script, or yields a text string that is
a script.
460 Script

C H A P T E R 1 2

Properties
EXAMPLES

set script of field "Effect" of first card to empty

set the script of second bkgnd to empty

set the script of third card to field 3

put the script of stack "home" into field "Home Script"

DESCRIPTION

You use the script property to retrieve or to replace the script of the specified
object. The value of the script property is the text string composing the script
of the specified stack.

When you set the script property using the set command, you replace
it entirely.

NOTE

Scripts are normally edited using the HyperCard script editor described in
Chapter 3, “The Scripting Environment.”

ScriptEditor 12

APPLIES TO

Scripting environment

SYNTAX

set [the] scriptEditor to name

Name is an expression that yields a valid script editor XCMD name.
ScriptEditor 461

C H A P T E R 1 2

Properties
EXAMPLES

set the scriptEditor to "MyEditor"

the scriptEditor -- puts current script editor in Msg box

put the scriptEditor after field "Editor in Use"

DESCRIPTION

You use the scriptEditor property to determine or change the current script
editor. The default value for the scriptEditor property is scriptEditor,
the name of the built-in script editor.

The built-in script editor is a HyperCard XCMD. It can be replaced with a
custom script editor XCMD by setting the scriptEditor property to the
name of a script editor XCMD.

NOTES

See also the scriptTextFont and scriptTextSize properties described
later in this chapter and the description of the scripting environment in
Chapter 3.

For more information about creating a custom script editor XCMD, see
Appendix A, “External Commands and Functions.”

ScriptingLanguage 12

APPLIES TO

Buttons, fields, parts, cards, background, stacks, global environment

SYNTAX

set the scriptingLanguage [of object] to scriptingLanguage

Object is any background, button, card, field, part, or stack name currently
available to HyperCard. ScriptingLanguage is a scripting language installed on
the current system.
462 ScriptingLanguage

C H A P T E R 1 2

Properties
EXAMPLE

put the scriptingLanguage of this cd

set the scriptingLanguage to AppleScript

DESCRIPTION

The scriptingLanguage property lets you set any of the HyperCard objects
to accept scripts written in the scripting language of your choice, among those
available in your system. The script editor has a pop-up menu that displays
the available scripting languages.

NOTE

You can use the unary operator there is a to test for the existence of a
scripting language capability on the system where HyperCard is running,
using the syntax

there is a scriptingLanguage scriptingLanguage

The statement returns a Boolean value.

ScriptTextFont 12

APPLIES TO

Scripting environment

SYNTAX

set [the] scriptTextFont to font

Font is an expression that yields a valid font name in the current
Macintosh system.
ScriptTextFont 463

C H A P T E R 1 2

Properties
EXAMPLES

set the scriptTextFont to "Palatino"

the scriptTextFont -- puts current script editor

-- font in the Msg box

DESCRIPTION

You use the scriptTextFont property to determine or change the current
font in the script editor. The default value for the scriptTextFont property
is monaco.

NOTES

You can also set the scriptTextFont property in the dialog box invoked by
typing se into the Message box, using a handler provided in the standard
Home stack script.

See also the scriptEditor and scriptTextSize properties described in
this chapter and the description of the scripting environment in Chapter 3.

ScriptTextSize 12

APPLIES TO

Scripting environment

SYNTAX

set [the] scriptTextSize to number

Number is an expression that yields an integer that represents a valid font size
in the current Macintosh system.

EXAMPLES

set the scriptTextSize to 12

the scriptTextSize -- puts current script editor

-- font size in the Msg box
464 ScriptTextSize

C H A P T E R 1 2

Properties
DESCRIPTION

You use the scriptTextSize property to determine or change the current
size of the font used in the script editor. The default value for the
scriptTextSize property is 9.

NOTES

You can also set the scriptTextSize property in the dialog box invoked by
typing se into the Message box.

See also the scriptEditor and scriptTextFont properties described in
this chapter and the description of the scripting environment in Chapter 3.

Scroll (fields) 12

APPLIES TO

Fields

SYNTAX

set [the] scroll of scrollingField to number

ScrollingField is any valid card or background scrolling field. Number is an
expression that yields an integer representing the number of pixels that have
scrolled above the top of the field rectangle.

EXAMPLES

set the scroll of field "Clues" to 0

put the scroll of field 1 div the textHeight of field 1¬

into linesAbove

DESCRIPTION

You use the scroll property to determine or to change how much material is
hidden above the top of a scrolling field’s rectangle. Figure 12-4 illustrates the
scroll property.
Scroll (fields) 465

C H A P T E R 1 2

Properties
The value of the scroll property is 0 if the top of the field is visible. The
number of text lines to which the scroll property correlates depends on
the textHeight property of the field.

NOTES

You normally control how much material is above the top of the field rectangle
by clicking or dragging in the scroll bar at the right side of the field.

If you try to get or set the scroll property of a nonscrolling field, you get an
error dialog box.

Figure 12-4 The scroll property

Scroll (windows) 12

APPLIES TO

Card windows, picture windows

The scroll.

Its value is

the vertical

distance

in pixels.

466 Scroll (windows)

C H A P T E R 1 2

Properties
SYNTAX

set [the] scroll of [the] card window to point
set [the] scroll of window to point

Point is an expression that yields two comma-separated positive integers that
represent the point on the card or picture to be displayed at the top-left corner
of the window. Window is an expression that yields a reference to a window
created with the picture command or to a card window.

EXAMPLES

set the scroll of the card window to 45,60

put the scroll of card window into scrollVar

set the scroll of window "Home" to "0,100"

DESCRIPTION

You use the scroll property to determine or change the horizontal and
vertical scroll (position) of the card window over the current card or the
window over the current picture. This property allows you to scroll over a card
that is larger than the area of the card window region. The default position of
the scroll property for a card window is 0,0.

NOTES

The scroll property has no effect on card windows that are the same size as
the card. Card windows can’t be larger than the card. You can reset the value of
the scroll property to reposition the card window with the Scroll command
in the Go menu. You cannot set the scroll property of a window that is
displaying an inactive stack.

See also the rectangle property in this chapter and the picture command
in Chapter 10.
Scroll (windows) 467

C H A P T E R 1 2

Properties
SharedHilite 12

APPLIES TO

Background buttons

SYNTAX

set [the] sharedHilite of button to boolean

Button is an expression that yields any valid background button descriptor.
Boolean is an expression that yields either true or false.

EXAMPLES

set sharedHilite of bkgnd button "Flip card" to true

put the sharedHilite of bkgnd button 2 into msg

DESCRIPTION

You use the sharedHilite property to determine or to change whether the
specified background button shares the same highlight state on all cards of
that background. The default value for new background buttons is true.
When sharedHilite is set to true, the background button has the same
highlight state on all cards of that background.

NOTES

Background buttons have two sets of highlight states, one you see when the
button’s sharedHilite is true and one you see when its sharedHilite is
false. If you have a background button with its sharedHilite set to false,
that button on each of those cards of that background can have a different
highlight state (determined by the hilite property). If you change the
sharedHilite property to true on that background button, the highlight
state of that button on all of the cards of that background is set to false (not
highlighted). The unshared highlight states of that background button are not
lost, however. The unshared highlight states are stored separately with each
card and can be returned to their previous values by setting the
sharedHilite property back to false.
468 SharedHilite

C H A P T E R 1 2

Properties
Background buttons copied and pasted to other cards have the same
sharedHilite value as the button originally copied.

You can also change the sharedHilite property by clicking the Shared Hilite
checkbox in the Button Info dialog box. See also the descriptions of the
autoHilite and hilite properties, earlier in this chapter.

SharedText 12

APPLIES TO

Background fields

SYNTAX

set [the] sharedText of field to boolean

Field is an expression that yields any valid background field descriptor. Boolean
is an expression that yields either true or false.

EXAMPLE

set the sharedText of field 3 to true

DESCRIPTION

You use the sharedText property to determine or to change whether the text
in the specified background field appears on each card of that background.
When the value of sharedText is true, the text in the specified background
field is shared by all cards of that background. When it is false, the text can
be different in the specified field on all the cards of that background. The
default value of the sharedText property for new background fields is false.

NOTES

A background field with its sharedText property set to true effectively has
its dontSearch property set to true. The find command excludes the field
from any searches.
SharedText 469

C H A P T E R 1 2

Properties
If you change the sharedText property to true on a background field that
previously had the sharedText property set to false (unshared text), no text
is displayed in that field on any of the cards of that background. The previous
unshared text of that background field on each of the cards with that back-
ground is not lost, however. The unshared text is stored separately with each
card and can be redisplayed in the background field of those cards with that
background by setting the sharedText property back to false.

You can also change sharedText by clicking the Shared Text checkbox in the
Field Info dialog box.

ShowLines 12

APPLIES TO

Fields

SYNTAX

set [the] showLines of field to boolean

Field is an expression that yields any valid field descriptor. Boolean is an
expression that yields either true or false.

EXAMPLES

set the showLines of field four to true

put the showLines of card field 1 into msg

DESCRIPTION

You use the showLines property to determine or to change whether the text
baselines in the card or background field show or not. The default value of the
showLines property is false (lines don’t show).
470 ShowLines

C H A P T E R 1 2

Properties
NOTES

You can also change showLines by clicking in the Show Lines checkbox
in the Field Info dialog box. The showLines property does not apply to
scrolling fields.

ShowName 12

APPLIES TO

Buttons

SYNTAX

set [the] showName of button to boolean

Button is an expression that yields any valid background or card button
descriptor. Boolean is an expression that yields either true or false.

EXAMPLES

set showName of button "You who" to true

put the showName of button "You who" into msg

DESCRIPTION

You use the showName property to determine or to change whether the name
of the specified button (if it has one) is displayed in its rectangle on the screen.
Buttons created with the New Button command have showName set to true.
Buttons created by Command-dragging the button tool have their showName
property initially set to false.

NOTE

You can also change this property by clicking the Show Name checkbox in the
Button Info dialog box.
ShowName 471

C H A P T E R 1 2

Properties
ShowPict 12

APPLIES TO

Cards, backgrounds

SYNTAX

set [the] showPict of object to boolean

Object is an expression that yields any valid background or card descriptor.
Boolean is an expression that yields either true or false.

EXAMPLES

set showPict of next card to false

set the showPict of this bkgnd to false

put showPict of bkgnd 3

DESCRIPTION

You use the showPict property to determine or to change whether the picture
on the specified card or background (if it has one) is displayed on the screen.
The default value is true (displayed).

Setting the showPict property of a card to false is the same as hiding it with
the picture form of the hide command. Setting it to true is the same as
showing it with the picture form of the show command.

NOTES

When the showPict property of the current background or card is false and
you try to use a Paint tool on it manually, a dialog box appears asking if you
want to make the picture visible; clicking OK sets the showPict property to
true and the picture appears. You can draw on hidden pictures from a script.

See also the show and hide commands in Chapter 10.
472 ShowPict

C H A P T E R 1 2

Properties
Size 12

APPLIES TO

Stacks

SYNTAX

put [the] size of stack stackName [into container]

StackName is the current stack, or an expression that yields any stack name
currently available to HyperCard. Container is an expression that yields any
valid container.

EXAMPLES

get size of stack "Home"

put size of stack "Home" into field "Home Size"

DESCRIPTION

You use the size property to determine the size of the specified stack in bytes.

SCRIPT

The following handler examines a stack to see if it fits on an 800 KB disk:

on closeStack

if size of this stack > 795000

then answer "This stack won't fit on an 800 KB disk."

pass closeStack

end closeStack

NOTES

The minimum stack size is 4096 bytes; the theoretical maximum is
512 MB.
Size 473

C H A P T E R 1 2

Properties
The size property can’t be changed with the set command; it’s changed only
by adding things to and deleting things from the stack (you must then compact
the stack for any deletions to affect its size).

StacksInUse 12

APPLIES TO

Global environment

SYNTAX

put [the] stacksInUse [into container]

Container is an expression that yields any valid container.

EXAMPLES

the stacksInUse -- puts stack list in Msg box

put the stacksInUse into field "Message Path"

DESCRIPTION

You use the stacksInUse property to determine the stacks that have been
added to the current message-passing hierarchy. StacksInUse returns a
return-delimited list of the stacks in the current message-passing hierarchy. The
stacks are listed in the order in which they are currently placed in the hierarchy.

The stacksInUse property can’t be changed with the set command; the
stacks in the current message-passing hierarchy can only be changed with the
start using and stop using commands.

NOTES

See also the start using and stop using commands in Chapter 10 and the
description of the message-passing hierarchy in Chapter 4.

If the message-passing hierarchy hasn’t been altered with the start using
command, stacksInUse returns empty.
474 StacksInUse

C H A P T E R 1 2

Properties
Style 12

APPLIES TO

Buttons, fields

SYNTAX

set [the] style of object to objectStyle

Object is an expression that yields any valid button or field descriptor.
ObjectStyle is an expression that yields one of the valid field or button
styles. Button styles are transparent, opaque, rectangle, roundRect,
shadow, checkBox, radioButton, standard, default, oval, and popup.
Field styles are transparent, opaque, rectangle, shadow, and
scrolling.

EXAMPLES

set the style of field 1 to scrolling

set style of button "You who" to roundRect

put the style of button 3 into msg

set the style of field 2 of card 4 to transparent

DESCRIPTION

You use the style property to determine or to change the style of any button
or field in the current stack.

NOTE

You can also change the button or field style by using the Style pop-up menu
in the Button or Field Info dialog box. Some useful peculiarities of radio
buttons and checkbox buttons are described under the hilite property, in
this chapter.
Style 475

C H A P T E R 1 2

Properties
Suspended 12

APPLIES TO

Global environment

SYNTAX

the suspended

DESCRIPTION

The suspended property returns whether or not HyperCard is currently
running in the background under MultiFinder or System 7. A user can switch
from HyperCard to another program while a handler is running and scripts
will continue to run in the background.

Use the suspended property in a handler to alter the handler’s behavior if it’s
running in the background—for example, to avoid displaying ask or answer
dialog boxes.

HyperCard gives time to the system (and thus to other programs)

■ after it executes each HyperTalk statement in a handler,

■ whenever it rotates the busy cursor (during compacting, sorting, and
printing),

■ during the execution of the show cards command and the wait command.

EXAMPLE

if not (the suspended) then

-- Show dialog when not running in background

ask file "Save as what file?"

put it into theFileName

else

--We're in the background, use a default name

put "Untitled" into theFileName

end if
476 Suspended

C H A P T E R 1 2

Properties
TextAlign 12

APPLIES TO

Buttons, fields, painting environment

SYNTAX

set [the] textAlign [of object] to alignment

Object is an expression that yields a button or field descriptor. Alignment is an
expression that yields one of the words left, right, and center.

EXAMPLES

set the textAlign of field 1 to left

set textAlign to center -- for paint text

DESCRIPTION

You use the textAlign property to determine or to change the way characters
are aligned around the insertion point as you type them. This property applies
to Paint text, button name text, and the text in fields. The default value of
the textAlign property is left for fields and Paint text; the default value is
center for buttons.

NOTES

For Paint text, you can also set the textAlign property from the Font dialog
box, which is invoked by choosing Text Style from the Edit menu, by double-
clicking the Paint Text tool, or by pressing Command-T when the Paint Text
tool is selected.

For buttons or fields, you can also set the textAlign property by choosing
one of the text alignment options from the Text Properties dialog box. To
invoke the Text Properties dialog box, you click the Text Style button in the
Button or Field Info dialog box, choose Text Style from the Edit menu, or press
Command-T when a button or field is selected.

See also the printTextAlign property, earlier in this chapter.
TextAlign 477

C H A P T E R 1 2

Properties
TextArrows 12

APPLIES TO

Global environment

SYNTAX

set textArrows to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set textArrows to true

set textArrows to false

DESCRIPTION

The textArrows property alters the function of the Right Arrow, Left Arrow,
Up Arrow, and Down Arrow keys.

The default value of the textArrows property is false. When the
textArrows property is false, the Right Arrow and Left Arrow keys take
you to the next and previous cards in the stack, respectively, and the Up Arrow
and Down Arrow keys take you forward and backward, respectively, through
the cards you’ve already viewed.

When the textArrows property is true, the arrow keys move the text
insertion point around in a field that you’ve opened for text editing or in the
Message box if you’ve clicked it. In the Message box, the Up Arrow and Down
Arrow keys move the insertion point to the beginning and end of the line of
text, respectively.

NOTE

When the textArrows property is true, holding down the Option key while
you press the arrow keys produces the same effect as pressing them alone
when textArrows is false.
478 TextArrows

C H A P T E R 1 2

Properties
TextFont 12

APPLIES TO

Buttons, fields, painting environment

SYNTAX

set [the] textFont [of chunk] of field to font
set [the] textFont [of object] to font

Chunk is any valid chunk expression. Field is an expression that yields a field
descriptor. Object is an expression that yields a button or field descriptor.
Font is an expression that yields one of the font names available in your
Macintosh system.

EXAMPLES

set textFont of field 1 to "courier"

set the textFont of bkgnd button 3 to helvetica

set textFont to Palatino -- for paint text

DESCRIPTION

You use the textFont property to determine or to change the font in which
text appears. This property applies to button name text, the text in fields, and
Paint text. The default value of the textFont property is geneva for fields
and Paint text; the default value for buttons is chicago.

NOTES

For Paint text, you can also set the textFont property from the Font dialog
box, which is invoked by choosing Text Style from the Edit menu, by
double-clicking the Paint Text tool, or by pressing Command-T while using a
Paint tool.

For buttons or fields, you can also set this property by choosing one of the font
names from the Font menu or from the Font dialog box. To invoke the Font
TextFont 479

C H A P T E R 1 2

Properties
dialog box, you click the Font button in the Field or Button Info dialog box,
choose Text Style from the Edit menu, or press Command-T while a button or
field is selected.

If you reset the default font for a field with the textFont property, any text
that is already in that field is updated. If you try to set the textFont property
to a font that doesn’t exist, HyperCard sets it to geneva.

If different fonts are in a chunk of a field, textFont returns the result mixed.

See also the selectedChunk and selectedLine functions in Chapter 11,
and the printTextFont and scriptTextFont properties, earlier in
this chapter.

TextHeight 12

APPLIES TO

Buttons, fields, painting environment

SYNTAX

set [the] textHeight [of object] to number

Object is an expression that yields a button or field descriptor. Number is an
expression that yields any positive integer.

EXAMPLES

set textHeight of field 1 to 20

set textHeight to 20 -- for paint text

DESCRIPTION

You use the textHeight property to determine or to change the space
between baselines of button text, field text, and Paint text. The value of
the textHeight property is in pixels.
480 TextHeight

C H A P T E R 1 2

Properties
NOTES

For Paint text, you can also set the textHeight property in the Line Height
box of the Font dialog box, which is invoked by choosing Text Style from the
Edit menu, by double-clicking the Paint Text tool, or by pressing Command-T
when a Paint tool is selected.

For buttons or fields, you can also set this property by typing the line height in
the Line Height box in the Font dialog box. To invoke the Font dialog box, you
click the Font button in the Field or Button Info dialog box, choose Text Style
from the Edit menu when the field or button is selected, or press Command-T
when a button or field is selected.

Although you can set this property for a button, it is meaningless because
button-name text has only one line. See also the fixedLineHeight and
printTextHeight properties described earlier in this chapter.

TextSize 12

APPLIES TO

Buttons, fields, painting environment

SYNTAX

set [the] textSize [of chunk] of field to number
set [the] textSize [of object] to number

Chunk is any valid chunk expression. Field is an expression that yields a field
descriptor. Object is an expression that yields a button or field descriptor.
Number is an expression that yields any positive integer.

EXAMPLES

set textSize of field 1 to 18

set the textSize of word 3 of line 4 to 12

set textSize to 18 -- for paint text
TextSize 481

C H A P T E R 1 2

Properties
DESCRIPTION

You use the textSize property to determine or to change the font size in
which text appears on the screen. The textSize property applies to button
text, text in fields, and Paint text. The value of the textSize property is in
pixels. The default value of the textSize property is 12.

Although you can use any integer for textSize, exact sizes of fonts available
look best. Fonts available are in the Macintosh system or in the font resources
in the current stack, a stack in use, the Home stack, or HyperCard.

NOTES

For Paint text, you can also set the textSize property from the Font dialog
box, which is invoked by choosing Text Style from the Edit menu, by double-
clicking the Paint Text tool, or by pressing Command-T while using a Paint tool.

For buttons or fields, you can also set this property from the Style menu or by
selecting one of the font sizes shown or typing directly in the size box in the
Font dialog box. To invoke the Font dialog box, you click the Font button in
the Field or Button Info dialog box, choose Text Style from the Edit menu
while a button or field is selected, or press Command-T while a button or field
is selected.

If you reset the default text size for a field with the textSize property, any
text that is already in that field is updated.

If different sizes of text are in a text selection, textSize returns the
result mixed.

See also the printTextSize and scriptTextSize properties, earlier in
this chapter.

TextStyle (buttons, fields, painting environment) 12

APPLIES TO

Buttons, fields, painting environment
482 TextStyle (buttons, fields, painting environment)

C H A P T E R 1 2

Properties
SYNTAX

set [the] textStyle [of chunk] of field to style
set [the] textStyle [of object] to style

Chunk is any valid chunk expression. Field is an expression that yields a field
descriptor. Object is an expression that yields a button or field descriptor. Style
is an expression that yields a value of plain or any combination of the
following: bold, italic, underline, outline, shadow, condensed,
extend, and group (separated by commas).

EXAMPLES

set textStyle to plain -- for paint text

set textStyle to bold,italic,underline -- for paint text

set textStyle of field 1 to plain

set the textStyle of line 1 of field 1 to bold,group

set the textStyle of the first card field to bold

DESCRIPTION

You use the textStyle property to determine or to change the style in which
text appears. The textStyle property applies to button text, text in fields, and
Paint text. Its default value is plain. If you use plain in combination with
any of the other values, the other values override plain.

NOTES

You use the group text style to group characters, words, or lines together so
they are seen as a unit by HyperTalk. The group style does not apply to Paint
text or button text.

Group text is supported through the mouseDown and mouseUp messages that
are sent to locked fields when clicked and through three functions:
clickChunk, clickLine, and clickText.

Here’s an example in which you might use group text. You have a field with a
list containing George Washington, King George, and George Bush, and you
want to display more information about the appropriate George on the screen
when his name is clicked. If these three phrases are set to plain text, clicking
TextStyle (buttons, fields, painting environment) 483

C H A P T E R 1 2

Properties
“George” wouldn’t be specific enough, because HyperTalk’s clickText
function would only return the single word George, without specifying more
information about which George was clicked. If you set the style of each of the
phrases George Bush, George Washington, and King George to group, then
when the user clicks any word in the group phrase, the person’s full name is
returned and can be analyzed. If the user clicks either George or Bush in the
phrase George Bush, the whole phrase—not just the word the user clicked—is
returned by the clickText function.

For Paint text, you can also set the textStyle property from the Font dialog
box, which is invoked by choosing Text Style from the Edit menu, by
double-clicking the Paint Text tool, or by pressing Command-T while using a
Paint tool.

For buttons or fields, you can also set the textStyle property by choosing a
style from the Style menu or in the Font dialog box. To invoke the Font dialog
box, you click the Font button in the Field or Button Info dialog box, choose
Text Style from the Edit menu, or press Command-T while a button or field
is selected.

If you reset the textStyle property for a field, any text that is already in that
field is updated to the specified style.

If different styles of text are within a text selection, textStyle returns the
result mixed.

See also the printTextStyle property, earlier in this chapter, and the
clickChunk, clickLine, clickText, selectedChunk, and
selectedLine functions in Chapter 11.

TextStyle (menu items) 12

APPLIES TO

Menu items
484 TextStyle (menu items)

C H A P T E R 1 2

Properties
SYNTAX

set [the] textStyle of menuItem of menu to style

MenuItem is an expression that yields a menu item descriptor. Menu is an
expression that yields a menu descriptor. Style is an expression that yields
a value of plain or any combination of the following: bold, italic,
underline, outline, shadow, condensed, and extend (separated
by commas).

EXAMPLES

set the textStyle of menuItem "Get Back" of ¬

menu "Direction" to "outline"

put the textStyle of menuItem "Get Back" of ¬

menu "Direction"

DESCRIPTION

You use the textStyle property to set or determine the text style of a
specified menu item. The default value for the textStyle property is plain.

The textStyle property could be used with the checkMark property to
indicate that a menu item has been chosen.

If you try to modify or determine the textStyle property of a menu item that
does not exist, HyperCard displays a “No such menu item” dialog box.

NOTES

The text style of the menu items in the Font and Tools menu cannot be altered
with the textStyle property.

See also the printTextStyle property, earlier in this chapter, and the
create menu and put commands in Chapter 10, “Commands.”
TextStyle (menu items) 485

C H A P T E R 1 2

Properties
TitleWidth 12

APPLIES TO

Pop-up buttons

SYNTAX

set [the] titleWidth of button to number

Button is an expression that yields a valid button descriptor. Number is the
width of the title area of the button in pixels.

EXAMPLE

set the titleWidth of last button to 65

DESCRIPTION

You use the titleWidth property to determine or change the width of the
title area of a pop-up button. You can also adjust the width of the title area by
using the mouse to drag the line separating the title area and the pop-up menu.

NOTE

See also the style property, earlier in this chapter.

Top 12

APPLIES TO

Buttons, fields, windows
486 TitleWidth

C H A P T E R 1 2

Properties
SYNTAX

set [the] top of object to number

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
scroll window or window "scroll"
window "Fatbits"

message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

window stackName
menubar

Number is an expression that yields an integer that is the vertical offset in pixels
of the top of the specified object. StackName is an expression that yields the
name of an open stack.

EXAMPLES

set top of button 2 to 65

put top of button 2

set top of tool window to 10

DESCRIPTION

You use the top property to determine or change the value of item 2 of the
rectangle property (left, top, right, bottom) when applied to the specified
object or window. The top property of an object can also be set to a value off
the screen. Setting the top property of an object to a value off the screen may
make the object seem as though it is hidden.
Top 487

C H A P T E R 1 2

Properties
NOTE

See also the rectangle property, earlier in this chapter.

TopLeft 12

APPLIES TO

Buttons, fields, windows

SYNTAX

set [the] topLeft of object to point

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
scroll window or window "scroll"
window "Fatbits"

message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

window stackName
menubar

Point is an expression that yields a list of two integers separated by a comma.
Point represents the horizontal and vertical offsets, respectively, in pixels from
the top-left corner of the card to the top-left corner of the specified object.
StackName is an expression that yields the name of an open stack window.
488 TopLeft

C H A P T E R 1 2

Properties
EXAMPLES

set topLeft of bkgnd button id 23 to 64,30

put topLeft of window "scroll"

put the topLeft of tool window

set topLeft of message box to 150,75

DESCRIPTION

You use the topLeft property to determine or change items 1 and 2 of the
value of the rectangle property (left, top, right, bottom) when applied to the
specified object or window. When you change the topLeft property of an
object, the entire object moves, its width and height remaining the same.

NOTE

See also the rectangle property, earlier in this chapter.

TraceDelay 12

APPLIES TO

Global environment

SYNTAX

set [the] traceDelay to number

Number is an expression that yields 0 or a positive integer.

EXAMPLES

set traceDelay to 32

put the traceDelay
TraceDelay 489

C H A P T E R 1 2

Properties
DESCRIPTION

You use the traceDelay property to set or retrieve the value of the debugger’s
trace rate. Setting the number value changes the number of ticks HyperCard
waits between executing lines of HyperTalk while tracing. The default value for
traceDelay is 0, the fastest trace rate.

UserLevel 12

APPLIES TO

Global environment

SYNTAX

set userLevel to number

Number is an expression that yields one of the valid user-level numbers,
1 through 5.

EXAMPLE

set userLevel to 5

DESCRIPTION

You use the userLevel property to set or retrieve the value of the current
HyperCard user level. User levels give progressively more power to the user.
The levels are 1 (Browsing), 2 (Typing), 3 (Painting), 4 (Authoring), and 5
(Scripting), as explained in the HyperCard Reference.

If you set the value of userLevel to a number lower than 1 or higher than 5, it
automatically reverts to 1 or 5, respectively.

NOTES

You can invoke the Protect Stack dialog box from the File menu to impose a
limit on the user level available in a stack. In that case, setting the user level
490 UserLevel

C H A P T E R 1 2

Properties
higher than the Protect Stack limit has no effect, although it generates no error
message. On leaving the protected stack, the user level in effect when the stack
was entered is restored.

If your stack script changes the value of userLevel, be sure to restore the
original value of userLevel when your stack closes.

UserModify 12

APPLIES TO

Global environment

SYNTAX

set userModify to boolean

Boolean is an expression that yields either true or false.

EXAMPLES

set userModify to true

set userModify to false

DESCRIPTION

The userModify property is a global property pertaining to HyperCard itself.
It controls whether or not a user can type into fields or use Paint tools on a
stack that has been write-protected. A stack is write-protected under any of the
following circumstances:

■ The stack is on a CD-ROM.

■ The stack is on a file server in a folder whose access privileges are set to
Read Only.

■ The Locked box is checked in the stack’s Get Info dialog box in the Finder’s
File menu.
UserModify 491

C H A P T E R 1 2

Properties
■ The stack is on a locked disk.

■ “Can’t modify stack” is checked in the stack’s Protect Stack dialog box.

SCRIPT

The following openStack handler sets up HyperCard so that the stack can be
used, even though it is locked:

on openStack

if the cantModify of this stack is true then

set the userModify to true

end if

pass openStack

end openStack

NOTES

Changes can be made only to the level that the userLevel settings allow. Any
changes made to the stack are disregarded when the stack is closed.

See also the cantDelete and cantModify properties, earlier in this chapter.

VariableWatcher 12

APPLIES TO

Global environment

SYNTAX

set [the] variableWatcher to name

Name is an expression that yields a valid variable watcher XCMD name.
492 VariableWatcher

C H A P T E R 1 2

Properties
EXAMPLES

set variableWatcher to "MyWatcher"

put the variableWatcher

DESCRIPTION

You use the variableWatcher property to determine or to change the
current variable watcher. The default value for variableWatcher is
variableWatcher, the built-in variable watcher. You display the current
variable watcher with the show command or by setting the visible property
of the variable watcher window to true.

The built-in variable watcher is a HyperCard XCMD. It can be replaced with a
custom variable watcher XCMD by setting the variableWatcher property to
the name of a custom variable watcher XCMD.

NOTES

See also the description of the Variable Watcher in Chapter 3, “The Scripting
Environment.”

For more information about creating and calling a custom variable watcher
XCMD, see Appendix A, “External Commands and Functions.”

VBarLoc 12

APPLIES TO

Variable watcher windows

SYNTAX

set [the] vBarLoc of window "variable watcher" to number

Number is an expression that yields a positive integer that represents the offset
in pixels from the left side of the variable watcher window to the vertical bar in
the window.
VBarLoc 493

C H A P T E R 1 2

Properties
EXAMPLES

set the vBarLoc of window "variable watcher" to 123

put the vBarLoc of window "variable watcher"

DESCRIPTION

You use the vBarLoc property to determine or to change the current position
of the vertical bar in the variable watcher window. The vertical bar separates
the variable names from the actual values of the variables.

NOTES

The built-in variable watcher is a HyperCard XCMD. It can be replaced with a
custom variable watcher XCMD by setting the variableWatcher property to
the name of a variable watcher XCMD.

A custom variable watcher may or may not respond to the vBarLoc property.
It is up to the variable watcher XCMD to provide support for variable watcher
properties.

See also the description of the Variable Watcher in Chapter 3, “The Scripting
Environment,” and the hBarLoc, rect, and variableWatcher properties in
this chapter.

For more information about creating and calling a custom variable watcher
XCMD, see Appendix A, “External Commands and Functions.”

Version 12

APPLIES TO

HyperCard, stacks

SYNTAX

the [long] version [of HyperCard]

the version of stack stackName

StackName is an expression that yields a stack name.
494 Version

C H A P T E R 1 2

Properties
EXAMPLE

if the version > 1.0 then set textArrows to true

DESCRIPTION

The version property returns the version number of the HyperCard applica-
tion currently running or the versions of HyperCard that created and modified
a specified stack.

The long version returns an eight-digit number that represents the major
revision number, minor revision number, and software state (development,
alpha, beta, or final, plus the release number). Here are the values the numbers
represent:

For example, 0200600E is version 2.0 beta engineering release, and 02008000 is
version 2.0 final.

The version of stackName form returns a list of five comma-separated
eight-digit numbers. The first four of these numbers are of the form described
previously for the long version. They are, respectively the version of
HyperCard used to create this stack, the version of HyperCard that last
compacted this stack, the version of HyperCard that last modified the stack,
and the version of HyperCard that first modified the stack. The last number is
the date and time (in seconds) of the most recent save before the start of the
current session. (You can use the convert command to change the seconds
format into a date and time format.)

version xxyyzzrr

xx major revision number

yy minor revision number

zz 80 = final

60 = beta

40 = alpha

20 = development

rr release number
Version 495

C H A P T E R 1 2

Properties
Visible 12

APPLIES TO

Buttons, fields, menu bar, windows

SYNTAX

set the visible of object to boolean

Object yields one of the following:

a valid button descriptor in the current stack
a valid field descriptor in the current stack
message [box] or message [window] or window "message"
pattern window or window "patterns" (the Patterns palette)
tool window or window "tools" (the Tools palette)
window "navigator" (the Navigator palette)
scroll window or window "scroll"
window "Fatbits"

message watcher or window "message watcher"
variable watcher or window "variable watcher"
card window

window stackName
menubar

Boolean is an expression that yields either true or false. StackName is an
expression the yields the name of an open stack window.

EXAMPLES

if the visible of menubar is false

then set the visible of menubar to true

set the visible of tool window to false

set the visible of window "variable watcher" to true
496 Visible

C H A P T E R 1 2

Properties
DESCRIPTION

The visible property determines whether a button, field, menu bar, or
window is shown or hidden on the screen.

The Tools and Patterns palettes become visible when you tear them off the
menu bar; the Message box and the menu bar can be toggled between being
visible and hidden by pressing Command-M and Command–Space bar,
respectively.

SCRIPT

The script that follows could be used to show a hidden field that is used for
making notes. Create a button and a background field with the sharedText
property set to false. The script placed in the button would display a field
named Notes with the show command based on the value of the visible
property of the Notes field. It also hides the field if you click the button again:

on mouseUp -- button or field script to show a field

if the visible of bkgnd field "Notes" then

hide bkgnd field "Notes"

else

show bkgnd field "Notes"

end if

end mouseUp

The next short script makes a field disappear after it has been made visible. The
script, when placed in a locked field, sets the visible property of the field to
false when the field receives a mouseUp message. Whenever a user clicks the
visible field, it disappears:

on mouseUp -- field script to set visible property

set the visible of me to not the visible of me

end mouseUp

NOTE

See also the show and hide commands in Chapter 10.
Visible 497

C H A P T E R 1 2

Properties
WideMargins 12

APPLIES TO

Fields

SYNTAX

set [the] wideMargins of field to boolean

Field is an expression that yields a background or card field descriptor. Boolean
is an expression that yields either true or false.

EXAMPLES

set wideMargins of field "just fine" to true

the wideMargins of field 1 -- puts value in Msg box

DESCRIPTION

You use the wideMargins property to specify whether some extra space is
included at the left and right sides of each line in the field (to make the text
easier to read). The default value of wideMargins is false.

NOTE

You can also change this property by clicking the Wide Margins checkbox in
the Field Info dialog box.
498 WideMargins

C H A P T E R 1 2

Properties
Width 12

APPLIES TO

Buttons, fields, cards, windows, menu bar

SYNTAX

set [the] width of object to number

Object is an expression that yields a valid button, field, or window descriptor.
Number is an expression that yields a positive integer. The number value
represents the total number of pixels in the horizontal width of the
specified object.

EXAMPLES

set width of cd window to width of cd window div 2

-- actually shrinks the window for all cards in the current

-- stack because all cards in a stack share same window

put width of button 4 -- puts width in Msg box

the width of bkgnd field "phoneList"

DESCRIPTION

You use the width property to determine or change the horizontal distance in
pixels occupied by the rectangle of the specified button, field, or window.

NOTES

The width property is read-only for the Message box and menu bar.

See also the rectangle property, earlier in this chapter.
Width 499

C H A P T E R 1 2

Properties
Zoomed 12

APPLIES TO

Windows

SYNTAX

Set [the] zoomed of window to boolean

Window is an expression that yields a window descriptor. Boolean is an
expression that yields either true or false.

EXAMPLE

set the zoomed of window "home" to true

DESCRIPTION

You use the zoomed property to determine or change whether a window is set
to its maximum size and centered on the screen, as when the user clicks its
zoom box in its upper-right corner.
500 Zoomed

Appendixes

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
External Commands and Functions A

This appendix describes the external command and function interface of
HyperCard. In addition to general information about external commands and
functions, this appendix contains specific information that requires a reading
knowledge of 68000 assembly language, Pascal, or C to be understood. This
appendix does not include information about how to write code, nor does it
explain how to use a compiler or assembler to create an executable resource.

Definitions, Uses, and Examples A

External commands and functions are extensions to the HyperTalk built-in
command and function set. HyperCard includes interface procedures that
make extending HyperTalk in this way convenient and practical for expert
programmers.

XCMD and XFCN Resources A

External commands (ex-commands, or XCMDs) and external functions
(ex-functions, or XFCNs) are executable Macintosh code resources, written
in a Macintosh programming language (such as Pascal, C, or 68000 assembly
language), which are attached to the HyperCard application or a stack with
a resource editor such as ResEdit. The resource type of an external command
is 'XCMD', and the resource type of an external function is 'XFCN'.

An XCMD or XFCN is a compiled (or assembled) executable code module. After
XCMDs or XFCNs have been created and attached to HyperCard or a stack,
they’re called from HyperTalk in much the same way that built-in commands
or user-defined message and function handlers are called. They also use the
message-passing hierarchy in the same way.

An XCMD or XFCN resource has no header bytes; it is invoked by a jump
instruction to its entry point. These resources are simpler than Macintosh
drivers: they can’t have any global (or static) data, and they can’t be larger
Definitions, Uses, and Examples 503

A P P E N D I X A

External Commands and Functions
than 32 KB in size. (For more details about these restrictions, see “Guidelines
for Writing XCMDs and XFCNs,” later in this appendix.)

For detailed information on Macintosh resources, see the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox, published by
Addison-Wesley.

Uses for XCMDs and XFCNs A

External commands and functions can provide access to the Macintosh Toolbox
and to some of HyperCard’s own internal routines; they can provide fast
processing speed for time-critical operations; and they can override built-in
HyperTalk commands to provide custom solutions. XCMDs or XFCNs can
be used for serial port input and output routines, custom search-and-replace
routines, AppleCD SC control routines, file input and output routines, and
so on.

A typical use for an XCMD would be as an interface for a driver, allowing
HyperCard to control an external device such as a video disc player. Such an
interface would have three parts: the driver, the XCMD, and a HyperTalk
handler. The driver would be completely separate from HyperCard. (See Inside
Macintosh: Devices for information about writing drivers.) The XCMD would be
small; its purpose would be to convert HyperTalk messages to the appropriate
driver calls. The HyperTalk handler would call the XCMD with various
parameters directing it to open or close the driver or to perform a specific
control call.

Using an XCMD or XFCN A

You invoke XCMDs and XFCNs from HyperTalk using the regular message
syntax and user-defined function call syntax. The message or function call is
passed through the HyperCard message-passing hierarchy.
504 Using an XCMD or XFCN

A P P E N D I X A

External Commands and Functions
Invoking XCMDs and XFCNs A

You invoke an XCMD as you do a message handler. That is, you type the
name of the XCMD followed by its parameters in a HyperTalk script or in
the Message box. Separate the parameters (if there are more than one) with
commas, and put quotation marks around parameters of more than one word.
When the script executes or when you send the Message box contents by
pressing Return or Enter, HyperCard sends the message through the normal
message-passing hierarchy. For external commands, the Macintosh resource
name correlates to the message name—the first word in the message.

Similarly, you call an XFCN in a HyperTalk statement in the same way you
would a user-defined function (use parentheses after the function rather than
preceding the function with the word the). Enclose any parameters within
parentheses, separate them (if more than one) with commas, and put quotation
marks around parameters of more than one word. If the function takes no
parameters, append empty parentheses after it. For external functions, the
Macintosh resource name correlates to the function name—the word preceding
parentheses in the function call.

You can pass a maximum of 16 parameters to an XCMD or XFCN.

Message-Passing Hierarchy A

External commands and functions use the message-passing hierarchy in the
same way as message and function handlers and built-in commands and
functions. External commands and functions can be attached to any stack or
to the HyperCard application.

If a stack receives a message or function call for which it has no handler, then
before passing the message or function call to another stack (if added to the
message-passing hierarchy with the start using command) or HyperCard,
it checks to see if it has an external command or function of the same name.
When HyperCard receives a message or function call, it checks to see if it has
an external command or function before it looks for a built-in command or function.

That is, HyperCard searches for message and function handlers, XCMDs and
XFCNs, and built-in commands and functions through the message-passing
hierarchy shown in Figure A-1.

Chapter 4 discusses the message-passing hierarchy, including the dynamic
path, in detail.
Using an XCMD or XFCN 505

A P P E N D I X A

External Commands and Functions
Figure A-1 Message-passing hierarchy, including XCMDs and XFCNs

Field handlers Button handlers

Message and function calls

Card

handlers

Background

handlers

Stack

handlers

Stack

XCMDs and XFCNs

Home stack

handlers

Home stack

XCMDs and XFCNs

HyperCard

XCMDs and XFCNs

System file

XCMDs and XFCNs

HyperCard commands

and functions

Current card

handlers

Current background

handlers

Current stack

handlers

Current stack

XCMDs and XFCNs

Dynamic path
506 Using an XCMD or XFCN

A P P E N D I X A

External Commands and Functions
Guidelines for Writing XCMDs and XFCNs A

XCMDs and XFCNs can call most of the Macintosh Toolbox traps and routines,
but they have certain limitations and restrictions. They can’t do everything that
an application can do because they are guests in HyperCard’s memory space.
In that regard they are more like desk accessories than applications. Here are
some guidelines for writing XCMDs and XFCNs:

■ Do not initialize the various Macintosh managers by calling their initializa-
tion routines. That is, don’t call InitGraf, InitFonts, InitWindows,
and so on.

■ Do not rely upon having lots of RAM available for your XCMD. There is
some extra space in HyperCard’s heap, but if HyperCard is running in
750 KB under MultiFinder, for example, an XCMD should not be bigger
than about 32 KB.

■ Do not use register A5 of a 68000-family processor. The value in A5 belongs
to HyperCard, and it points to HyperCard’s global data, jump table, and
other things that constitute an “A5 world.” XCMDs do not currently have
their own A5 world.

■ XCMDs cannot have global data.

■ You can use string literals in XCMDs compiled with the -b switch in MPW
C version 3.0 or later. You can use 'STR ' resources or put the strings in a
short assembly-language glue file.

■ XCMDs cannot have a jump table, so they cannot have code segments. This
restriction imposes a 32 KB limit on the size of XCMDs for 68000-based
machines (the 68020 supports longer branches).

■ XCMDs can, however, allocate small chunks of memory by standard
NewHandle calls. (You can also allocate memory with NewPtr calls, but
they should be used sparingly to avoid heap fragmentation.)

■ If your XCMD allocates some memory in the heap, it should also deallocate
the memory.
Guidelines for Writing XCMDs and XFCNs 507

A P P E N D I X A

External Commands and Functions
■ If an XCMD allocates a handle to save state information between invocations
of the XCMD, then you must pass the handle back to HyperCard to be
stored somewhere in the current stack, such as in a hidden field. You must
convert the handle from a long integer to a string, because all values are
treated as strings by HyperTalk.

■ Since HyperCard jumps blindly to the start of an XCMD’s code, it is
important that the main routine actually ends up at the start of the XCMD.
The link order is vitally important.

■ If, as you write, the size of your XCMD begins to approach 32 KB, consider
converting it to a driver.

Attaching an XCMD or XFCN A

To attach an existing XCMD or XFCN (one that has already been compiled or
assembled into a resource) to one of your stacks, use a resource editor such as
ResEdit. The following steps describe the procedure using ResEdit:

1. Launch ResEdit.

2. Select and open the stack containing the 'XCMD' or 'XFCN' resource
you want.

3. Select and open the resource type of 'XCMD' or 'XFCN'.

4. Select and open the particular resource you want by name.

5. Press Command-C to copy the resource.

6. Select and open the stack you want to paste the resource into.

7. If your stack has no resource fork, ResEdit displays a dialog box asking if
you want to open one. Click OK. ResEdit opens a window.

8. Press Command-V to paste the resource into your stack.

9. Click the window’s close box. When ResEdit asks if you want to save the
file, click Yes.

10. Quit ResEdit.
508 Attaching an XCMD or XFCN

A P P E N D I X A

External Commands and Functions
Parameter Block Data Structure A

If HyperCard matches a message or function call with an external command or
function, it passes a single argument to the XCMD or XFCN: a pointer to a
parameter block called XCmdBlock. All communication between HyperCard
and the XCMD or XFCN passes through the parameter block. In Pascal, the
parameter block data structure is a record; in C it’s a struct.

HyperCard uses the first two fields of the parameter block to pass information
to the XCMD or XFCN before invoking its execution. The XCMD or XFCN uses
the other data fields in XCmdBlock to pass back results and to communicate
with HyperCard during execution.

The Pascal parameter block is shown below:

TYPE

XCmdPtr = ^XCmdBlock;

XCmdBlock = RECORD

paramCount: INTEGER; { If -1 then this is an

 event handling call. }

params: ARRAY[1..16] OF Handle;

returnValue:Handle;

passFlag: BOOLEAN;

entryPoint: ProcPtr; { to call back to HyperCard }

request: INTEGER;

result: INTEGER;

inArgs: ARRAY[1..8] OF LongInt;

outArgs: ARRAY[1..4] OF LongInt;

END;

END;
Parameter Block Data Structure 509

A P P E N D I X A

External Commands and Functions
Passing Parameters to XCMDs and XFCNs A

Before calling the XCMD or XFCN, HyperCard places the number of param-
eters and handles to the parameter strings in two fields of the parameter block:
paramCount and params.

ParamCount A

HyperCard puts an integer representing the parameter count in field
paramCount. You can pass a maximum of 16 parameter strings.

Params A

HyperCard evaluates the parameters and puts their values into memory as
zero-terminated ASCII strings. Before it invokes the XCMD or XFCN,
HyperCard puts the handles to the parameter strings into the params array.
For example, the command Beep 5 creates a single handle in params[1]
containing the ASCII equivalent of 5 and a zero terminator. HyperCard
disposes of the handle.

Passing Back Results to HyperCard A

When an XCMD or XFCN finishes executing, HyperCard examines two fields
of the parameter block: returnValue and passFlag.

ReturnValue A

An XCMD or XFCN can store one zero-terminated string to communicate the
result of its execution. HyperCard looks for a handle to the result string in the
returnValue field of XCmdBlock. Storing a result string is optional for an
XCMD; it is expected of an XFCN, but it’s not required. If you store a result
string handle into returnValue in an XCMD, the user can get it by using the
HyperTalk function the result (useful for explaining why there was an
error). For an XFCN, HyperCard uses the returnValue string to replace the
function call itself in the HyperTalk statement containing the call. If you don’t
store anything, the result is the empty string.
510 Parameter Block Data Structure

A P P E N D I X A

External Commands and Functions
PassFlag A

When an XCMD or XFCN terminates, HyperCard examines the Boolean value
of the passFlag field. If passFlag is FALSE (the normal case), control passes
back to the previously executing handler (or to HyperCard’s idle state if no
handler was executing). If passFlag is TRUE, HyperCard passes the message
or function call to the next object in the hierarchy. This has the same effect as
the pass control statement in a script.

Callbacks A

The remaining five fields of the XCmdBlock record have to do with calling
HyperCard back in the middle of execution of an XCMD or XFCN. You use the
callback mechanism to obtain data or request HyperCard to perform an action.
HyperCard has 77 callback requests (see “Callback Procedures and Functions,”
later in this appendix). The five XCmdBlock fields that compose the callback
interface are entryPoint, request, result, inArgs, and outArgs. If you
link your code with the HyperXLib library (the HyperXLib.o file that comes
with MPW), then you will use only the result field.

EntryPoint A

When HyperCard sets up the parameter block data structure before passing
control to an XCMD or XFCN, it places an address in entryPoint. The XCMD
or XFCN uses this address to execute a jump instruction to pass control to
HyperCard for the callback.

Request A

Before executing the jump instruction, the XCMD or XFCN puts an integer
representing the callback request it’s making into the request field.

Result A

After it completes the callback request, HyperCard places an integer result
code in the result field. The result code can be 0, 1, or 2. If the callback
executed successfully, the result is 0; if it failed, the result is 1; if the callback
request is not implemented in HyperCard, the result is 2.
Parameter Block Data Structure 511

A P P E N D I X A

External Commands and Functions
InArgs A

The XCMD or XFCN sends up to eight arguments to HyperCard as long
integers in the inArgs array. Depending on the callback request, HyperCard
expects arguments in certain elements of the inArgs array. In many callbacks,
the arguments are pointers to zero-terminated strings. The callback arguments
are shown in Pascal in “Callback Procedures and Functions,” later in this
appendix.

OutArgs A

After it executes the callback request, HyperCard returns up to four long
integers (or other types, such as handles) to the XCMD or XFCN as elements
of the outArgs array. The arguments HyperCard returns from callbacks are
shown in Pascal in “Callback Procedures and Functions,” later in this
appendix.

Callback Procedures and Functions A

If you want to manage a callback to HyperCard yourself, you can define the
XCmdBlock data structure in your XCMD or XFCN. Then you can put values
you want to send to HyperCard in inArgs, put a request code in request, and
execute a jump instruction to the address HyperCard places in entryPoint.
HyperCard returns values in outArgs and a result code in result.

However, if you use MPW Pascal or C, you can take advantage of interface
definition and library files. The definition and library files provide simple
procedure and function calls that you can use inside your XCMD or XFCN to
handle callback requests more easily. Include them when you compile and link
your XCMD or XFCN.

The Pascal code for an XCMD or XFCN should include the definition file
HyperXCmd.p at the beginning of the USES clause. There must be an argument
of type XCmdPtr passed by HyperCard to the XCMD or XFCN. In the callback
procedures and functions, all strings are Pascal strings unless noted as zero-
terminated strings (which have no length byte; the end of the string is indicated
by a null byte). In general, if a handle is returned, the XCMD or XFCN is
responsible for disposing of it.
512 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions
HyperTalk Utilities A

FUNCTION EvalExpr(paramPtr: XCmdPtr; expr: Str255): Handle;

EvalExpr evaluates the HyperTalk expression passed in expr and returns a
handle to a zero-terminated string containing the result of the evaluation.
For example, EvalExpr('the long date') returns a handle to a string
containing the current date in the long format (Saturday, June 25, 1988).
The caller must dispose of the handle.

PROCEDURE RunHandler(paramPtr: XCmdPtr; handler: Handle);

The zero-terminated string in handler is interpreted first as a message. If it is
a message (command or function), it is sent to the current card. The text can be
one or more lines of HyperTalk, including conditional statements and repeat
loops. The lines are executed as though sent from the Message box. If it is
multiple lines beginning with on messageName and ending with end
messageName, messageName is sent to this handler in the context of the card. If
the handler exits, execution terminates. If the handler contains the line pass
messageName, messageName is passed down HyperTalk’s normal
message-passing path, beginning with the current card script.

You can not override a script executed with RunHandler. For example, if
the current card has an on messageName handler, and an XCMD issues a
runHandler callback with an on messageName, the XCMD’s handler executes.
If the handler passes the message, the card’s script executes.

Execution is somewhat slower using RunHandler than it would be running
the same script as a card handler. You cannot use the debugging tools to debug
scripts executed with RunHandler.

PROCEDURE SendCardMessage(paramPtr: XCmdPtr; msg: Str255);

The string in msg is sent as a message to the current card.

PROCEDURE SendHCMessage(paramPtr: XCmdPtr; msg: Str255);

The string in msg is sent as a message directly to HyperCard, bypassing the
entire message-passing hierarchy.
Callback Procedures and Functions 513

A P P E N D I X A

External Commands and Functions
Memory Utilities A

FUNCTION GetGlobal(paramPtr: XCmdPtr; globName: Str255):

Handle;

GetGlobal returns a handle to a zero-terminated string that contains a copy of
the contents of the HyperTalk global variable globName. If globName doesn’t
exist, GetGlobal returns a handle to an empty string. The caller must dispose
of the handle.

PROCEDURE SetGlobal(paramPtr: XCmdPtr; globName: Str255;

globValue: Handle);

SetGlobal copies the zero-terminated string to which globValue is a handle
into the HyperTalk global variable named globName. If globName doesn’t
exist, SetGlobal creates it. HyperCard does not dispose of globValue.

PROCEDURE ZeroBytes(paramPtr: XCmdPtr; dstPtr: Ptr;

longCount: LongInt);

ZeroBytes sets longCount bytes beginning at dstPtr to 0. It performs
no boundary checking. For example, it can write past the end of a zero-
terminated string.

String Utilities A

PROCEDURE ScanToReturn(paramPtr: XCmdPtr; VAR scanPtr:

Ptr);

ScanToReturn scans the zero-terminated string pointed to by scanPtr,
stopping at the first return character or at the end of the string. ScanPtr is
incremented to point to the new location.

PROCEDURE ScanToZero(paramPtr: XCmdPtr; VAR scanPtr: Ptr);

ScanToZero scans the zero-terminated string pointed to by scanPtr,
stopping at the end of the string. ScanPtr is incremented to point to the
new location.
514 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions
FUNCTION StringEqual(paramPtr: XCmdPtr; str1,str2:

Str255): BOOLEAN;

StringEqual compares the two Pascal strings str1 and str2 (case-
insensitive and diacritical-sensitive) and returns TRUE if the two strings
are identical; otherwise, it returns FALSE.

FUNCTION StringLength(paramPtr: XCmdPtr; strPtr: Ptr):

LongInt;

StringLength returns the number of characters in the zero-terminated string
pointed to by strPtr. Note that strPtr is a pointer, not a handle.

FUNCTION StringMatch(paramPtr: XCmdPtr; pattern: Str255;

target: Ptr): Ptr;

StringMatch performs a case-insensitive search for pattern (a Pascal string)
in the zero-terminated string pointed to by target. If the search is successful,
the location of the first matching character is returned as the function result. If
the search is unsuccessful, StringMatch returns nil. This is equivalent to
HyperTalk’s offset function.

PROCEDURE ZeroTermHandle(paramPtr: XCmdPtr; hndl: Handle);

ZeroTermHandle increases the block referenced by hndl by 1 byte and then
sets the extra byte to 0, making hndl legal for operations such as
SaveXWScript, FormatScript, and ZeroToPas.

String Conversions A

PROCEDURE BoolToStr(paramPtr: XCmdPtr; bool: BOOLEAN; VAR

str: Str255);

BoolToStr converts bool to a Pascal string (TRUE or FALSE).

PROCEDURE ExtToStr(paramPtr: XCmdPtr; num: Extended; VAR

str: Str255);

ExtToStr converts num (a SANE extended type) to a Pascal string.
Callback Procedures and Functions 515

A P P E N D I X A

External Commands and Functions
PROCEDURE LongToStr(paramPtr: XCmdPtr; posNum: LongInt;

VAR str: Str255);

LongToStr converts posNum (a 32-bit unsigned integer) to a Pascal string.

PROCEDURE NumToHex(paramPtr: XCmdPtr; num: LongInt;

nDigits: INTEGER; VAR str: Str255);

NumToHex returns in str a hexadecimal (base 16) representation of the value
of num, expanding the string to nDigits in length.

PROCEDURE NumToStr(paramPtr: XCmdPtr; num: LongInt; VAR

str: Str255);

NumToStr converts num (a 32-bit signed integer) to a Pascal string.

FUNCTION PasToZero(paramPtr: XCmdPtr; str: Str255): Handle;

PasToZero converts str to a zero-terminated string and returns a handle to
the new string. The caller must dispose of the handle.

PROCEDURE PointToStr(paramPtr: XCmdPtr; pt: Point; VAR

pasStr: Str255);

PointToStr converts the point passed in pt to a Pascal string and returns the
string in pasStr.

PROCEDURE RectToStr(paramPtr: XCmdPtr; rct: Rect; VAR

pasStr: Str255);

RectToStr converts the rectangle passed in rct to a Pascal string and returns
the point in pasStr.

PROCEDURE ReturnToPas(paramPtr: XCmdPtr; zeroStr: Ptr; VAR

pasStr: Str255);

ReturnToPas copies characters from the zero-terminated string pointed to
by zeroStr into the Pascal string pasStr, stopping at the first return
character (ASCII $0D), the end of the zero-terminated string, or the 255th
516 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions
character, whichever comes first. The variable pasStr will not include the
return character.

FUNCTION StrToBool(paramPtr: XCmdPtr; str: Str255):

BOOLEAN;

StrToBool converts str to a Boolean (TRUE or FALSE) and returns the
Boolean value as its result.

FUNCTION StrToExt(paramPtr: XCmdPtr; str: Str255):

Extended;

StrToExt converts str to an extended type. Extended numbers contain a sign
bit, 15 bits for the exponent, and 63 bits for the significand. This is the standard
data type for SANE, the Standard Apple Numerics Environment.

FUNCTION StrToLong(paramPtr: XCmdPtr; str: Str255):

LongInt;

Converts str to a long (32-bit) unsigned integer. Unsigned long integers range
from 0 to 4,294,967,295.

FUNCTION StrToNum(paramPtr: XCmdPtr; str: Str255): LongInt;

Converts str to a long (32-bit) signed integer. Signed long integers range from
–2,147,483,648 to 2,147,483,647.

PROCEDURE StrToPoint(paramPtr: XCmdPtr; str: Str255; VAR

pt: Point):

Converts the Pascal string passed in str to a point and returns the point in pt.

PROCEDURE StrToRect(paramPtr: XCmdPtr; str: Str255; VAR

rct: Rect):

Converts the Pascal string passed in str to a rectangle and returns the
rectangle in rct.
Callback Procedures and Functions 517

A P P E N D I X A

External Commands and Functions
PROCEDURE ZeroToPas(paramPtr: XCmdPtr; zeroStr: Ptr; VAR

pasStr: Str255);

ZeroToPas converts the zero-terminated string pointed to by zeroStr to a
Pascal string and returns the string in pasStr.

Field Utilities A

FUNCTION GetFieldByID(paramPtr: XCmdPtr; cardFld: BOOLEAN;

fldID: INTEGER): Handle;

GetFieldByID returns a handle to a zero-terminated string that contains a
copy of the contents of field ID fldID. If cardFld is TRUE, fldID is a card
field; otherwise, it is a background field.

FUNCTION GetFieldByName(paramPtr: XCmdPtr; cardFld:

BOOLEAN; fldName: Str255): Handle;

GetFieldByName returns a handle to a zero-terminated string that contains a
copy of the contents of field fldName. If cardFld is TRUE, fldName is a card
field; otherwise, it is a background field.

FUNCTION GetFieldByNum(paramPtr: XCmdPtr; cardFld:

BOOLEAN; fldNum: INTEGER): Handle;

GetFieldByNum returns a handle to a zero-terminated string that contains a
copy of the contents of field number fldNum. If cardFld is TRUE, fldNum is a
card field; otherwise, it is a background field.

FUNCTION GetFieldTE(paramPtr: XCmdPtr; cardFieldFlag:

BOOLEAN; fieldID, fieldNum: INTEGER; fieldNamePtr:

StringPtr): TEHandle;

GetFieldTE returns a copy of the styled TEHandle from the specified field,
including style runs (see Inside Macintosh: Text). The caller must dispose of this
TEHandle.

If fieldID is nonzero, then HyperTalk uses it; else if fieldNum is nonzero,
then HyperTalk uses it; else if fieldNamePtr is not NIL, HyperTalk uses the
518 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions
field name pointed to by it. If GetFieldTE returns NIL, the field was not
found or there wasn’t enough memory to copy the text and styles.

PROCEDURE SetFieldByID(paramPtr: XCmdPtr; cardFld:

BOOLEAN; fldID: INTEGER; fldVal: Handle);

SetFieldByID copies the zero-terminated string to which fldVal is a handle
into the field ID fldID. If cardFld is TRUE, fldID is a card field; otherwise, it
is a background field. The caller must dispose of the handle.

PROCEDURE SetFieldByName(paramPtr: XCmdPtr; cardFld:

BOOLEAN; fldName: Str255; fldVal: Handle);

SetFieldByName copies the zero-terminated string to which fldVal is a
handle into field fldName. If cardFld is TRUE, fldName is a card field;
otherwise, it is a background field. The caller must dispose of the handle.

PROCEDURE SetFieldByNum(paramPtr: XCmdPtr; cardFld:

BOOLEAN; fldNum: INTEGER; fldVal: Handle);

SetFieldByNum copies the zero-terminated string to which fldVal is a
handle into the field number fldNum. If cardFld is TRUE, fldNum is a card
field; otherwise, it is a background field. The caller must dispose of the handle.

PROCEDURE SetFieldTE(paramPtr: XCmdPtr; cardFieldFlag:

BOOLEAN; fieldID, fieldNum: INTEGER; fieldNamePtr:

StringPtr; fieldTE: TEHandle);

SetFieldTE sets the text and styles of the field to the text and styles contained
in fieldTE.

Miscellaneous Utilities A

PROCEDURE BeginXSound(paramPtr: XCmdPtr; window:

WindowPtr);

BeginXSound informs HyperCard that an XCMD is about to use the Sound
Manager. An XCMD should call BeginXSound before it attempts to allocate
a sound channel or perform any other Sound Manager operation. After an
Callback Procedures and Functions 519

A P P E N D I X A

External Commands and Functions
XCMD calls BeginXSound, HyperCard’s built-in play command will not
operate until the XCMD calls EndXSound (see the next procedure).

If an external window is making the callback, it should pass a pointer to its
window in the window parameter. An XCMD should pass NIL for the window
parameter. An XCMD or an external window can optionally pass a pointer to a
valid external window in the window parameter if it wants to “aim” the call at
another external window. If HyperCard gets a valid WindowPtr in window, it
will post an xGiveUpSoundEvt event to that window at an appropriate time.
If the XCMD passes NIL for window, HyperCard will be unable to signal the
XCMD when HyperCard needs the sound channel back.

An XCMD that uses the Sound Manager can be structured as follows:

BeginXSound(paramPtr, NIL);

(* allocate a sound channel *)

(* do your sound thing *)

(* deallocate sound channel *)

EndXSound(paramPtr);

PROCEDURE EndXSound(paramPtr: XCmdPtr);

EndXSound informs HyperCard that an XCMD has finished using the Sound
Manager. If the XCMD has not previously called BeginXSound, EndXSound
does nothing.

FUNCTION FrontDocWindow(paramPtr: XCmdPtr): WindowPtr;

FrontDocWindow returns the WindowPtr of the document that is frontmost
in HyperCard’s document layer. It does not return the WindowPtr of a
window in the miniwindow layer. To return the frontmost window of any type,
use the Window Manager’s FrontWindow function.

FUNCTION GetFilePath(paramPtr: XCmdPtr; fileName: Str255;

numTypes: INTEGER; typeList: SFTypeList; askUser: BOOLEAN;

VAR fileType: OSType; VAR fullName: Str255): BOOLEAN;

GetFilePath determines the full pathname of the file fileName using the
search paths stored in the Home stack. If fileType is 'STAK', GetFilePath
uses the stack search paths. If fileType is 'APPL', GetFilePath uses the
520 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions
application search paths. If fileType is neither 'STAK' nor 'APPL',
GetFilePath uses the document search paths. The parameters numTypes
and typeList are used as described in the chapter “Standard File Package”
in Inside Macintosh: Files. If askUser is TRUE and HyperCard fails to find
the file on its own, GetFilePath prompts the user to find the file with a
standard file dialog box. If the file is located either by HyperCard or by the
user, the full pathname of the file is returned in fullName and the file type
is returned in fileType. If the user clicks Cancel in the standard file dialog
box or HyperCard fails to find the file for any other reason, GetFilePath
returns FALSE.

PROCEDURE GetXResInfo(paramPtr: XCmdPtr; VAR resFile:

INTEGER; VAR resID: INTEGER; VAR rType: ResType; VAR name:

Str255);

GetXResInfo returns the file reference number of the resource file from which
the calling XCMD was read in resFile and the resource ID of the XCMD in
resID, the resource type (XCMD or XFCN) in rType, and the resource name
in name.

PROCEDURE Notify(paramPtr: XCmdPtr);

If HyperCard is active or MultiFinder is not loaded, Notify returns
immediately. Otherwise, Notify blinks the small HyperCard icon over the
Apple in the Apple menu (System 6) or over the Applications menu (System 7)
until the user switches to HyperCard’s layer. Only then does Notify return.
No other HyperCard processing takes place while Notify is waiting.

PROCEDURE SendHCEvent(paramPtr: XCmdPtr; event:

EventRecord);

SendHCEvent is useful only to XCMDs that call the Toolbox routines
GetNextEvent and WaitNextEvent. Such XCMDs should use
SendHCEvent to pass events required by HyperCard. For example, an XCMD
that creates a draggable window and calls GetNextEvent may receive update
events for HyperCard windows. HyperCard performs the updates if it receives
the update events via this callback. More importantly, an XCMD that calls
GetNextEvent and receives an app4Evt generated by MultiFinder must pass
the event along to HyperCard. If HyperCard does not receive its suspend and
resume events, unexpected results may occur.
Callback Procedures and Functions 521

A P P E N D I X A

External Commands and Functions
XCMDs that create windows by means of the NewXWindow callback don’t need
to call GetNextEvent or WaitNextEvent and therefore don’t need to use
SendHCEvent.

PROCEDURE SendWindowMessage(paramPtr: XCmdPtr; windPtr:

WindowPtr; windowName: Str255; msg: Str255);

SendWindowMessage is functionally equivalent to send message to
window windowName from HyperTalk. Use this for direct communication
between XCMDs that manage external windows. If windPtr is not NIL, the
window pointer in WindowPtr is used to determine which window receives
the message; otherwise, the name in windowName is used.

FUNCTION StackNameToNum(paramPtr: XCmdPtr; stackName:

Str255): LongInt;

Internally, HyperCard no longer remembers stacks only by their name. It uses
a stack number to represent the stack. This number is similar to a volume
reference number: it is valid as an indicator as long as the application is open,
but won’t be valid across multiple launches. This number is valid when used in
an XTalkObject to get and set the scripts of objects. StackNameToNum
translates the name of a stack into this number.

Creating and Disposing of External Windows A

FUNCTION GetNewXWindow(paramPtr: XCmdPtr; templateType:

ResType; templateID: INTEGER; colorWind: BOOLEAN;

floating: BOOLEAN): WindowPtr;

GetNewXWindow creates a new window or dialog box from a resource. If the
Window Manager fails to create the window, GetNewXWindow returns NIL. If
the window is created successfully, GetNewXWindow sets up the mechanism
by which events pertaining to the window are sent to the XCMD that created it.

TemplateType must be either 'WIND' or 'DLOG'. TemplateID is the
resource ID of the window or dialog box template to be used. The template
resource can exist in any resource file that’s currently open.
522 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions

If colorWind is TRUE, HyperTalk attempts to create a color window using the
GetNewCWindow or NewCDialog toolbox trap. If colorWind is TRUE and
Color QuickDraw is not present, the window is not created and
GetNewXWindow returns NIL.

If floating is TRUE, HyperTalk places the new window in the miniwindow
layer. Otherwise, the window is placed into the document layer. See “Window
Layer Management,” later in this appendix, for an explanation of these two
layers and their relationship to each other.

Note
GetNewXWindow is compatible with nonstandard
window definition functions (see NewXWindow for
more information). ◆

FUNCTION NewXWindow(paramPtr: XCmdPtr; boundsRect: Rect;

title: Str255; visible: BOOLEAN; procID: INTEGER;

colorWind: BOOLEAN; floating: BOOLEAN): WindowPtr;

NewXWindow creates a new window and returns a pointer to it as the func-
tion’s result. If the Window Manager fails to create the window, NewXWindow
returns NIL. If the window is created successfully, NewXWindow sets up the
mechanism by which events pertaining to the window are sent to the XCMD
that created it.

If colorWind is TRUE, HyperTalk attempts to create a color window using the
NewCWindow Toolbox trap. If colorWind is TRUE and Color QuickDraw is not
present, the window is not created and NewXWindow returns NIL.

The value in procID is the same as the procID argument to the Window
Manager routine NewWindow. For example, passing documentProc as
the procID produces a standard document window with no zoom box.
BoundsRect is the bounding rectangle for the window in global coordinates.
Title becomes the title of the window.

The visible argument determines whether the window is created visible.

To create windows similar to HyperCard miniwindows, such as the Tools
palette and the Message box, use HyperCard’s built-in window definition
function for windows.
Callback Procedures and Functions 523

A P P E N D I X A

External Commands and Functions

Here are the possible built-in window values to use for procID:

paletteProc = 2048; { window with grow box }

palNoGrowProc = 2052; { standard window }

palZoomProc = 2056; { window with zoom and grow }

palZoomNoGrow = 2060; { window with zoom and no grow }

hasZoom = 8;

hasTallTBar = 2;

toggleHilite = 1;

For example, the Navigator palette uses palNoGrowProc for procID.

Note
NewXWindow is also compatible with other nonstandard
window definition functions. ◆

PROCEDURE CloseXWindow(paramPtr: XCmdPtr; window:

WindowPtr);

When an XCMD that manages an external window requests that the window
be closed, it should call CloseXWindow. When all pending calls to the XCMD
have returned, HyperCard sends an xCloseEvt to the XCMD. Only in
response to this event should it dispose of its data structures and exit.

When the external window receives the xCloseEvt, it signals its willingness
to close by setting paramPtr^.passFlag to TRUE. If this is not done,
HyperTalk will not proceed with the disposal of the window.

HyperTalk tries to close all open external windows when the user quits
HyperCard. If any windows refuse to close at that time, HyperCard will
not quit.

Do not use any of the following Toolbox routines to close external windows:
CloseWindow, DisposeWindow, CloseDialog, and DisposDialog.

Any XCMD can close any external window created with the NewXWindow or
GetNewXWindow calls by means of a call to CloseXWindow. CloseXWindow
has no effect on windows that were not created by means of a call to
NewXWindow or GetNewXWindow.

You can also close an external window from a script with the close window
command.
524 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions

Window Utilities A

PROCEDURE HideHCPalettes(paramPtr: XCmdPtr);

HideHCPalettes hides all of HyperCard’s built-in miniwindows (the Tools
palette, the Patterns palette, the FatBits window, the Scroll window, and the
Message box).

PROCEDURE RegisterXWMenu(paramPtr: XCmdPtr; menu:

MenuHandle; registering: BOOLEAN);

RegisterXWMenu is useful only to XCMDs that manage external windows.
RegisterXWMenu informs HyperCard that the given menu is meant for use
with the external window. When an item in the menu is chosen by the user, the
XCMD that registered the menu chosen receives a menu event (xMenuEvt).
Note that an XCMD can register one of HyperCard’s menus, for example, the
Font menu, in order to borrow the menu temporarily.

RegisterXWMenu does not change the menu bar. The XCMD must call the
Menu Manager in order to insert or delete the menu and to redraw the menu
bar. Once the menu has been registered, it remains the property of the XCMD
until RegisterXWMenu is called again with registering set to FALSE.

Note
HyperCard expects XCMD menus to have unique IDs but
does not ensure that they do. You may employ the
following function to find an unused menu ID. ◆

FUNCTION UnusedMenuID: INTEGER;

VAR thisID: INTEGER;

menuHndl: MenuHandle;

BEGIN

thisID := 1023;

REPEAT

thisID := thisID + 1;

menuHndl := GetMHandle(thisID);

UNTIL menuHndl = NIL;

UnusedMenuID := thisID;

END;
Callback Procedures and Functions 525

A P P E N D I X A

External Commands and Functions

PROCEDURE SetXWIdleTime(paramPtr: XCmdPtr; ticks: LongInt);

XCMDs that manage external windows can request idle time from HyperCard.
Use SetXWIdleTime if your XCMD needs to perform a periodic action.

Until SetXWIdleTime is called by an XCMD, the XCMD does not receive
periodic calls. A value greater than 0 for ticks represents the requested
interval between periodic calls by HyperCard. HyperCard sends the XCMD a
nullEvent message when making its periodic call. Call SetXWIdleTime
only after your external window has received an xOpenEvt.

Whether HyperCard’s periodic calls occur as often as requested depends
on whether HyperCard is currently performing a timing-critical or data-
intensive operation.

To give up idle time, call SetXWIdleTime with a value of 0 for ticks.

Note
NullEvent messages are sent in both the foreground and
background under MultiFinder. ◆

PROCEDURE ShowHCPalettes(paramPtr: XCmdPtr);

ShowHCPalettes reverses the effect of HideHCPalettes, showing all of
HyperCard’s miniwindows that were visible when HideHCPalettes was
called to hide them.

PROCEDURE XWHasInterruptCode(paramPtr: XCmdPtr; haveCode:

BOOLEAN);

When HyperCard creates an external window (by means of either the
NewXWindow or GetNewXWindow callback), it is assumed that the code of the
XCMD that manages it can be moved in memory when it is not executing.

If haveCode is TRUE, HyperCard never unlocks the relocatable block
containing the XCMD code in memory. This allows ProcPtrs and other
addresses within an XCMD’s code to be preserved and valid at all times.
XWHasInterruptCode should be used with extreme prudence and should
be undone as soon as possible—HyperCard’s memory management can
become seriously taxed if there are any locked blocks inconveniently located
in its heap. In particular, it’s impossible to open card windows at the full size
of large cards when a nonrelocatable block is located too close to the bottom of
the application heap.
526 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions

The preferred method for an XCMD to manage procedure pointers
passed to the Toolbox is to refresh them as needed rather than to call
XWHasInterruptCode to ensure their validity. This method permits
HyperCard to unlock the XCMD’s code between invocations. An example
of such an XCMD is a text editor with a custom clikLoop routine. For
best results, such an XCMD should recalculate and refresh its procPtr
every time the user clicks the viewRect. For example:

CASE evt.what OF

mouseDown:

BEGIN

GlobalToLocal(evt.where);

hTE^^.clikLoop := @MyClikLoop;

{ an assembly-language clik loop }

TEClick(evt.where, FALSE, hTE);

END;

An XCMD that uses this method will have no need to call
XWHasInterruptCode.

An XCMD’s code is always locked while it is actually executing.
XWHasInterruptCode determines only whether the block of code can be
unlocked when control is returned to HyperCard.

PROCEDURE XWAlwaysMoveHigh(paramPtr: XCmdPtr; moveHigh:

BOOLEAN);

XWAlwaysMoveHigh tells HyperTalk to always move the external window’s
code high on the heap before locking it down and calling it. External windows
that may allocate large amounts of memory or send card messages to do such
operations as go to another card should use this call.

In normal XCMD and external window operations, HyperTalk makes a
determination at the time the code is jumped to as to whether the code should
be moved high in the application heap before being locked down. Currently,
this is done whenever an XCMD is called and when an external window is
given the following events: xOpenEvt, xMenuEvt, mouseDown, and keyDown.
All other events are assumed to rarely cause memory allocation or messages to
be sent; therefore, HyperTalk can speed up the process of calling and returning
from an external window. However, some external windows may allocate
Callback Procedures and Functions 527

A P P E N D I X A

External Commands and Functions
memory on such things as an xSetPropEvt event. For example, a picture
XCMD could be asked to change information about the currently displayed
PICT, and that may cause memory to be allocated. A good rule of thumb is if
your external window is not called repeatedly in a script and you might
allocate memory on events other than the aforementioned events, call this with
moveHigh = TRUE.

PROCEDURE XWAllowReEntrancy(paramPtr: XCmdPtr;

allowSysEvts: BOOLEAN; allowHCEvts: BOOLEAN);

XWAllowReEntrancy allows an XCMD to tell HyperCard whether it is
equipped to receive events (either system events or HyperCard-generated
events) in a reentrant fashion. Either of the Booleans, allowSysEvts or
allowHCEvts, can be set to TRUE or FALSE to enable or disable (respectively)
this behavior.

In certain situations, it is possible for an external window to generate events for
itself. In other words, calling the Window Manager’s InvalRect routine on a
portion of the window could create an updateEvt event for the window.

While running scripts, HyperTalk periodically checks the Event Manager to see
if update, activate, or MultiFinder events are pending. This is how HyperCard
processes events in the background. In the course of these checks, the Window
Manager may report an update event for the external window if it notices that
any or all of the window is invalid. The problem arises from external windows
that use SendCardMessage, SendHCMessage, EvalExpr, or any other
HyperTalk callback that can run a script. XWAllowReEntrancy was
implemented to allow external windows to perform asynchronous handling of
certain events. For example, if a SendCardMessage callback causes a lengthy
script to be executed, the external window may want to be notified that the
user switched out of HyperCard under MultiFinder. The default is for
HyperTalk to not allow these reentrant calls to take place. Unlike system
events, HyperTalk events are not queued, so unreceived events are ignored.

Note
An external window should only call
XWAllowReEntrancy at the end of its response to an
xOpenEvt event. The first event that is sent to an external
window is its xOpenEvt event. ◆
528 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions
Because xGetPropEvt and xSetPropEvt are events, if an external window
has not called XWAllowReEntrancy(paramPtr,xxxx,TRUE), the scenario
described below results in the external window never receiving its
xSetPropEvt for its visible property:

SendCardMessage(paramPtr,'go next card');

on closeCard

hide window "fred" -- this call will fail

end closeCard

The xSetPropEvt causes the external window to be reentered, so HyperTalk
skips the event and continues. If your external window needs to communicate
with running scripts, make sure that you allow it to be reentrant.

Writing completely reentrant code is difficult, and some development systems
may not support reentrancy correctly. One tip is to make sure that every time
an external window receives an event, it should completely save and restore its
state. A good idea is to use the external window’s refCon field to store a
handle to all the window’s state information. Beware of the use of global
variables in stand-alone code resources. See Macintosh Technical Note 256 for
more information.

Text Editing Utilities A

PROCEDURE BeginXWEdit(paramPtr: XCmdPtr; window:

WindowPtr);

BeginXWEdit registers an external window as the current editing environ-
ment. It can be called only by the XCMD that manages the window. Once it
is called, HyperCard redirects all keystrokes to the XCMD, with the exception
of Command-key combinations recognized by the Menu Manager as the
equivalent of menu items. In addition, HyperCard passes events to the XCMD
that correspond to the first five commands in the Edit menu whenever these
commands are chosen. The XCMD still receives all of the other events
pertaining to its window, including nullEvents if it has requested them.

Once the XCMD has registered itself as the current editing environment, it
receives an xGiveUpEdit event from HyperCard when the user performs an
action that activates a different editing environment, such as a click in the
Callback Procedures and Functions 529

A P P E N D I X A

External Commands and Functions
Message box or in an unlocked field. When this happens, the XCMD should
deactivate its editable area as appropriate, just as it does when its window
is deactivated.

PROCEDURE EndXWEdit(paramPtr: XCmdPtr; window: WindowPtr);

EndXWEdit informs HyperCard that an XCMD no longer wants to receive
keystrokes and edit events for its external window.

Call EndXWEdit before an external window that is an editing environment
is closed.

FUNCTION HCWordBreakProc(paramPtr: XCmdPtr): ProcPtr;

HCWordBreakProc returns a procedure pointer to HyperCard’s built-in
word-break routine used for text in fields, scripts, and the Message box. Script
editors and other text editing XCMDs can use this address in the wordBreak
field of a TextEdit record.

PROCEDURE PrintTEHandle(paramPtr: XCmdPtr; hTE: TEHandle;

header: StringPtr);

Given a handle to a TextEdit record in hTE, PrintTEHandle displays a
print job dialog box and prints the record using the font, size, and style
information contained within it. PrintTEHandle works for both old- and
new-style edit records.

Script Editor Utilities A

PROCEDURE FormatScript(paramPtr: XCmdPtr; scriptHndl:

Handle; VAR insertionPoint: LongInt; quickFormat: BOOLEAN);

FormatScript reformats the script contained in the zero-terminated string
to which scriptHndl is a handle. Call ZeroTermHandle before calling
FormatScript if the text is not zero-terminated.

The offset into the text passed in insertionPoint is adjusted as necessary
to reflect the same position within the text both before and after formatting.
An XCMD that uses TextEdit should pass TEHandle^^.selStart for this
parameter, then call TESetSelection after FormatScript returns.
530 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions
InsertionPoint is also used when quickFormat is TRUE to determine
which handler within the script should be formatted.

Note
Using EvalExpr to get the script of an object
formats it automatically. ◆

FUNCTION GetCheckPoints(paramPtr: XCmdPtr): CheckPtHandle;

GetCheckPoints returns a handle to the cached checkpoints for the
window’s script. The caller must dispose of the handle. If there are no cached
checkpoints, GetCheckPoints returns NIL.

The structure of a CheckPtHandle is as follows:

CheckPtHandle = ^CheckPtPtr;

CheckPtPtr = ^CheckPts;

CheckPts = RECORD

checks: ARRAY[1..16] OF INTEGER;

END;

PROCEDURE SaveXWScript(paramPtr: XCmdPtr; scriptText:

Handle);

Given a zero-terminated handle to a script in scriptText, SaveXWScript
saves the script to disk. Call ZeroTermHandle before calling SaveXWScript
if the text is not zero-terminated.

This callback is reserved for the use by XCMDs that implement script editors. It
fails if the XCMD has not been called by HyperCard as the current script editor.
SaveXWScript also fails if the text of the script exceeds 32 KB.

Note
An XCMD can set the script of any object using the
following example code:

SetGlobal(paramPtr,'tempGlobal',scriptHndl);

SendCardMessage(paramPtr, CONCAT('set the script of ',objectName, ' to

tempGlobal'));

SendCardMessage(paramPtr,'put empty into tempGlobal');
Callback Procedures and Functions 531

A P P E N D I X A

External Commands and Functions
PROCEDURE SetCheckPoints(paramPtr: XCmdPtr; checkLines:

CheckPtHandle);

SetCheckPoints sets the checkpoints of a script to the array of lines in
checkLines.

PROCEDURE GetObjectName(paramPtr: XCmdPtr; object:

XTalkObject; VAR objName: Str255);

Given an XTalkObject as input, returns the name of the object in objName.

PROCEDURE GetObjectScript(paramPtr: XCmdPtr; object:

XTalkObject; VAR scriptHndl: Handle);

Given an XTalkObject as input, returns the script of the object in
scriptHndl.

PROCEDURE SetObjectScript(paramPtr: XCmdPtr; object:

XTalkObject; scriptHndl: Handle);

Given an XTalkObject and a handle to a script as input, sets the script of the
object described by XTalkObject to the script in scriptHndl.

Variable Watcher Support A

PROCEDURE CountHandlers(paramPtr: XCmdPtr; VAR

handlerCount: INTEGER);

CountHandlers returns the number of running handlers in handlerCount.
If handlerCount is 0, then no handlers are currently running and the only
variables that exist are global variables.

PROCEDURE GetHandlerInfo(paramPtr: XCmdPtr; handlerNum:

INTEGER; VAR handlerName: Str255; VAR objectName: Str255;

VAR varCount: INTEGER);

GetHandlerInfo returns information about handlers. If handlerNum
is 1, GetHandlerInfo returns information about the current handler, if
there is one. If handlerNum is greater than 1, GetHandlerInfo returns
532 Callback Procedures and Functions

A P P E N D I X A

External Commands and Functions
information about a handler that has a pending call to another handler. For
example, if handlerNum is 2, the information returned is for the handler
that called the current handler. If there is no running handler, passing 0 for
handlerNum yields information about the global variables.

PROCEDURE GetVarInfo(paramPtr: XCmdPtr; handlerNum:

INTEGER; varNum: INTEGER; VAR varName: Str255; VAR

isGlobal: BOOLEAN; VAR varValue: Str255; varHndl: Handle);

Given the variable number varNum in active handler number handlerNum,
GetVarInfo returns information about the variable. If varHndl is NIL, a
truncated version of the contents of the variable, limited to 255 characters, is
returned in varValue. If varHndl is a valid handle, the entire contents of
the variable are copied into that handle, which is resized as necessary. If there
is no running handler, passing 0 for handlerNum returns information about
the global variables.

PROCEDURE SetVarValue(paramPtr: XCmdPtr; handlerNum:

INTEGER; varNum: INTEGER; varHndl: Handle);

SetVarValue sets the value of variable number varNum of handler
handlerNum to the zero-terminated string passed in varHndl.

Note
Changing the value of a variable other than the global
variables (handlerNum 0) or the variables local to the
current handler (handlerNum 1) does not affect the
handler until it is once again current. ◆

Debugger Support A

PROCEDURE AbortScript(paramPtr: XCmdPtr);

AbortScript cancels the currently executing handlers. The effect is the same
as pressing Command-period or choosing Abort from the HyperCard built-in
Debugger menu.

Note
An XCMD that calls AbortScript is not itself aborted. It
exits normally. ◆
Callback Procedures and Functions 533

A P P E N D I X A

External Commands and Functions
FUNCTION GetStackCrawl(paramPtr: XCmdPtr): Handle;

Returns a zero-terminated handle to the chain of callers (indented) as in the
Message Watcher.

PROCEDURE GoScript(paramPtr: XCmdPtr);

GoScript exits the debugger, closes all temporary debugger windows, and
continues normal execution of scripts.

PROCEDURE StepScript(paramPtr: XCmdPtr; stepInto: BOOLEAN);

StepScript creates a temporary checkpoint after the currently executing line.
If stepInto is TRUE, the checkpoint is created at the next line of HyperTalk to
be executed, even if it belongs to another handler. If stepInto is FALSE, the
checkpoint is created at the next line of the current handler. StepScript
causes the debugger to step out of a handler if the current line is its last.

PROCEDURE TraceScript(paramPtr: XCmdPtr; traceInto:

BOOLEAN);

TraceScript is similar to StepScript above, except that execution
continues after the line is highlighted by the debugger. TraceScript respects
the new HyperTalk property traceDelay.

External Windows A

The HyperCard XCMD interface includes support for external windows.
HyperCard’s built-in external windows are the script editor and the debugger
tools Variable Watcher and Message Watcher, which are all described earlier in
this book. All of these windows and their properties can be controlled through
scripts. You can write your own XCMDs to replace any one of the built-in
HyperCard external windows. You can also write XCMDs that provide any
kind of useful application within a window, such as custom text editors, color
picture editors, video overlay windows, and so on.

External windows are an extension of external commands. Two new callbacks,
NewXWindow and GetNewXWindow, direct HyperCard to create a new external
window. When an XCMD executes either of these callbacks, HyperCard creates
a new window and saves with it a reference to the XCMD that made the call.
534 External Windows

A P P E N D I X A

External Commands and Functions
Then, whenever HyperCard receives an event from the Toolbox Event
Manager, it first determines whether the event pertains to an external window.
If so, HyperCard calls the XCMD that created the window with arguments that
allow it to handle the event. Otherwise, HyperCard handles the event itself.

Whenever an XCMD is called by HyperCard, it receives a pointer to an
XCmdBlock parameter block. See “Parameter Block Data Structure,” earlier
in this appendix, for the Pascal parameter block structure.

When HyperCard calls an XCMD to handle an event for an external window,
some of the fields of XCmdBlock have new values. The paramCount field is
set to -1, indicating that the XCMD has been called to handle an event. The
first parameter, params[1], is a pointer to an XWEventInfo block, defined
as follows:

XWEventInfoPtr = ^XWEventInfo;

XWEventInfo = RECORD

ownerWindow: WindowPtr;

theEvent: EventRecord;

eventParams: ARRAY[1..9] OF LongInt;

eventResult: Handle;

END;

Therefore, an XCMD that manages an external window can be structured
as follows:

IF paramPtr^.paramCount >=0 THEN CreateMyWindow

ELSE

BEGIN

WITH XWEventInfoPtr(paramPtr^.params[1])^ DO

BEGIN

myEvent := theEvent;

myWindow := ownerWindow;

END;

SetPort(myWindow);

CASE myEvent.what OF

mouseDown: DoMouse;

and more code here...

END;

END;
External Windows 535

A P P E N D I X A

External Commands and Functions
When an XCMD has been called to handle an event, it has full access to
callback routines, just as it does when invoked from a HyperTalk script.

Events in External Windows A

HyperCard automatically sends most standard Macintosh events to XCMDs
that manage external windows. These include the following events:

activateEvt

app4Evt (miniwindows should hide themselves when suspended
 and show themselves when resumed)

mouseDown

nullEvent (see SetXWIdleTime)
updateEvt

Keyboard events (keyDown and autoKey) are delivered to the XCMD only if it
has registered itself as the active editing environment with the BeginXWEdit
callback. All keystrokes, with the exception of Command-key combinations
recognized by the Menu Manager as equivalents of menu items, are sent to an
XCMD when it is the active editing environment.

In addition, XCMDs that manage windows receive messages specific to
HyperCard. These are delivered in the same EventRecord data structure used
for standard Macintosh events, with the what field set to one of the following
constants:

xOpenEvt = 1000; { the first event after window is created}

xCloseEvt = 1001; { the window will be closed}

xGiveUpEditEvt = 1002; { you are losing Edit}

xGiveUpSoundEvt = 1003; { the sound channel is requested}

xEditUndo = 1100; { Edit--Undo}

xEditCut = 1102; { Edit--Cut}

xEditCopy = 1103; { Edit--Copy}

xEditPaste = 1104; { Edit--Paste}

xEditClear = 1105; { Edit--Clear}

xSendEvt = 1200; { script has sent a message (text)}

xSetPropEvt = 1201; { set a window property}
536 External Windows

A P P E N D I X A

External Commands and Functions
xGetPropEvt = 1202; { get a window property}

xCursorWithin = 1300; { cursor is within the window}

xMenuEvt = 1400; { an item in your menu is selected}

xMBarClickedEvt = 1401; { menu is about to be shown or updated }

xShowWatchInfoEvt = 1501; { variable and message watcher event}

xScriptErrorEvt = 1502; { place the insertion point}

xDebugErrorEvt = 1503; { user clicked Debug at complaint}

xDebugStepEvt = 1504; { highlight the line stepping}

xDebugTraceEvt = 1505; { highlight the line tracing}

xDebugFinishedEvt = 1506; { script ended}

Handling Events A

Many of the events above require special attention. Many are specific to the
debugger or other debugging tools. Here is a summary of all the events and
their appropriate behavior:

xOpenEvt Use this event to set up the external window-specific parts of
your code, such as any of the callbacks that have an XW in
their name. These are RegisterXWMenu, SetXWIdleTime,
XWHasInterruptCode, XWAlwaysMoveHigh, and
XWAllowReEntrancy.

xCloseEvt HyperTalk sends your external window an xCloseEvt event when
your window has called CloseXWindow, when another external
window or XCMD has called CloseXWindow using your window’s
WindowPtr, or when the user has used the new close window
"windowName" command. The external window should not dispose
of any of its data until receiving this event. If the external window
sets passFlag to TRUE, the window is disposed. If not, the window
is left open.

xGiveUpEditEvt When an external window calls BeginXWEdit, it will receive
keystrokes and Edit menu commands until the user clicks back
in the card window or activates some other editing window (for
example, the Message box). HyperTalk signals the current editor
with an xGiveUpEditEvt event just before it activates the
other editor.

continued
External Windows 537

A P P E N D I X A

External Commands and Functions
xGiveUpSoundEvt In the event that one external window requests the sound channel
(with BeginXSound) while another external window has the
channel, the current owner is given an xGiveUpSoundEvt. If the
external window doesn’t set passFlag to TRUE, the other external
window’s callback returns with the result code set to xresFail. If
an XCMD owns the sound channel, it can’t be notified of the second
request, so that request will fail.

xEditUndo While an external window is the editing environment, it receives this
event, which corresponds to the Undo command in HyperCard’s
built-in Edit menu.

xEditCut While an external window is the editing environment, it receives this
event, which corresponds to the Cut command in HyperCard’s
built-in Edit menu.

xEditCopy While an external window is the editing environment, it receives this
event, which corresponds to the Copy command in HyperCard’s
built-in Edit menu.

xEditPaste While an external window is the editing environment, it receives this
event, which corresponds to the Paste command in HyperCard’s
built-in Edit menu.

xEditClear While an external window is the editing environment, it receives this
event, which corresponds to the Clear command in HyperCard’s
built-in Edit menu.

xSendEvt When a user issues the send message to window command,
or when an XCMD or external window issues the
SendWindowMessage callback, the external command receives an
xSendEvt event. When this event is received, eventParams[1]
contains a pointer to a Pascal string (Str255) containing the name of
the message. This is done for speed purposes and to expedite using
the StringEqual callback to index through the commands your
window supports.

xSetPropEvt HyperTalk contains new extensible syntax for setting properties of
external windows. The syntax is

set property of window to propertyValue

xGetPropEvt HyperTalk contains new extensible syntax for getting properties of
external windows. The syntax is

get property of window
538 External Windows

A P P E N D I X A

External Commands and Functions
HyperTalk has two built-in properties of external windows: loc and visible.
If an external window doesn’t do anything special in response to being moved,
shown, or hidden, it can set passFlag to TRUE in response to both
xSetPropEvt and xGetPropEvt and HyperTalk handles the request. If a
property is requested other than the two built-in ones and the external window
passes the event, HyperTalk displays an error dialog box to the user.

HyperCard 2.2 adds these built-in properties: rectangle, width, height,
and the corresponding rectangle properties (see Chapter 12). These properties
are read-only. If you want to change these properties, your XCMD must handle
this itself.

If the external window wishes to respond specially to these requests, or if
it has additional properties it wants to support, it can directly handle
all of HyperTalk’s requests. In both xSetPropEvt and xGetPropEvt,
eventParams[1] contains a pointer to a Pascal string (Str255) containing
the name of the property. In the case of an xSetPropEvt, eventParams[2]
contains a handle to the property value. In the case of an xGetPropEvt event,
the external window must return a handle in the eventResult field with the
value of the property requested.

HyperTalk gets and sets the visible property to translate the hide and show
commands. In the event the user says hide window "Variable Watcher",
HyperTalk informs the external window by giving it an xSetPropEvt event
with the property visible and the value false.

For an example of the ability of external windows to use properties, try these
properties of the Message Watcher window: loc, visible, hideIdle,
hideUnused, text, and nextLine (set only). The Variable Watcher supports
the following properties: loc, visible, hBarLoc, vBarLoc, and rect.

There are four new callbacks to aid in getting and setting properties:
PointToStr, RectToStr, StrToPoint, and StrToRect.

xCursorWithin This event is sent when the cursor is over any part of the external
window. If the external window sets passFlag to TRUE,
HyperCard sets the cursor to an arrow.

xMenuEvt When an external window has used RegisterXWMenu for one or
more menus in HyperCard’s menu bar, HyperTalk notifies it of an
item being chosen by sending it an xMenuEvt event. This holds
true for Command-key equivalents as well. When the event is
received, eventParams[1] is the menu ID and eventParams[2]
is the menu item.

continued
External Windows 539

A P P E N D I X A

External Commands and Functions
Closing an External Window A

External windows should only dispose of their private data structures in
response to an xCloseEvt event. Whenever an XCMD calls CloseXWindow, it
should not dispose of any of its internal information until it receives its
xCloseEvt event.

When an xCloseEvt event is sent, the XCMD must set passFlag to TRUE if it
actually wants to close. If it does not set passFlag, it is telling HyperTalk that
it wants to cancel the close operation. This is useful for editors that put up a
“Save this document?” dialog box that includes a Cancel button.

Special XCmdBlock Values A

Because special XCMDs like the Message Watcher and script editor look like
normal XCMDs, there has to be some defense against a user typing
ScriptEditor in the Message box and launching the script editor. Therefore,
the special-case XCMDs are given special parameter blocks when they are
opened by HyperTalk.

xMBarClickedEvt If an external window has registered one or more menus in the
menu bar, HyperTalk sends it an xMBarClickedEvt event just
before it calls the Menu Manager’s MenuSelect or MenuKey
routine. This is to allow the external window to adjust its menus
just before the user sees them.

xShowWatchInfoEvt Sent to the Message Watcher and Variable Watcher whenever it is
appropriate. For the Message Watcher, eventParams[1] contains
a handle to the current message. For the Variable Watcher, there
are no arguments sent.

xScriptErrorEvt Sent to the current script editor when HyperTalk displays the
“Debug, Script, or Cancel” alert and the user clicks Script.
EventParams[1] contains the line number on which the
error occurred.

xDebugErrorEvt,
xDebugStepEvt,
xDebugTraceEvt

Sent to the current debugger window.

xDebugFinishedEvt Sent to all external windows when the user chooses the Go or
Abort command in the Debugger menu.
540 External Windows

A P P E N D I X A

External Commands and Functions
Message Watcher A

When HyperTalk calls the Message Watcher to initialize itself, it sets
paramPtr^.paramCount to xMessageWatcherID (-2). There are no
parameters sent. The Message Watcher is called at startup time and is always
present. If you switch to another message watcher (using set the
messageWatcher to "MyWatcher"), that watcher is loaded immediately.
The normal behavior of a message watcher is that it should be inactive when it
is invisible.

Variable Watcher A

When HyperTalk calls the Variable Watcher to initialize itself, it sets
paramPtr^.paramCount to xVariableWatcherID (-3). There are no
parameters sent. The Variable Watcher is called at startup time and is always
present. If you switch to another variable watcher (using set the
variableWatcher to "MyWatcher"), that watcher is loaded immediately.
The normal behavior of a variable watcher is that it should be inactive when it
is invisible.

Script Editor A

When HyperTalk calls a script editor to initialize itself, it sets
paramPtr^.paramCount to xScriptEditorID (-4). There are three
parameters sent. Params[1] is a zero-terminated handle to the script of
the object (unindented). Params[2] is a pointer to a Pascal string (Str255)
containing the name of the window as proposed by HyperTalk (for example,
script of card button id 4 = "Fred"). Params[3] is a pointer to
the XTalkObject structure describing the object to be edited (see the
next section).

Note
There can be multiple script editors open at once, all
sharing the same copy of the XCMD resource in memory.
For this reason, XCMDs must not write to their own code,
or serious problems can result. ◆
External Windows 541

A P P E N D I X A

External Commands and Functions
Debugger A

A debugger window is initialized the same as a script editor, with the excep-
tion that the paramPtr^.paramCount is set to xDebuggerID (-5).

XTalkObject A

In order to increase a script editor’s flexibility, it can communicate with
HyperTalk using a special data structure called XTalkObject. Each time a
script editor is opened, it is passed a pointer to this structure describing the
object whose script is being edited. However, any XCMD can use it as long
as the relevant fields are filled in correctly.

XTalkObjectPtr = ^XTalkObject;

XTalkObject = RECORD

objectKind: INTEGER; { stack, bkgnd, card, field,

 or button }

stackNum: LongInt; { reference number of the

 source stack }

bkgndID: LongInt;

cardID: LongInt;

buttonID: LongInt;

fieldID: LongInt;

END;

objectKind The type of object: stackObj, bkgndObj, cardObj, fieldObj,
buttonObj.

stackNum The reference number of the stack containing the object. Use
StackNameToNum to get the stacknum of a stack when you know the
name. Use GetObjectName to get the name of the stack if all you know
is the number. If XTalkObject.objectKind = stackObj, this is the
last relevant field.

bkgndID The ID of the background. If XTalkObject.objectKind = bkgndObj,
this is the last relevant field. If the object is a card, this is the background to
which the card belongs. If the object is a background field or button, this is
the ID of the background to which the field or button belongs.

continued
542 External Windows

A P P E N D I X A

External Commands and Functions
Window Layer Management A

Within HyperCard, each window resides in one of three layers: the dialog
layer, the miniwindow layer, or the document layer, as shown in Figure A-2.

cardID The ID of the card. If XTalkObject.objectKind = cardObj, this is
the last relevant field. If the object is a card field or button, this is the ID of
the card to which the field or button belongs.

buttonID The buttonID is the ID of the button. If the button is a card button,
cardID contains the ID of the button’s card. If the button is a background
button, bkgndID contains the ID of the button’s background.

fieldID The fieldID is the ID of the field. If the field is a card field, cardID
contains the ID of the field’s card. If the field is a background field,
bkgndID contains the ID of the field’s background.
External Windows 543

A P P E N D I X A

External Commands and Functions
Figure A-2 HyperCard window layers

The front layer, the dialog layer, is reserved for modal dialog boxes. Any
window that forces the user to complete a task before continuing, such as the
standard file dialog box and HyperCard’s ask dialog box, belongs in this layer.

The center layer, the miniwindow layer, is reserved for windows that have a
single state, such as HyperCard’s Tools palette, which is always active when it
is visible. All of HyperCard’s floating windows, including the Message box and
the Tools palette, reside in this layer. Windows in this layer never receive
activate events.

The rear layer is the document layer. Windows that have multiple states, active
and inactive, such as HyperCard card windows and script editing windows,
reside in this layer.

If your window resides in the document layer and you wish to determine
whether it’s frontmost in its layer, use the FrontDocWindow callback. The
Window Manager routines, such as FindWindow and FrontWindow, operate

Dialog layer

Document layer

Miniwindow layer
544 External Windows

A P P E N D I X A

External Commands and Functions
in the HyperCard window environment. For example, FrontWindow returns a
pointer to the frontmost window.

HyperCard automatically inserts new external windows in the proper layer
according to type (see the description of the NewXWindow callback).

An XCMD can determine the layer in which its external windows reside by
using the floating argument to GetNewXWindow and NewXWindow. If
floating is TRUE, the window is placed at the front of the miniwindow layer;
otherwise, it is placed at the front of the document layer.

FUNCTION NewXWindow(paramPtr: XCmdPtr; boundsRect: Rect;

title: Str255; visible: BOOLEAN; procID: INTEGER; color:

BOOLEAN; floating: BOOLEAN): WindowPtr;

FUNCTION GetNewXWindow(paramPtr: XCmdPtr; templateType:

ResType; templateID: INTEGER; color: BOOLEAN; floating:

BOOLEAN): WindowPtr;

The dialog layer isn’t really a layer at all; rather, it is reserved for use by modal
windows and dialog boxes. Use the Macintosh Window Manager’s routines to
create and remove windows in the dialog layer, but do not leave them up after
the XCMD has returned.

Flash: An Example XCMD A

A simple example external command included with HyperCard is flash,
which inverts the screen display (changes the black pixels to white and vice
versa) a specified number of times. A version of flash written and compiled
in MPW Pascal has already been attached to the HyperCard application file
(that is, to HyperCard itself).

Flash is invoked from HyperCard just like a HyperTalk command. That is,
you send the message flash to HyperCard from the Message box or from an
executing script. The flash message takes one parameter: an integer. The
flash XCMD inverts the screen display twice that many times. For example,
the following handler, in response to a mouseUp message, sends the flash
Flash: An Example XCMD 545

A P P E N D I X A

External Commands and Functions
message and its parameter. When the message reaches HyperCard, it invokes
the flash external command, which inverts the screen display 20 times:

on mouseUp

flash 10

end mouseUp

The screen display flashes (is inverted and inverted back again) 10 times.

Flash Listing in MPW Pascal A

Here’s the Pascal listing for flash:

(*

 * Flash.p-A sample HyperCard XCMD to highlight the screen

 * Copyright Apple Computer, Inc. 1987-1993.

 * All Rights Reserved.

 *

 * Build instructions for MPW 3.3 (puts XCMD in a ResEdit file):

 *

Pascal Flash.p -o Flash.p.o

Link -t rsrc -c RSED -rt XCMD=0 -m ENTRYPOINT -sg Flash ∂
Flash.p.o ∂
"{Libraries}"HyperXLib.o ∂
-o "Flash XCMD"

 *

 *)

{$R-}

{$S Flash} { Segment name must be same as command name }

(*

 * DummyUnit is what HyperTalk jumps to when running the XCMD.

 * Also note that XCMDs do not support their own A5 World,
546 Flash: An Example XCMD

A P P E N D I X A

External Commands and Functions
 * thus NO GLOBAL VARIABLES are allowed.

 *)

UNIT DummyUnit;

INTERFACE

USES Types, QuickDraw, SysEqu, HyperXCmd;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);

IMPLEMENTATION

PROCEDURE Flash(paramPtr: XCmdPtr); FORWARD;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);

BEGIN

Flash(paramPtr);

END;

PROCEDURE Flash(paramPtr: XCmdPtr);

VAR flashCount: INTEGER;

again: INTEGER;

port: GrafPtr;

str: Str255;

when: LONGINT;

ticksPtr: ^LONGINT;

BEGIN

flashCount := 0;

IF (paramPtr^.paramCount = 1) THEN BEGIN

{ first param is flash count }

ZeroToPas(paramPtr, paramPtr^.params[1]^, str);
Flash: An Example XCMD 547

A P P E N D I X A

External Commands and Functions
flashCount := StrToNum(paramPtr, str);

END;

IF (paramPtr^.paramCount <> 1) OR (flashCount < 1) THEN

flashCount := 3;

GetPort(port);

ticksPtr := POINTER(Ticks);{ 'Ticks' defined in SysEqu.p }

FOR again := 1 TO 2 * flashCount DO BEGIN

when := ticksPtr^ + 4;

InvertRect(port^.portRect);

REPEAT UNTIL ticksPtr^ >= when;

END;

END;

END.

Flash Listing in MPW C A

Here’s a version of flash written in MPW C:

/*

Flash.c -A sample HyperCard XCMD to highlight the screen

Copyright Apple Computer, Inc. 1987-1993.

All Rights Reserved.

Example:CFlash 5

Build instructions for MPW 3.3:

C Flash.c -o Flash.c.o

Link -t rsrc -c RSED -rt XCMD=0 -m MAIN -sg CFlash ∂
Flash.c.o ∂
"{Libraries}"HyperXLib.o ∂
-o "CFlash XCMD"
548 Flash: An Example XCMD

A P P E N D I X A

External Commands and Functions
Build instructions for THINK C 6.0:

Build as a Code Resource of type XCMD;

add MacTraps and HyperXLib libraries to project;

will not need compiler's standard Prefix.

*/

#include<Types.h>

#include<Quickdraw.h>

#include<SysEqu.h>

#include<HyperXCmd.h>

/*

Your routine MUST be the first code that is generated in the file,

as HyperTalk simply JSRs to the start of the XCMD segment in

memory. Note that XCMDs do not support their own A5 World,

thus NO GLOBAL VARIABLES are allowed.

*/

pascal void main(XCmdPtr paramPtr)

{

short flashCount = 0, again;

GrafPtr port;

Str255 str;

long when;

unsigned long *ticksPtr;

if (paramPtr->paramCount == 1)

{

/* get flash count*/

ZeroToPas(paramPtr, *(paramPtr->params[0]), (StringPtr)str);

/* convert string to number*/

flashCount = StrToNum(paramPtr, (StringPtr)str);

}

Flash: An Example XCMD 549

A P P E N D I X A

External Commands and Functions
if ((paramPtr->paramCount != 1) || (flashCount < 1))

flashCount = 3;

GetPort(&port);

ticksPtr = (unsigned long *)Ticks;

flashCount *= 2;

for (again = 1; again <= flashCount; again++)

{

when = *ticksPtr + 4;

InvertRect(&port->portRect);

while (*ticksPtr < when) ;

}

}

Flash Listing in 68000 Assembly Language A

Here’s the 68000 assembly-language listing for flash:

*

* Flash.a

* A sample HyperCard XCMD in 68000 Assembly

* Copyright Apple Computer, Inc. 1988-1993

* All Rights Reserved.

*

* This version of the Flash XCMD, 'AFlash', only looks at the first

* character of parameter 1. It does not have the timing code of the

* Pascal and C versions.

*

* Build Instructions:

*

* Asm Flash.a -o Flash.a.o

* Link -t rsrc -c RSED -rt XCMD=7 -sg AFlash Flash.a.o ∂
* -o "AFlash XCMD"
550 Flash: An Example XCMD

A P P E N D I X A

External Commands and Functions
*

*

INCLUDE'QuickEqu.a'

INCLUDE'Traps.a'

SEG 'AFlash' ; Segname must be same as command name

 PROC ; uses a0, a1, d1

AFlash

link a6,#-4

move.l d4,-(sp) ; save

move.w #3,d4 ; StrToNum default result

move.l 8(a6),a0 ; get paramPtr in a temp reg

move.l 2(a0),a1 ; get handle to flashCount (as C string)

cmpa.l #0,a1

beq.s @2 ; if handle NIL, use default

move.l (a1),a1 ; deref

@1 move.b (a1)+,d1 ; get a char

cmp.b #'1',d1 ; test for a non-0 digit

blt.s @2 ; less than valid

cmp.b #'9',d1

bgt.s @2 ; greater than valid

and.w #$000F,d1 ; mask to value of legal char

move.w d1,d4 ; stick value into result

@2 pea -4(a6) ; var result of GetPort

_GetPort

bra.s @4 ; get into DBRA loop

@3 move.l -4(a6),a0 ; get port

pea portRect(a0) ; address or portRect

_InverRect

move.l -4(a6),a0 ; get port

pea portRect(a0) ; address or portRect
Flash: An Example XCMD 551

_InverRect

@4 dbra d4,@3

move.l (sp)+,d4 ; restore

unlk a6

move.l (sp)+,a0 ; rts Pascal style

add.l #4,a7

jmp (a0)

END

A P P E N D I X B

Figure B-0
Listing B-0
Table B-0
Constants B

This appendix describes HyperTalk’s built-in constants. A constant is a
named value that never changes. It’s different from a variable because you
can’t change it, and it’s different from a literal because it does not require
quotation marks.

The values of some constants are the string of characters making up the name,
while others are different. In some cases, it’s more convenient to use a constant
(such as pi) in place of a long string (such as 3.14159265358979323846). In other
cases, it’s more convenient to use a constant (such as formFeed) because
the only other way to enter that character is with the numToChar function,
requiring that you know the ASCII number of the character (as in the
numToChar of 12).

You can’t give a variable a name that is the same as that of any built-in
constant; if you try, HyperCard displays an error dialog box.

Table B-1 is a list of all the built-in constants in HyperTalk.

Table B-1 HyperTalk constants

Constant name Description

colon The “:” character is equivalent to ASCII 58.

comma The “,” character, ASCII 44, is used as the default item
delimiter by HyperCard.

down The value returned by the commandKey, mouse,
optionKey, or shiftKey function when the named
key (or button, in the case of mouse), is currently
pressed. Its value is the same as the literal "down".

empty The null string; the same as the literal "".

eof The end-of-file condition; used with the read and write
commands.

continued
553

A P P E N D I X B

Constants
false The opposite of true; one of the states tested by the if
control structure and one of the possible results of
evaluation of a logical expression. Its value is the same
as the literal "false".

formFeed The form feed character (ASCII 12), which starts a new page
in some file formats.

lineFeed The line feed character (ASCII 10), which starts a new line in
some file formats.

pi The mathematical value pi to 20 decimal places, denoting
the ratio of the circumference of a circle to its diameter,
represented by the number 3.14159265358979323846.

quote The double quotation mark character. It is needed to build a
string containing quotation marks because they are stripped
out of the string when literals are evaluated:

put "george" into It -- quotation marks
-- are not in It
put quote & "george" & quote into It
-- quotation marks are in It

return The return character (ASCII 13), which delimits the lines of
a string or container.

space The space character (ASCII 32), the same as the literal " ".

tab The horizontal tab character (ASCII 9).

true The opposite of false; one of the states tested by the
if control structure and one of the possible results of
evaluation of a logical expression. Its value is the same
as the literal "true".

up The value returned by the commandKey, mouse,
optionKey, or shiftKey function when the named
key (or button, in the case of mouse) is not currently
pressed. Its value is the same as the literal "up".

zero..ten The numbers 0 through 10.

Table B-1 HyperTalk constants (continued)

Constant name Description
554

A P P E N D I X C

Figure C-0
Listing C-0
Table C-0
Enhancing the Execution Speed
of HyperCard C

This appendix provides scripting hints and other techniques for getting the
most performance out of HyperCard applications.

One of the key methods for increasing the speed of HyperCard is avoiding disk
accesses whenever possible. If you remember a few good scripting techniques,
you can keep disk access at a minimum. To avoid excessive disk accesses, do
the following:

■ Change stacks as seldom as possible.

■ Use variables instead of fields for all operations.

■ Refer to a remote card rather than going there.

Other good scripting techniques that generally improve the performance of
HyperCard are as follows:

■ Migrate to XCMDs and XFCNs for highly repetitive tasks, such as sorting.

■ Set lockScreen to true to avoid needless redrawing.

■ Set lockMessages to true to save time during card-to-card data collection.

■ Combine multiple messages.

■ Take unnecessary code out of loops.

■ Always use quoted literals.

■ Use in-line statements rather than handler calls.

■ Do complex calculations once.

■ Watch overuse of variable references.

■ Do visible work first.

Each of the techniques is described in the sections that follow.
555

A P P E N D I X C

Enhancing the Execution Speed of HyperCard
Change Stacks as Seldom as Possible C

Changing stacks means going to a disk, hard disk, or CD-ROM to retrieve
information and, in the case of a floppy disk and hard disk, to store informa-
tion. The disk accessing process takes more time than any other HyperCard
operation.

When you need to read or write data from another stack, go the stack only
once. Whenever possible, get or put everything you need at the same time.

Keep related information in the same stack. This includes data that you regu-
larly sort, search, or move between. If you plan to use cards with substantially
different appearances within the same application (a HyperCard application
could consist of several stacks) and you need to cross boundaries frequently,
use multiple backgrounds in the same stack rather than separate stacks.

However, there are exceptions to this rule. Because you might want to put the
finished stack on a floppy disk for ease of backup and transportation, you need
to keep an eye on the size of stacks as you build them. If you have too much
related data to put on a single floppy, you have to use multiple stacks rather
than one stack. Alternatively, you could put the final stack on a CD-ROM.

Another exception to the single stack rule is command operations. The
HyperCard sort and find commands can operate on the entire stack, and
you may not want the entire stack sorted or searched.

Use Variables, Not Fields, for Operations C

Whenever possible, do operations such as sorting, data collection, and calcu-
lations in variables rather than fields. HyperCard operations are much faster
in variables.

Fields are for the display of data and for long-term storage; HyperCard keeps
field information stored on disk and draws that information onto the screen.
Variables, in contrast, are in RAM and are for storage and manipulation of
transient data—data that doesn’t appear on the screen and is lost when you
quit HyperCard. For example, collecting data on different cards into variables
is approximately 50 percent faster than collecting the same data into a field.

Do calculations in variables to get faster results: for example, adding the
contents of a series of fields from different cards. Everything that goes into
fields, including numbers, is converted to a string, regardless of its original
format. The numeric content of variables, in contrast, is stored in binary format,
making calculation more precise and less time consuming.
556

A P P E N D I X C

Enhancing the Execution Speed of HyperCard
Refer to a Remote Card Rather Than Going There C

Referring to a remote card is generally faster than going there but is dependent
on the number of fields referred to per card. For example, when collecting data
from fewer than 10 fields, referring to a remote card in the current stack is
faster than going to the card. However, when collecting data from 10 fields or
more, it is faster to go to that card and then collect the data. For example, this
script refers to a remote card containing data needed from the fields on that
card. The script works in the current card of the current stack.

on collectGoodies

repeat with FieldNum = 1 to 8

put (line 2 in card field FieldNum of card 4) & return¬

& (line 3 in card field FieldNum of card 4) & return after¬

field 3 of this card

end repeat

end collectGoodies

If the data is needed from more than 10 fields on a remote card, the script
might look like this:

on collectGoodies

set lockMessages to true

push card

lock screen

go to card 4

repeat with FieldNum = 1 to the number of bkgnd fields

put (line 2 in card field FieldNum of card 4) & return &¬

(line 3 in card field FieldNum of card 4) & return¬

after var

end repeat

pop card

put var into field 3

unlock screen

set lockMessages to false

end collectGoodies
557

A P P E N D I X C

Enhancing the Execution Speed of HyperCard
Migrate to XCMDs and XFCNs for Repetitive Tasks C

No matter how efficient your HyperTalk code is, sorting 500 items is still going
to take a long time. Repetitive time-intensive tasks are best handled with
XCMDs and XFCNs. XCMDs and XFCNs have the same calling interface as
any other HyperCard command, so are not any harder to use in a script.

If you do not have the programming experience in another high-level language
to create an appropriate XCMD for your application, public domain and
shareware XCMDs may exist that provide all of the required functions that
your application needs. These XCMDs can be found through HyperCard user
groups, user bulletin boards, and other information services.

Set LockScreen to True to Avoid Needless Redrawing C

Redrawing the screen takes time, and it makes no sense to change the screen if
all you are doing is going to another card to collect data. Set lockScreen to
true (or use the lock command) while your scripts collect data by going from
card to card and stack to stack.

See the second script example in the section “Refer to a Remote Card Rather
Than Going There.”

Set LockMessages to True During
Card-to-Card Data Collection C

The lock messages command prevents HyperCard from sending the six
open and close system messages associated with cards, backgrounds, and
stacks. See Chapter 8, “System Messages,” for more information about
HyperCard system messages.

Combine Multiple Messages C

Message sending is relatively time consuming because each message traverses
the entire message-passing path. The techniques described here avoid excessive
message sending and can save lots of time.

Operators are interpreted directly and don’t incur the cost of message sending.
Using the operators is in, is not in, and contains is faster than using
offset() because they are interpreted directly and are not sent as messages.
558

A P P E N D I X C

Enhancing the Execution Speed of HyperCard
Calling a built-in function with the or of is faster than calling with “()”
because “()” functions traverse the message path. Therefore, using date()
is slower than using the date.

Use put to move values directly, rather than using get to store a value in It
and then using put to move the value out of It. As an example,

get x

put It into y

is slower than

put x into y

Take Unnecessary Code Out of Loops C

The reason for removing unnecessary code from loops is fairly obvious but
frequently overlooked. Shorter handlers with fewer lines of code take less time
to run than longer handlers. This fact is magnified in loops. For example, a loop
that comprises 6 lines and runs six iterations is equivalent to 25 lines of code.
Every extra line in that six-iteration loop counts as an additional 6 lines.
Unwrap your code where possible and avoid unnecessary lines. For example,
don’t start a loop with the line set the cursor to watch, because you get
that for free.

Use In-Line Statements Rather Than Handler Calls C

It always takes time to get from one place to another and back again in any
HyperCard application and script. To save time, put all of your code in-line.
Create utility handlers where possible to avoid calling back to handlers in the
main module. Putting a lot of your code in-line can, however, make your code
hard to read. You should consider whether the increase in speed is worth
having code that is hard to read. A good solution is to save most of the in-line
code for repetitive time-consuming tasks that you haven’t written XCMDs
to handle.
559

A P P E N D I X C

Enhancing the Execution Speed of HyperCard
Do Complex Calculations Once C

When you’ve figured something out, put the results in a variable, then refer to
the variable. This also includes parameter values. Retrieve parameter values
once rather than many times (assuming you know the values haven’t changed).
This technique results in the greatest time savings within loops.

Watch Overuse of Variable References C

The speed increases seen by avoiding overusing variable references are
minimal, but it is good scripting technique. The line add x to y is slightly
faster than put x + y into y, because the former has fewer variable
references (two) than the latter (three).
560

A P P E N D I X D

Figure D-0
Listing D-0
Table D-0
Extended ASCII Table D

This appendix lists the character assignments for the 256 single-byte character
values used by the Macintosh.

There are 256 possible 8-bit binary values, from 00000000 to 11111111. Of these,
the first 128 (from 00000000 to 01111111) have been assigned to a standard set of
characters and commands used in data processing and communication. These
assignments form the ASCII character set. (ASCII stands for American Standard
Code for Information Interchange.)

The remaining 128 binary values, those for which the most significant bit (first
digit) is 1 instead of 0, are not assigned in the ASCII standard. Because they
have higher numerical values than the first 128 characters, they are often
referred to as high-ASCII characters.

This appendix lists all character values by their decimal equivalent.

Table D-1 lists the first 32 characters, the control characters, which have no
printable-character representation, with the standard abbreviation for each and
its meaning.

Table D-1 Control character assignments

Value Name Meaning Value Name Meaning

0 NUL Null 8 BS Backspace

1 SOH Start of heading 9 HT Horizontal tab

2 STX Start of text 10 LF Line feed

3 ETX End of text 11 VT Vertical tab

4 EOT End of transmission 12 FF Form feed

5 ENQ Enquiry 13 CR Carriage return

6 ACK Acknowledge 14 SO Shift out

7 BEL Bell 15 SI Shift in

continued
561

A P P E N D I X D

Extended ASCII Table
Table D-2 lists the remaining 224 character values with the characters to which
they are assigned in the Macintosh Courier font.

16 DLE Data link escape 24 CAN Cancel

17 DC1 Device control 1 25 EM End of medium

18 DC2 Device control 2 26 SUB Substitute

19 DC3 Device control 3 27 ESC Escape

20 DC4 Device control 4 28 FS File separator

21 NAK Negative acknowledge 29 GS Group separator

22 SYN Synchronous idle 30 RS Record separator

23 ETB End of transmission block 31 US Unit separator

Table D-2 Character assignments in Macintosh Courier font

Value Character Value Character Value Character Value Character

32 Space 43 + 54 6 65 A

33 ! 44 , 55 7 66 B

34 " 45 - 56 8 67 C

35 # 46 . 57 9 68 D

36 $ 47 / 58 : 69 E

37 % 48 0 59 ; 70 F

38 & 49 1 60 < 71 G

39 ' 50 2 61 = 72 H

40 (51 3 62 > 73 I

41) 52 4 63 ? 74 J

42 * 53 5 64 @ 75 K

continued

Table D-1 Control character assignments (continued)

Value Name Meaning Value Name Meaning
562

A P P E N D I X D

Extended ASCII Table
76 L 101 e 126 ~ 151 ó

77 M 102 f 127 Del 152 ò

78 N 103 g 128 Ä 153 ô

79 O 104 h 129 Å 154 ö

80 P 105 i 130 Ç 155 õ

81 Q 106 j 131 É 156 ú

82 R 107 k 132 Ñ 157 ù

83 S 108 l 133 Ö 158 û

84 T 109 m 134 Ü 159 ü

85 U 110 n 135 á 160 †

86 V 111 o 136 à 161 °

87 W 112 p 137 â 162 ¢

88 X 113 q 138 ä 163 £

89 Y 114 r 139 ã 164 §

90 Z 115 s 140 å 165 •

91 [116 t 141 ç 166 ¶

92 \ 117 u 142 é 167 ß

93] 118 v 143 è 168 ®

94 ^ 119 w 144 ê 169 ©

95 _ 120 x 145 ë 170 ™

96 ` 121 y 146 í 171 ´

97 a 122 z 147 ì 172 ¨

98 b 123 { 148 î 173 ≠

99 c 124 | 149 ï 174 Æ

100 d 125 } 150 ñ 175 Ø
continued

Table D-2 Character assignments in Macintosh Courier font (continued)

Value Character Value Character Value Character Value Character
563

A P P E N D I X D

Extended ASCII Table
176 ∞ 200 » 224 ‡ 248 ¯

177 ± 201 … 225 · 249 ˘

178 ≤ 202 ** 226 ‚ 250 ˙

179 ≥ 203 À 227 „ 251 ˚

180 ¥ 204 Ã 228 % 252 ¸

181 µ 205 Õ 229 Â 253 ˝

182 ∂ 206 Œ 230 Ê 254 ˛

183 ∑ 207 œ 231 Á 255 ˇ

184 ∏ 208 – 232 Ë

185 π 209 — 233 È

186 ∫ 210 “ 234 Í

187 ª 211 ” 235 Î

188 º 212 ‘ 236 Ï

189 Ω 213 ’ 237 Ì

190 æ 214 ÷ 238 Ó

191 ø 215 ◊ 239 Ô

192 ¿ 216 ÿ 240 ð

193 ¡ 217 Ÿ 241 Ò

194 ¬ 218 ⁄ 242 Ú

195 √ 219 ¤ 243 Û

196 ƒ 220 ‹ 244 Ù

197 ≈ 221 › 245 ı

198 ∆ 222 fi 246 ˆ **Stands for a
 nonbreaking space

199 « 223 fl 247 ˜

Table D-2 Character assignments in Macintosh Courier font (continued)

Value Character Value Character Value Character Value Character
564

A P P E N D I X E

Figure E-0
Listing E-0
Table E-0
Operator Precedence Table E

Table E-1 shows the order of precedence of HyperTalk’s operators. In a complex
expression containing more than one operator, HyperTalk performs the
operation indicated by operators with lower-numbered precedence before
those with higher-numbered precedence. Operators of equal precedence are
evaluated left-to-right, except for exponentiation, which goes right-to-left.
If you use parentheses, HyperTalk evaluates the innermost parenthetical
expression first.

Chapter 7 discusses expression evaluation.

Table E-1 Operator precedence

Order Operators Type of operator

1 () Grouping

2 – Minus sign for numbers

not Logical negation for Boolean values

there is a Comparison for HyperCard items

there is an Comparison for HyperCard items

there is not a Comparison for HyperCard items

there is not an Comparison for HyperCard items

3 ^ Exponentiation for numbers

4 * / div mod Multiplication and division for numbers

5 + – Addition and subtraction for numbers

6 & && Concatenation of text

7 > < <= >= ≤ ≥ Comparison for numbers or text

is in Comparison for text

continued
565

A P P E N D I X E

Operator Precedence Table
contains Comparison for text

is within Boolean test for point within rectangle

is not within Boolean test for point within rectangle

is not in Comparison for text

is a Comparison for types

is an Comparison for types

is not a Comparison for types

is not an Comparison for types

8 = is Comparison for numbers or text

is not <> ≠ Comparison for numbers or text

9 and Logical for Boolean values

10 or Logical for Boolean values

Table E-1 Operator precedence (continued)

Order Operators Type of operator
566

A P P E N D I X F

Figure F-0
Listing F-0
Table F-0
HyperCard Synonyms F

Table F-1 lists the alternative ways that HyperTalk terms can be used.

Table F-1 HyperTalk synonyms

Synonym Term

abbr abbrev abbreviated

bg bkgnd background

bgs bkgnds backgrounds

botRight bottomRight

btn button

btns buttons

cd card

cds cards

char character

chars characters

fld field

flds fields

grey gray

hilite highlight highlite hilight

in of

loc location

mid middle

msg message message box

continued
567

A P P E N D I X F

HyperCard Synonyms
msg watcher message watcher

part button field

poly polygon

prev previous

rect rectangle

reg regular

sec secs seconds

spray spray can

tick ticks

Table F-1 HyperTalk synonyms (continued)

Synonym Term
568

A P P E N D I X G

Figure G-0
Listing G-0
Table G-0
HyperCard Limits G

This appendix lists various minimum and maximum sizes and numbers of
elements defined in HyperCard.

The maximum limits shown in Table G-1 are theoretical. Some of them are
lower in practice. For example, HyperCard currently brings an entire card into
memory at once, so the maximum size of a card is limited by available memory.
It’s possible that a card with a lot of text and long scripts, created while
running HyperCard on a Macintosh with 2 MB of RAM, could not be opened
on a Macintosh with 1 MB. The current useful size of a card (or background)
is therefore between 50 and 100 KB.

The term part, in this appendix and internally in HyperCard, refers to buttons
or fields. The value represented by LongInt is 2,147,483,647; the value
represented by Integer is 32,767.

Table G-1 HyperCard limits

Item Limit

Stack limits

Stack size 512 MB

Minimum stack size 4896 bytes

Maximum total number of bitmaps, cards,
and backgrounds per stack

16,777,216

Maximum stack name size 31 characters

Maximum stack script size 30,000 characters

Background limits

Background size (bytes) LongInt*

Minimum background size 64 bytes

Maximum parts per background Integer

continued
569

A P P E N D I X G

HyperCard Limits
Background limits (continued)

Maximum total part size per background (bytes) LongInt

Maximum background name size 31 characters

Maximum background script size 30,000 characters

Card limits

Card size (bytes) LongInt*

Minimum card size 64 bytes

Maximum parts per card Integer

Maximum total part size per card (bytes) LongInt

Maximum total text size per card (bytes) LongInt

Maximum card name size 31 characters

Maximum card script size 30,000 characters

Part (button or field) limits

Part size (bytes) Integer†

Minimum overhead per part 30 bytes

Maximum part name size 31 characters

Maximum part text size 30,000 characters

Maximum part script size 30,000 characters

HyperTalk limits

Maximum nested repeat structures 30

Maximum active variables (all pending handlers) 512

Maximum size card name with go command 31 characters

Maximum variable name size 31 characters

Maximum number format size 31 characters

continued

Table G-1 HyperCard limits (continued)

Item Limit
570

A P P E N D I X G

HyperCard Limits
* Limited by HyperCard stack size; less than 100 KB for practical use.
† The sum of the other elements in the button or field must be less than the part size.

HyperTalk limits (continued)

Maximum size of command with arguments 254 characters

Maximum handler name size 254 characters

Maximum script size 30,000 characters

Maximum variable value size Limited by available
memory

Table G-1 HyperCard limits (continued)

Item Limit
571

A P P E N D I X H

Figure H-0
Listing H-0
Table H-0
HyperCard Syntax Summary H

This appendix lists HyperTalk’s built-in commands (Table H-1) and functions
(Table H-2), showing the syntax of their parameters.

HyperTalk’s built-in commands and functions are described in more detail in
Chapters 10 and 11, respectively. A brief description for each is included in
Appendix I.

Syntax Description Notation H

The syntax descriptions use the following typographic conventions. Words
or phrases in this type are HyperTalk language elements that you type to
the computer literally, exactly as shown. Words in italic type are metasymbols
(used to describe general elements), not specific names—you must substitute
the actual instances. Brackets ([]) enclose optional elements that may be
included if you need them. (Don’t type the brackets.) In some cases, optional
elements change what the message does; in other cases they are helper words
that have no effect except to make the message more readable.

It doesn’t matter whether you use uppercase or lowercase letters; names that
are formed from two words are shown in lowercase letters with a capital in
the middle (likeThis) merely to make them more readable. The HyperTalk
prepositions of and in are interchangeable—the syntax descriptions use the
one that sounds more natural.

The terms factor and expression are defined in Chapter 7. Briefly, a factor can be
a constant, literal, function, property, number, or container, and an expression
can be a factor or a complex expression built with factors and operators. Also, a
factor can be an expression within parentheses.
Syntax Description Notation 573

A P P E N D I X H

HyperCard Syntax Summary
Table H-1 HyperTalk command syntax

add number to [chunk of] container

answer file [promptText] [of type fileType]

answer program [promptText] [of type processType]

answer question with reply

answer question with reply1 or reply2

answer question with reply1 or reply2 or reply3

arrowKey direction

ask file promptText [with [default] fileName]

ask password [clear] question [with defaultAnswer]

ask question [with defaultAnswer]

beep [number]

choose toolName tool

choose tool toolNumber

click at point [with key]

click at point with key, key2

click at point with key, key2, key3

close [docPathname [with|in]] appPathname

close file fileName

close printing

close window windowName

commandKeyDown char

controlkey keyNumber

convert [chunk of] container|literal [from format [and format]] to format¬
[and format]

create menu menuName

continued
574 Syntax Description Notation

A P P E N D I X H

HyperCard Syntax Summary
create stack stackName [with background] [in a new window]

debug checkpoint

delete chunk [of container]

delete menu

delete menuItem of menu

delete partName

dial number

dial number with [modem [modemCommands]]

disable [card|background] button

disable menu

disable menuItem of menu

divide [chunk of] container by number

do expression [as scriptLanguage]

doMenu itemName [,menuName][without dialog] [with modifierKey [,modifierKey]]

drag from point1 to point2

drag from point1 to point2 with key

drag from point1 to point2 with key, key2

drag from point1 to point2 with key, key2, key3

edit script of object

enable button

enable menu

enable menuItem of menu

enterInField

enterKey

export paint to file fileName

continued

Table H-1 HyperTalk command syntax (continued)
Syntax Description Notation 575

A P P E N D I X H

HyperCard Syntax Summary
find chars [international] text [in field] [of marked cards]

find [international] text [in field] [of marked cards]

find string [international] text [in field] [of marked cards]

find whole [international] text [in field] [of marked cards]

find word [international] text [in field] [of marked cards]

functionKey keyNumber

get expression

get [the] property [of object]

go back

go forth

go [to] background [of [stack] stackName] [in a new window]¬
[without dialog]

go [to] card [of background] [of [stack] stackName]¬
[in a new window] [without dialog]

go [to] ordinal

go [to] position

go [to] [stack] stackName [in a new window] [without dialog]

help

hide background picture

hide card picture

hide groups

hide menuBar

hide object

hide picture of background

hide picture of card

hide titlebar

continued

Table H-1 HyperTalk command syntax (continued)
576 Syntax Description Notation

A P P E N D I X H

HyperCard Syntax Summary
hide window stackName

hide window windowName

import paint from file fileName

keyDown char

lock error dialogs

lock messages

lock recent

lock screen

mark all cards

mark card

mark cards by finding chars text [in field]

mark cards by finding string text [in field]

mark cards by finding text [in field]

mark cards by finding whole text [in field]

mark cards by finding word text [in field]

mark cards where expression

multiply [chunk of] container by number

open file fileName

open [fileName with] application

open printing [with dialog]

open report printing [with dialog]

open report printing [with template templateName]

palette paletteName[, point]

picture [fileName,fileType,windowStyle,visible,depth,floatingLayer]

play sound [tempo tempo] [notes]

continued

Table H-1 HyperTalk command syntax (continued)
Syntax Description Notation 577

A P P E N D I X H

HyperCard Syntax Summary
play stop

pop card [preposition [chunk of] container]

print button

print card [from point1 to point2]

print expression

print field

print fileName with application

print marked cards

print number cards

push background [of stack stackName]

push card

push card [of stack stackName]

push stack

put expression [preposition [chunk of] container]

put itemName preposition [menuItem of] menu [with menuMsg message]

read from file fileName at start for numberOfChars

read from file fileName for numberOfChars

read from file fileName until char

read from file fileName until constant

reply expression [with keyword aeKeyword]

reply error expression

request appleEvent data|class|id|sender|return id|sender id

request appleEvent data with keyword aeKeyword

request expression from program

request expression of|from program id programID

continued

Table H-1 HyperTalk command syntax (continued)
578 Syntax Description Notation

A P P E N D I X H

HyperCard Syntax Summary
request expression of|from this program

reset menubar

reset paint

reset printing

returnInField

returnKey

save stack stackName as fileName

save [this] stack as [stack] fileName

select empty

select object

select [preposition] chunk of field

select [preposition] text of field

selectedButton(family)

the selectedButton of family

set [the] property [of element] to value

show all cards

show background picture

show card picture

show cards

show groups

show marked cards

show menuBar

show [number] cards

show object [at point]

show picture of background

continued

Table H-1 HyperTalk command syntax (continued)
Syntax Description Notation 579

A P P E N D I X H

HyperCard Syntax Summary
show picture of card

show titlebar

show window stackName

show window windowName [at point]

sort [lines|items of] container [sortDirection] ¬
[sortType] [by sortKey]

sort [[[marked] cards of] background][sortDirection] ¬
[sortType] [by sortKey]

sort [[marked] cards of [this]]stack [sortDirection] ¬
[sortType] [by sortKey]

start using stack stackName

stop using stack stackName

subtract number from [chunk of] container

tabKey

type text

type text with key

type text with key,key2

type text with key,key2,key3

unlock error dialogs

unlock messages

unlock recent

unlock screen [with effectName]

unmark all cards

unmark card

unmark cards by finding chars text in field

unmark cards by finding string text in field

continued

Table H-1 HyperTalk command syntax (continued)
580 Syntax Description Notation

A P P E N D I X H

HyperCard Syntax Summary
unmark cards by finding text in field

unmark cards by finding whole text in field

unmark cards by finding word text in field

unmark cards where expression

visual [effect] effectName [speed] [to image]

wait [for] time [seconds]

wait until condition

wait while condition

write text to file fileName

write text to file fileName at end

write text to file fileName at eof

write text to file fileName at start

Table H-2 HyperTalk function syntax

the abs of factor

abs(expression)

annuity(rate, periods)

the atan of factor

atan(expression)

average(list)

average function

the charToNum of factor

charToNum(expression)

the clickChunk

continued

Table H-1 HyperTalk command syntax (continued)
Syntax Description Notation 581

A P P E N D I X H

HyperCard Syntax Summary
clickChunk()

the clickH

clickH()

the clickLine

clickLine()

the clickLoc

clickLoc()

the clickText

clickText()

the clickV

clickV()

the commandKey

commandKey()

compound(rate, periods)

the cos of factor

cos(expression)

the [adjective] date

date()

the destination

destination()

the diskSpace

diskSpace()

the exp of factor

exp(expression)

the exp1 of factor

continued

Table H-2 HyperTalk function syntax (continued)
582 Syntax Description Notation

A P P E N D I X H

HyperCard Syntax Summary
exp1(expression)

the exp2 of factor

exp2(expression)

the foundChunk

foundChunk()

the foundField

foundField()

the foundLine

foundLine()

the foundText

foundText()

the heapSpace

the length of factor

length(expression)

the ln of factor

ln(expression)

the ln1 of factor

ln1(expression)

the log2 of factor

log2(expression)

max(list)

the menus

menus()

min(list)

the mouse

continued

Table H-2 HyperTalk function syntax (continued)
Syntax Description Notation 583

A P P E N D I X H

HyperCard Syntax Summary
mouse()

the mouseClick

mouseClick()

the mouseH

mouseH()

the mouseLoc

mouseLoc()

the mouseV

mouseV()

[the] number of objects

[the] number of chunks in expression

[the] number of backgrounds [in this stack]

[the] number of cards in background

[the] number of cards [in this stack]

[the] number of marked cards

[the] number of menus

[the] number of menuItems of menu

[the] number of [card|background] parts

[the] number of windows

the numToChar of factor

numToChar(expression)

offset(string1, string2)

the optionKey

optionKey()

the param of factor

continued

Table H-2 HyperTalk function syntax (continued)
584 Syntax Description Notation

A P P E N D I X H

HyperCard Syntax Summary
param(expression)

the paramCount

paramCount()

the params

params()

the programs

programs()

the random of factor

random(expression)

the result

result()

the round of factor

round(expression)

the screenRect

screenRect()

the seconds

seconds()

the selectedButton of family

selectedButton (family)

the selectedChunk

selectedChunk()

the selectedField

selectedField()

the selectedLine [of button|field]

selectedLine([button|field])

continued

Table H-2 HyperTalk function syntax (continued)
Syntax Description Notation 585

A P P E N D I X H

HyperCard Syntax Summary
the selectedLoc

selectedLoc()

the selectedText [of button|field]

selectedText([button|field])

the shiftKey

shiftKey()

the sin of factor

sin(expression)

the sound

sound()

the sqrt of factor

sqrt(expression)

the stacks

stacks()

the stackSpace

stackSpace()

sum(list)

the systemVersion

systemVersion()

the tan of factor

tan(expression)

the target

the ticks

ticks()

the [adjective] time

continued

Table H-2 HyperTalk function syntax (continued)
586 Syntax Description Notation

A P P E N D I X H

HyperCard Syntax Summary
time()

the tool

tool()

the trunc of factor

trunc(expression)

the value of factor

value(expression)

the windows

windows()

Table H-2 HyperTalk function syntax (continued)
Syntax Description Notation 587

A P P E N D I X I

Figure I-0
Listing I-0
Table I-0
HyperTalk Vocabulary I

Table I-1 lists and defines, in alphabetical order, HyperTalk’s native vocabu-
lary—the names of its built-in commands and functions, its system messages,
keywords, the names of objects and their properties, and various adjectives,
constants, ordinals, and other terms.

This list is not exhaustive—there are other terms with specific meanings
recognized by HyperCard in particular contexts, and they are described with
the primary term to which they relate. For example, the names of the various
visual effects are listed with the visual command in Chapter 10.

The parameter syntax of HyperTalk’s built-in commands and functions is
shown in Appendix H.

Table I-1 HyperTalk vocabulary

Term Category Meaning

abbr[ev[iated]] Adjective Modifies the value returned by the date
function or the name or ID property.

abs Function Returns the absolute value of a number.

add Command Adds the value of an expression to a value
in a container.

address Property Returns the path of the currently executing
HyperCard program.

after Preposition Used with put command, directing
HyperCard to append a new value
following any preexisting value in a
container.

all Adjective Specifies total number of cards in stack to
show cards command.

annuity Function Computes present or future value of an
ordinary annuity.

continued
589

A P P E N D I X I

HyperTalk Vocabulary
answer Command Displays a dialog box with question and
reply buttons.

answer file Command Presents the standard dialog box for
locating a file; used for opening files
of a specified type.

answer program Command Presents the standard dialog box for
locating a progam to link to.

any Ordinal Special ordinal used with object or chunk
to specify a random element within its
enclosing set.

appleEvent System message Sent to the current card when an Apple
event is received.

arrowKey Command Takes you to another card.

arrowKey System message Sent to current card when an arrow key
is pressed.

ask Command Displays a dialog box with a question and
default answer.

ask file Command Presents the standard dialog box for
locating where to save a file; used for
saving files.

ask password Command Displays a dialog box with a field for a
password.

atan Function Returns trigonometric arc tangent of
a number.

autoHilite Property Determines whether or not a button’s
hilite property is affected by the message
mouseDown. Also determines whether or
not a field behaves as a list.

autoTab Property Determines whether the specified
nonscrolling field sends the tabKey
message to the current card.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
590

A P P E N D I X I

HyperTalk Vocabulary
average Function Returns the average value of numbers
in a list.

background Object Generic name of background object;
used with specific designation (go to
next background). Also used to
specify containing object for buttons
and, optionally, fields (background
button 2).

backgrounds Object type Specifies backgrounds as type of object to
the number function.

beep Command Causes Macintosh to make a beep sound.

before Preposition Used with put command, directing
HyperCard to place a new value at the
beginning of any preexisting value in
a container.

bg Object Abbreviation for background.

bkgnd Object Abbreviation for background.

bkgnds Object type Specifies backgrounds as type of object to
the number function.

blindTyping Property Allows typing into Message box
when hidden.

botRight Property Abbreviation for bottomRight.

bottom Property Determines or changes the value of item 4
of the rectangle property when applied
to the specified object or window.

bottomRight Property Determines or changes items 3 and 4 of the
value of the rectangle property when
applied to the specified object or window.

browse Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
591

A P P E N D I X I

HyperTalk Vocabulary
brush Property Determines the current brush shape.

brush Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

btn Object Abbreviation for button.

bucket Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

button Object Generic name of button object; used with a
specific designation (hide button one).

button Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

buttonCount Property Determines the number of buttons in
an open palette XCMD displayed by the
palette command.

buttons Object type Specifies buttons as type of object to the
number function.

cantAbort Property Determines if a script can be stopped by
pressing Command-period.

cantDelete Property Determines if a background, card, or stack
can be deleted.

cantModify Property Determines if a stack can be modified. Can
be used with a password to prevent anyone
without the password from modifying
a stack.

cantPeek Property Determines if the outline is shown around
buttons and fields when the Command-
Option or Command-Option-Shift keys
are pressed.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
592

A P P E N D I X I

HyperTalk Vocabulary
card Object Generic name of a card object; used with
a specific designation (go to card
"fred"). Also used to specify containing
object for fields and, optionally, buttons
(card field "date").

cards Object type Specifies cards as type of object to the
number function or show command.

cd Object Abbreviation for card.

center Adjective Specifies center alignment of text in a field.

centered Property Determines whether shapes are drawn
from the center or from the corner.

char[acter] Chunk A character of text in any container or
expression.

char[acter]s Chunk type Specifies characters as type of chunk to the
number function.

charToNum Function Returns ASCII value of a character.

checkMark Property Determines check character for a
menu item.

choose Command Changes the current tool.

click Command Causes same actions as clicking at a
specified location.

clickChunk Function Returns chunk information about text that
is clicked.

clickH Function Returns horizontal position of last
mouse click.

clickLine Function Returns line information about text that
is clicked.

clickLoc Function Returns location of most recent click.

clickText Function Returns text information about word or
group phrase that is clicked.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
593

A P P E N D I X I

HyperTalk Vocabulary
close Command Closes an application, document opened by
another application, or desk accessory.

clickV Function Returns vertical position of last mouse click.

close System message Sent to the current card when you close a
stack window with the close window
command or by clicking the close box.

closeBackground System message Sent to current card just before you leave
the current background.

closeCard System message Sent to current card just before you leave it.

closeField System message Sent to unlocked field when it closes.

close file Command Closes a previously opened disk file.

closePalette System message Sent to the current card when a palette that
was opened with the palette command
is closed.

closePicture System message Sent to the current card when a window
that was created with the picture
command is closed.

close printing Command Ends a print job.

closeStack System message Sent to current card just before you leave
the current stack.

close window Command Closes a stack or picture window.

commandChar Property Determines the character to use with the
Command key to invoke a menu item.

commandKey Function Returns the state of the Command key:
up or down.

commandKeyDown Command Causes a built-in HyperCard response,
depending on key pressed with
Command key.

commandKeyDown System message Sent to current card when a combination
of the Command key and another key
is pressed.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
594

A P P E N D I X I

HyperTalk Vocabulary
commands Property Returns a list of the commands associated
with the buttons in an open palette
displayed by the palette command.

compound Function Computes present or future value of a
compound interest–bearing account.

controlKey Command Sends the controlKey system message.

controlKey System message Sent to current card when a combination of
the Control key and another key is pressed.

convert Command Converts a date or time to specified format.

create menu Command Creates a new menu with the specified
name.

create stack Command Creates a new stack with the specified
name and background.

cos Function Returns the cosine of the angle that is
passed to it.

cursor Property Sets image appearing at pointer location on
screen. You can only set cursor; you can’t
get it.

curve Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

date Function Returns a string representing the current
date.

debug checkpoint Command Sets a checkpoint in a script to invoke the
built-in debugger.

debugger Property Determines the debugger to use.

delete (menu) Command Deletes a menu.

delete (menu items) Command Deletes a menu item.

delete (object) Command Deletes a button or field.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
595

A P P E N D I X I

HyperTalk Vocabulary
delete (part) Command Deletes a button or field.

delete (text) Command Removes a chunk of text from a container.

deleteBackground System message Sent to current card just before the
background is deleted.

deleteButton System message Sent to a button just before it is deleted.

deleteCard System message Sent to current card just before it is deleted.

deleteField System message Sent to a field just before it is deleted.

deleteStack System message Sent to the current card just before a stack
is deleted.

destination Function Returns the name of a stack to which
HyperCard is going.

dial Command Generates touch-tone sounds through
audio output or modem attached to
serial port.

dialingTime Property Determines how long HyperCard waits
before closing the serial connection to a
modem after dialing.

dialingVolume Property Determines the volume of the touch tones
generated through the speaker by the dial
command.

disable Command Disables the specified menu, menu item,
or button.

diskSpace Function Displays the amount of free space available
on the disk containing the current stack.

dithering Property Determines whether or not the picture
opened by the picture command is dithered.

divide Command Divides the value in a container by the
value of an expression.

do Keyword Sends the value of an expression as a
message to the current card.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
596

A P P E N D I X I

HyperTalk Vocabulary
doMenu Command Performs a specified menu command.

doMenu System message Sent to current card when any menu item
is chosen.

dontSearch Property Determines whether a card, background,
or field can be searched by the find
command.

dontWrap Property Determines whether the text in a field
wraps onto the next line.

down Constant Value returned by various functions
to describe the state of a key or the
mouse button.

drag Command Performs same action as a manual drag.

dragSpeed Property Sets pixels-per-second speed at which
pointer moves with drag command.

editBkgnd Property Determines whether manipulation of
buttons, fields, or paintings occurs on
current card or background.

edit script Command Opens the script of a specified object.

eight Constant String representation of the numerical
value 8.

eighth Ordinal Designates object or chunk number eight
within its enclosing set.

else Keyword Optionally follows then clause in an if
structure to introduce an alternative
action clause.

empty Constant The null string; same as the literal "".

enable Command Enables the specified button, menu, or
menu item.

enabled Property Determines whether the specified button,
menu, or menu item is enabled.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
597

A P P E N D I X I

HyperTalk Vocabulary
end Keyword Marks the end of a message handler,
function handler, repeat loop, or multiple-
statement then or else clause of an
if structure.

enterInField Command Closes a field that is open for text editing.

enterInField System message Sent to the field when the Enter key is
pressed while there is an insertion point
or selection in the field.

enterKey Command Sends contents of Message box to the
current card.

enterKey System message Sent to the current card when the Enter key
is pressed unless the text insertion point
is in a field.

environment Property Determines whether HyperCard Player or
a fully enabled development version of
HyperCard is running.

eraser Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

exit Keyword Immediately ends execution of a message
handler, function handler, or repeat loop.

exitField System message Sent to a field when the pointer leaves the
field’s rectangle.

exp Function Returns the mathematical exponential of
its argument.

exp1 Function Returns one less than the mathematical
exponential of its argument.

export paint Command Creates a Macintosh paint file with the
image of the current card.

exp2 Function Returns the value of 2 raised to the power
specified by the argument.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
598

A P P E N D I X I

HyperTalk Vocabulary
false Constant Boolean value resulting from evaluation of
a comparative expression and returned
from some functions.

family Property Groups a set of buttons to function in a
coordinated manner.

field Container Generic name of field container; used with
specific designation (put the time
into card field "time").

field Object Generic name of field object; used with
specific designation (get name of
first field).

field Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

fields Object type Specifies fields as type of object to the
number function.

fifth Ordinal Designates object or chunk number five
within its enclosing set.

filled Property Determines the Draw Filled setting.

find Command Searches card and background fields for
text strings derived from an expression.

first Ordinal Designates object or chunk number one
within its enclosing set.

five Constant String representation of the numerical
value 5.

fixedLineHeight Property Determine whether or not a field has fixed
line spacing.

formFeed Constant The form feed character (ASCII 12), which
starts a new page in some file formats.

foundChunk Function Returns a chunk expression describing the
text found with the find command.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
599

A P P E N D I X I

HyperTalk Vocabulary
foundField Function Returns an expression describing the field
the text was found in with the find
command.

foundLine Function Returns an expression describing the line
the text was found in with the find
command.

foundText Function Returns the text found with the find
command.

four Constant String representation of the numerical
value 4.

fourth Ordinal Designates object or chunk number four
within its enclosing set.

freeSize Property Determines the amount of free space
available in a specified stack.

function Keyword Marks the beginning of a function handler.
Connects the handler with a particular
function call.

functionKey Command Performs Undo, Cut, Copy, or Paste opera-
tions with parameter values of 1, 2, 3, or 4,
respectively.

functionKey System message Sent to current card when any function key
on the Apple Extended Keyboard is pressed.

get Command Puts the value of an expression into the
local variable It.

global Keyword Declares specified variables to be valid
beyond current execution of current
handler.

globalLoc Property Determines the location of a window
created with the picture command in
global coordinates.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
600

A P P E N D I X I

HyperTalk Vocabulary
globalRect Property Determines the rectangle of a window
created with the picture command
in global coordinates.

go Command Takes you to a specified card or stack.

grid Property Determines the Grid setting.

hBarLoc Property Determines the location of the horizontal
bar in the Variable Watcher window.

heapSpace Function Returns an integer representing the amount
of heap space available to HyperCard.

help Command Takes you to the first card in the stack
named HyperCard Help.

help System message Sent to the current card, just before leaving
that card, when Help is chosen from the Go
menu (or Command-? is pressed).

height Property Determines or changes the vertical distance
in pixels occupied by the rectangle of the
specified button or field.

hide Command Hides the specified window from view.

hide groups Command Hides the gray underline displayed
beneath text by the show groups
command.

hideIdle Property Determines whether or not the “Hide idle”
checkbox is checked in the Message
Watcher window.

hide menubar System message Hides the HyperCard menu bar.

hideUnused Property Determines whether or not the “Hide
unused messages” checkbox is checked
in the Message Watcher window.

hilite Property Determines whether a specified button is
highlighted.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
601

A P P E N D I X I

HyperTalk Vocabulary
hilitedButton Property Determines whether a button is highlighted
in a palette XCMD displayed by the
palette command.

icon Property Determines the icon that is displayed with
a specified button.

ID Property Determines the permanent ID number of a
specified background, card, field, or button.

idle System message Sent to the current card repeatedly
whenever nothing else is happening.

if Keyword Introduces a conditional structure contain-
ing statements to be executed only if a
specified condition is true.

import paint Command Reads in a Macintosh paint file and makes
it the current selection.

in Operator Used with the comparison operators is in
and is not in.

in Preposition Used as a connective preposition in chunk
expressions—for example, card 12 in
this stack.

into Preposition Used with put command, directing
HyperCard to replace any preexisting value
in a container with a new value.

It Container Local variable that is the default destination
for get, ask, answer, read, request,
and convert commands.

item Chunk A piece of text delimited by commas in any
container or expression.

itemDelimiter Property Determines the character that delimits
items in a container.

items Chunk type Specifies items as type of chunk to the
number function.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
602

A P P E N D I X I

HyperTalk Vocabulary
keyDown Command Causes HyperCard to enter the character
passed with the command at the insertion
point.

keyDown System message Sent to the current card when a key
is pressed.

language Property Used to choose language in which scripts
are displayed.

lasso Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

last Ordinal Special ordinal used with object or chunk to
specify the element whose number is equal
to the total number of elements in its
enclosing set.

length Function Returns the number of characters in the text
string derived from an expression.

left Adjective Specifies left-justified alignment of text in
a field.

left Property Determines or changes the value of item 1
of the rectangle property when applied
to the specified object or window.

line Chunk A piece of text delimited by return
characters in any container.

line Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

lineFeed Constant The line feed character (ASCII 10), which
starts a new line in some file formats.

lines Chunk type Specifies lines as type of chunk to the
number function.

lineSize Property Determines the thickness of lines drawn
with line and shape tools.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
603

A P P E N D I X I

HyperTalk Vocabulary
ln Function Returns the base-e (natural) logarithm of
the number passed to it.

ln1 Function Returns the base-e (natural) logarithm of
the sum of the number passed to it plus 1.

loc Property Determines the location at which a picture
window created with the picture
command is displayed.

loc[ation] Property Determines the location at which a window,
field, or button is displayed.

lock Command Prevents updating of the screen from card
to card.

lockErrorDialogs Property Allows or prevents HyperCard from
displaying error messages.

lockMessages Property Allows or prevents HyperCard from
sending all automatic messages such
as openCard.

lockRecent Property Allows or prevents HyperCard from
adding miniature representations to
the Recent card.

lockScreen Property Determines whether the screen is updated
when moving from card to card.

lockText Property Determines whether text editing is allowed
in a specified field.

log2 Function Returns the base-2 logarithm of the number
passed to it.

long Adjective Modifies value returned by date function
and by name and ID properties.

longWindowTitles Property Determines whether the window title bar
contains the full pathname of a stack or the
short name.

mark Command Marks cards.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
604

A P P E N D I X I

HyperTalk Vocabulary
markChar Property Determines the checkmark character used
to indicate a menu item is chosen.

marked Property Determines whether or not a specified card
is marked.

max Function Returns the highest-value number from a
list of numbers.

me Object The object containing the executing handler.

menu Function Returns a list of the menu items in a
specified menu.

menuMessage Property Determines the message to be sent by a
specified menu item.

menus Function Returns a list of the menu names in the
HyperCard menu bar.

message [box] Container The Message box.

messageWatcher Property Determines the message watcher to use.

mid[dle] Ordinal Special ordinal used with object or chunk to
specify the element whose number is equal
to one more than half the total number of
elements in its enclosing set.

min Function Returns the lowest-value number from a
list of numbers.

mouse Function Returns state of the mouse button: up
or down.

mouseClick Function Returns whether the mouse button has
been clicked.

mouseDoubleClick System message Sent to a button, locked field, or the current
card when the mouse button is
double-clicked.

mouseDown System message Sent to a button, locked field, or the current
card when the mouse button is pressed
down.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
605

A P P E N D I X I

HyperTalk Vocabulary
mouseDownInPicture System message Sent to the current card when the
mouse button is down while the pointer
is in a window created with the
picture command.

mouseEnter System message Sent to a button or field when the pointer is
first moved inside its rectangle.

mouseH Function Returns the horizontal offset in pixels of
the pointer from the left edge of the card
window.

mouseLeave System message Sent to a button or field when the pointer is
first removed from its rectangle.

mouseLoc Function Returns the point on the screen where the
pointer is currently located.

mouseStillDown System message Sent to a button, locked field, or the current
card repeatedly when the mouse button is
held down.

mouseUp System message Sent to a button, locked field, or the current
card when the mouse button is released
after having been previously pressed down
within the same object’s rectangle.

mouseUpInPicture System message Sent to the current card when the mouse
button is released after being down while
the pointer is in a window created with the
picture command.

mouseV Function Returns the vertical offset in pixels of the
pointer from the top of the screen.

mouseWithin System message Sent to a button or field repeatedly while
the pointer remains inside its rectangle.

moveWindow System message Sent to a card when you change a card
window’s location property with
HyperTalk, drag or zoom the card
window, or change the location of the
card window with the show command.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
606

A P P E N D I X I

HyperTalk Vocabulary
msg [box] Container The Message box.

multiple Property Determines whether multiple images are
drawn with a shape tool.

multipleLines Property Used to determine or change whether
multiple-line selections are allowed in a
field configured as a list field.

multiply Command Multiplies the value in a container by the
value derived from an expression.

multiSpace Property Determines the space between objects
drawn when the multiple property
is true.

name Property Determines the name of a stack, back-
ground, card, field, button, menu, or
menu item.

next Keyword Ends execution of current iteration of a
repeat loop, beginning next iteration.

next Object modifier Used with card or background to refer to
the one following the current one.

newBackground System message Sent to the current card as soon as a
background has been created.

newButton System message Sent to a button as soon as it has
been created.

newCard System message Sent to a card as soon as it has been created.

newField System message Sent to a field as soon as it has been created.

newStack System message Sent to the current card as soon as a stack
has been created.

nine Constant String representation of the numerical
value 9.

ninth Ordinal Designates object or chunk number nine
within its enclosing set.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
607

A P P E N D I X I

HyperTalk Vocabulary
number Function Returns the number of buttons or fields on
the current card or background, the number
of marked cards, the number of HyperCard
menus, the number of menu items in
a menu, the number of windows in
HyperCard, or the number of a specified
type of chunk within a value.

number Property Determines the number of a background,
card, field, or button.

numberFormat Property Determines the precision with which
results of mathematical operations are
displayed.

numToChar Function Returns the character whose ASCII
equivalent value is that of the integer
passed to it.

offset Function Returns the number of characters from the
beginning of the source string.

on Keyword Marks the beginning of a message handler
and connects it with a particular message.

one Constant String representation of the numerical
value 1.

open Command Launches the specified application.

openBackground System message Sent to a card when you go to it and its
background is different from the one you
were formerly on.

openCard System message Sent to a card when you go to it.

openField System message Sent to an unlocked field when you place
the insertion point in it for text editing.

open file Command Opens the specified file for a read or
write command operation.

openPalette System message Sent to the current card when a palette is
opened with the palette command.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
608

A P P E N D I X I

HyperTalk Vocabulary
openPicture System message Sent to the current card when a palette is
opened with the picture command.

open printing Command Begins a print job.

open report
printing

Command Begins a print job for a specified report.

openStack System message Sent to a card when you go to it and it’s in a
stack different from the one containing the
card you were formerly on.

optionKey Function Returns the state of the Option key:
up or down.

oval Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

owner Property For a card, determines its background; for a
window, determines its creator.

palette Command Invokes the specified palette XCMD.

param Function Returns a parameter value from the
parameter list passed to the currently
executing handler.

paramCount Function Returns the number of parameters passed
to the currently executing handler.

params Function Returns the entire parameter list passed to
the currently executing handler.

partNumber Property Determines the position of a button or field
among all the buttons and fields of its
enclosing card or background.

pass Keyword Ends execution of a message handler or
function handler and sends the invoking
message or function call to the next object
in the hierarchy.

pattern Property Determines the Paint pattern.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
609

A P P E N D I X I

HyperTalk Vocabulary
pencil Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

pi Constant The mathematical value pi to 20 decimal
places, equal to the number
3.14159265358979323846.

picture Command Displays the specified picture file in an
external window.

play Command Starts the HyperCard sound-playing
feature.

poly[gon] Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

polySides Property Determines the number of sides created by
the Regular Polygon tool.

pop card Command Returns you to last card saved with the
push card command.

powerKeys Property Provides keyboard shortcuts of commonly
used painting actions.

prev[ious] Object modifier Used with card or background to refer to
the one preceding the current one.

print Command Prints the specified file.

print card Command Prints the current card or a specified
number of cards beginning with the
current card.

printMargins Property Determines or sets the current page
print margin.

printTextAlign Property Determines or sets the text alignment for
fields when printing.

printTextFont Property Determines or sets the text font for fields
when printing.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
610

A P P E N D I X I

HyperTalk Vocabulary
printTextHeight Property Determines or sets the line height for fields
when printing.

printTextSize Property Determines or sets the text size for fields
when printing.

printTextStyle Property Determines or sets the text style for fields
when printing.

programs Function Returns a list of the System 7–friendly
programs running on your machine.

properties Property Returns a list of the names of the palette
properties supported by a palette XCMD
displayed by the palette command.

push Command Saves the identification of a specified card
in a LIFO memory stack for later retrieval.

put Command Copies the value of an expression into
a container.

quit System message Sent to the current card when you choose
Quit HyperCard from the File menu (or
press Command-Q), just before HyperCard
goes away.

quote Constant The straight double quotation mark
character.

random Function Returns a random integer between 1 and
the integer derived from a specified
expression.

read Command Reads a file previously opened with the
open file command into the local
variable It. See also write.

rect Property Determines the rectangle property for a
variable watcher window and for windows
created with the picture command.

rect[angle] Property Determines the rectangle occupied by a
specified window, field, or button.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
611

A P P E N D I X I

HyperTalk Vocabulary
rect[angle] Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

reg[ular]
poly[gon]

Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

repeat Keyword Introduces a repeat loop, an iterative
structure containing a block of one or more
statements executed multiple times.

reply Command Used to answer an incoming Apple event.

reportTemplates Property A read-only stack property that returns the
names of the report templates for a stack.

request Command Sends an “evaluate expression” Apple
event to another application.

reset menubar Command Reinstates the default values of all the
HyperCard menus and removes any
user-defined menus.

reset paint Command Reinstates the default values of all the
painting properties.

reset printing Command Reinstates the default values of all the
printing properties.

result Function Returns the status of commands previously
executed in current handler.

resume System message Sent to the current card when HyperCard
resumes running after having been
suspended.

resumeStack System message Sent to the current card when HyperCard
returns to a stack.

return Keyword Returns a value from a function handler or
message handler.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
612

A P P E N D I X I

HyperTalk Vocabulary
returnInField Command Enters a return character into a field that is
open for text editing.

returnInField System message Sent to a field when the Return key is
pressed and there is an insertion point or
selection in the field.

returnKey Command Sends any statement in the Message box to
the current card.

returnKey System message Sent to current card when Return key
is pressed.

right Adjective Specifies right-justified alignment of text in
a field.

right Property Determines or changes the value of item 3
of the rectangle property when applied
to the specified object or window.

round Function Returns the number derived from
an expression, rounded off to the
nearest integer.

round rect[angle] Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

save Command Saves a copy of the specified stack with a
specified name.

screenRect Function Returns the size of the screen HyperCard’s
menu bar is in.

script Property Retrieves or replaces the script of the
specified stack, background, card, field,
or button.

scriptEditor Property Determines the script editor to use.

scriptingLanguage Property Used to set HyperCard objects to accept
scripts written in the scripting language
you choose.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
613

A P P E N D I X I

HyperTalk Vocabulary
scriptTextFont Property Determines the font displayed in the
script editor.

scriptTextSize Property Determines the size of text displayed in the
script editor.

scroll (fields) Property Determines the amount of material that is
hidden above the top of the specified
scrolling field’s rectangle.

scroll (windows) Property Determines the position of the window
over the card or picture.

second Ordinal Designates object or chunk number two
within its enclosing set.

seconds Function Returns the number of seconds between
midnight, January 1, 1904, and the
current time.

select Command Selects an object, a tool, a chunk of text, or a
line in a list field or pop-up button.

select Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

selectedButton Function Returns the descriptor of the currently
highlighted button.

selectedChunk Function Returns a chunk expression describing the
selected text in a field.

selectedField Function Returns an expression describing the field
the selected text is in.

selectedLine Function Returns an expression describing the line in
a field where the selected text is.

selectedLoc Function Returns the point at which the selected
text begins.

selectedText Function Returns the selected text in a field.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
614

A P P E N D I X I

HyperTalk Vocabulary
selection Container Currently selected area of text in a field.

send Keyword Sends a specified message directly to a
specified object; sends a do script Apple
event to another application.

set Command Changes the state of a specified global,
painting, window, or object property.

seven Constant String representation of the numerical
value 7.

seventh Ordinal Designates object or chunk number seven
within its enclosing set.

sharedHilite Property Determines or sets whether a background
button shares the same highlight state on
each card.

sharedText Property Determines or sets whether a background
field shares the same text on each card. If
set to true, it also sets the dontSearch
property of the field to true.

shiftKey Function Returns the state of the Shift key:
up or down.

short Adjective Modifies value returned by date function
and by name and ID properties.

show Command Displays a specified window or object.

show cards Command Displays a specified number of cards in the
current stack.

showLines Property Determines whether or not the text
baselines are visible in a field.

show menubar System message Displays the menu bar if it was hidden.

showName Property Determines whether or not the name of a
specified button is displayed in its rectangle
on the screen.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
615

A P P E N D I X I

HyperTalk Vocabulary
showPict Property Determines whether or not a specified card
or background picture is displayed.

show titlebar Command Shows the title bar of the current card
window if it was hidden.

sin Function Returns the sine of the angle that is passed
to it.

six Constant String representation of the numerical
value 6.

sixth Ordinal Designates object or chunk number six
within its enclosing set.

size Property Returns the size of a specified stack.

sizeWindow System message Sent to the current card when the card
window is resized.

sort Command Puts all of the cards in a specified stack in a
specified order.

sound Function Returns the name of the sound that is
currently playing.

space Constant The space character (ASCII 32); same as the
literal " ".

spray [can] Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

sqrt Function Returns the square root of a number.

stack Object Generic name of stack object; used with
specific name (go to stack "help").

stacks Function Returns a list of the currently open stacks.

stacksInUse Property Determines the current list of stacks in the
message-passing hierarchy.

stackSpace Function Returns the amount of space remaining on
the Macintosh Operating System stack.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
616

A P P E N D I X I

HyperTalk Vocabulary
startUp System message Sent to the current card (first card of the
Home stack) when HyperCard first
begins running.

start using Command Specifies a stack to add to the message-
passing hierarchy.

stop using Command Specifies a stack to remove from the
message-passing hierarchy.

style Property Determines the style of a specified field
or button.

subtract Command Subtracts the value of an expression from
the value in a container.

sum Function Returns the sum of a list of numbers.

suspend System message Sent to the current card when HyperCard is
suspended by launching another
application with the open command.

suspendStack System message Sent to the current card when you leave an
open stack to go to another.

systemVersion Function Returns a decimal string representing the
running version of system software.

tab Constant The horizontal tab character (ASCII 9).

tabKey Command Places the insertion point in the next
unlocked field on the current background
or card.

tabKey System message Sent to the current card or a field when Tab
key is pressed.

tan Function Returns the tangent of an angle.

target Function Indicates the object that initially received
the message that initiated execution of the
current handler.

ten Constant String representation of the numerical
value 10.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
617

A P P E N D I X I

HyperTalk Vocabulary
tenth Ordinal Designates object or chunk number ten
within its enclosing set.

text Tool Name of tool from Tools palette; used with
choose command or returned by the tool
function.

textAlign Property Determines the alignment of characters
created with the Paint Text tool, or those in
a field, or those in the name of a button.

textArrows Property Determines the functions of the arrow keys.

textFont Property Determines the font of characters created
with the Paint Text tool, or those in a field,
or those in the name of a button.

textHeight Property Determines the space between the baseline
and characters created with the Paint Text
tool or those in a field.

textSize Property Determines the size of Paint text, or text in
a field, or text in the name of a button.

textStyle Property Determines the style of Paint text, text in a
field, text in the name of a button, or text of
a menu item.

the Special Precedes a function name to indicate a
function call to one of the built-in functions
of HyperCard. You can’t call a user-defined
function with the. Also allowed, but not
required, preceding special container names
(the Message box) and properties.

then Keyword Follows the conditional expression in an if
structure to introduce the action clause.

third Ordinal Designates object or chunk number three
within its enclosing set.

this Modifier Used with card, background, or stack
to refer to the current one.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
618

A P P E N D I X I

HyperTalk Vocabulary
three Constant String representation of the numerical
value 3.

ticks Function Determines the number of ticks since the
Macintosh was turned on or restarted.

time Function Returns the current time as a text string.

titleWidth Property Determines or changes the width of the
area in a pop-up button which displays
its name.

to Preposition Used to specify ranges (3 to 5), connect
a message to its destination when used
with send, specify a format for the
convert command, assign a container
for the add command, and connect values
to object properties.

tool Function Returns the name of the currently
chosen tool.

top Property Determines or changes the value of item 2
of the rectangle property when applied
to the specified object or window.

topLeft Property Determines or changes items 1 and 2 of the
value of the rectangle property when
applied to the specified object or window.

traceDelay Property Determines or changes the delay between
the execution of lines of HyperTalk during
a debugger trace.

true Constant Boolean value resulting from evaluation of
a comparative expression and returned
from some functions.

trunc Function Determines the integer part of a number.

two Constant String representation of the numerical
value 2.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
619

A P P E N D I X I

HyperTalk Vocabulary
type Command Inserts the specified text at the insertion
point.

unlock Command Allows updating of the screen.

unmark Command Unmarks the specified marked card.

up Constant Value returned by various functions to
describe the state of a key or the mouse
button.

userLevel Property Determines the user level from 1 to 5.

userModify Property Determines or changes whether or not the
user can type into fields or use Paint tools
on a stack that has been write-protected.

value Function Evaluates an expression.

variableWatcher Property Determines the variable watcher to use.

vBarLoc Property Determines the location of the vertical bar
in the Variable Watcher window.

version Property Returns the version number of the
currently running HyperCard application.

visible Property Determines whether or not a window, field,
or button appears on the screen.

visual Command Sets up a specified visual transition to the
next card opened.

wait Command Causes HyperCard to pause before
executing the rest of the current handler.

wideMargins Property Determines whether or not additional
space is displayed in the margins of a
specified field.

width Property Determines or changes the horizontal
distance in pixels occupied by the rectangle
of the specified button or field.

continued

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
620

A P P E N D I X I

HyperTalk Vocabulary
windows Function Returns a list of the windows currently
available to HyperCard.

within Operator Tests whether or not a point lies inside a
specified rectangle.

word Chunk Piece of text delimited by spaces in any
container or expression.

words Chunk type Specifies words as type of chunk to the
number function.

write Command Copies specified text into a specified disk
file starting at a specified point.

zero Constant String representation of the numerical
value 0.

zoom Property Zooms a window created with the
picture command in or out.

Table I-1 HyperTalk vocabulary (continued)

Term Category Meaning
621

Glossary
actual parameters See parameters.

'aete' resource Apple event terminology
extension resource. This resource includes
the “grammar” for a scriptable application,
including the events that the application can
respond to and the classes of objects that
it supports, with their relevant properties
and their default data types. The 'aete'
resource allows scripting components to
map scripts written in human terms to the
corresponding Apple events understood by
the application.

algorithm A step-by-step procedure for
solving a problem or accomplishing a task.
Writing HyperTalk handlers or programs in
other languages often begins with figuring
out a suitable algorithm for a task.

Apple event A high-level event that
adheres to the Apple Event Interprocess
Messaging Protocol. An Apple event
consists of attributes (including the event
class and event ID, which identify the event
and its task) and, usually, parameters
(which contain data used by the target
application of the event). See also Apple
event attribute, Apple event parameter.

Apple event attribute A keyword-
specified descriptor record that identifies
the event class, event ID, target application,
or some other characteristic of an Apple
event. Taken together, the attributes of an
Apple event identify the event and denote
the task to be performed on the data

specified in the Apple event’s parameters.
Compared to parameters (which contain
data used only by the target application of
the Apple event), attributes contain
information that can be used by both the
Apple Event Manager and the target
application. See also Apple event
parameter.

Apple Event Interprocess Messaging
Protocol (AEIMP) A standard defined by
Apple Computer, Inc., for communication
and data sharing among applications.
High-level events that adhere to this
protocol are called Apple events.

Apple event parameter A keyword-
specified descriptor record that contains
data that the target application of an Apple
event must use. Compared to attributes
(which contain information that can be used
by both the Apple Event Manager and the
target application), parameters contain data
used only by the target application of the
Apple event. See also Apple event
attribute, direct parameter, optional
parameter, required parameter.

AppleScript Component A scripting
system integrated at the system level that
utilizes the Component Manager. This
technology, through the use of its scripting
language, AppleScript, enables users to
create scripts to control applications and the
system.
623

G L O S S A R Y
background A type of HyperCard object;
a template shared by a number of cards.
Each card with the same background has
the same background picture, background
fields, and background buttons in its
background layer. Like other HyperCard
objects, every background has a script. You
can place handlers in a background script
that you want to be accessible to all the
cards with that background.

background button A button that is
common to all cards sharing a background.
Compare with card button.

background field A field that is common
to all cards sharing a background; its size,
position, and default text format remain
constant on all cards associated with that
background, but its text can change from
card to card. Compare with card field.

background picture The graphics in the
background layer; the entire picture that is
common to all cards sharing a background.
You see the background picture by choosing
Background from the Edit menu. Compare
with card picture.

Browse tool The tool you use to click
buttons and to set the insertion point
in fields.

button A type of HyperCard object; a
rectangular “hot spot” on a card or
background that responds when you click it
according to the instructions in its script.
For example, clicking a right arrow button
with the Browse tool can take you to the
next card. See also background button,
card button.

Button tool The tool you use to create,
change, and select buttons.

card A type of HyperCard object; a
rectangular area that can hold buttons,
fields, and graphics. All cards in a stack are
the same size. Each layer can contain its
own buttons, fields, and graphics.

card button A button that belongs to a
card; it appears on, and its actions apply to,
a single card. Compare with background
button.

card field A field that belongs to a card; its
size, position, text attributes, and contents
are limited to the card on which the field is
created. Compare with background field.

card picture A picture that belongs to
and applies only to a specific card. Compare
with background picture.

chunk A piece of a character string
represented as a chunk expression. Chunks
can be specified as any combination of
characters, words, items, or lines in a
container or other source of value.

chunk expression A HyperTalk
description of a unique chunk of the
contents of any container or other source
of value.

coercion handler A routine that coerces
data from one Apple event descriptor type
to another.

command A response to a particular
message; a command is a built-in message
handler residing in HyperCard. See also
external command.
624

G L O S S A R Y
Command key The key at the lower-left
side of the keyboard that has a
propeller-shaped symbol. This key also has
an Apple symbol and is sometimes called
the Apple key.

comments Descriptive lines of text in a
script or program that are intended not as
instructions for the computer but as
explanations for people to read. Comments
are set off from instructions by symbols
called delimiters, which vary from language
to language. In HyperTalk, two hyphens
(--) indicate the beginning of a comment.

Component Manager The Component
Manager provides a database service that
classifies software objects by function. In
much the same way that the Resource
Manager allows applications that are
running to access data objects dynamically,
the Component Manager provides services
that allow run-time location of and access to
functional objects.

constant A named value that never
changes. For example, the constant empty
stands for the null string, a value that can
also be represented by the literal expression
"". Compare with variable.

container A place where you can store a
value (text or a number). Examples are
fields, the Message box, the selection, and
variables.

control structure A block of HyperTalk
statements defined with keywords that
enable a script to control the order or
conditions under which specific statements
execute.

Core suite The suite of core Apple event
constructs that are common to all or nearly
all applications. These definitions form the
basic vocabulary for interapplication
communication. Using only the constructs
defined in the Core suite, applications can
perform a wide range of useful tasks. This
suite includes such events as Get Data, Set
Data, and Count Elements. The Core suite
of Apple events is described in the Apple
Event Registry. Apple Computer, Inc.,
recommends that all applications support
the core Apple events.

current (adj.) Applies to the card,
background, or stack you’re using now. For
example, the current card is the one you can
see on your screen.

debug To locate and correct an error or
the cause of a problem or malfunction
in a computer program, such as a
HyperTalk script.

delimiter A character or characters used
to mark the beginning or end of a sequence
of characters; that is, to define limits. For
example, in HyperTalk double quotation
marks act as delimiters for literals, and
comments are set off with two hyphens at
the beginning of the comment and a return
character at the end.

descriptor The combination of an object’s
generic name, immediately followed by its
particular name, number, or ID number.

direct parameter The parameter in an
Apple event that contains the data to be
used by the server application. For
example, a list of documents to be opened is
625

G L O S S A R Y
specified in the direct parameter of the
Open Documents event. See also Apple
event parameter.

dynamic path A series of extra objects
inserted into the path through which a
message passes when its static path does
not include the current card. The dynamic
path comprises the current card, current
background, and current stack. Compare
static path.

event handler Any part of an application
that deals with any event. Sometimes the
term event handler is used to refer to any
object that is eligible to handle menu
commands.

expression A description of how to get
a value; a source of value or complex
expression built from sources of value
and operators.

external command (XCMD) A command
written in a computer language other than
HyperTalk but made available to
HyperCard to extend its built-in command
set. External commands can be attached to a
specific stack or to HyperCard itself. See
also external function.

external function (XFCN) A function
written in a computer language other than
HyperTalk but made available to
HyperCard to extend its built-in function
set. External functions can be attached to a
specific stack or to HyperCard itself. See
also external command.

factor A single element of value in an
expression. See also value. Factoring is the
separation of the interface links to the
application and the core functionality. By

factoring an application, all features are
accessed through event handlers via
Apple events.

field A type of HyperCard object; a
container in which you type field text
(as opposed to Paint text). HyperCard
has two kinds of fields—card fields and
background fields.

Field tool The tool you use to create,
change, and select fields.

formal parameters See parameter
variables.

function A named value that HyperCard
calculates each time it is used. The way in
which the value is calculated is defined
internally for HyperTalk’s built-in
functions, and you can define your own
functions with function handlers.

function call The use of a function name
in a HyperTalk statement or in the Message
box, invoking either a function handler or a
built-in function.

function handler A handler that executes
in response to a function call matching
its name.

generic scripting component A special
scripting component that establishes
connections dynamically with the
appropriate scripting component for each
script that a client application attempts to
manipulate or execute.

global properties The properties that
determine aspects of the overall HyperCard
environment. For example, userLevel is a
global property that determines the current
user level setting.
626

G L O S S A R Y
global variable A variable that is valid for
all handlers in which it is declared. You
declare a global variable by preceding its
name with the keyword global. Compare
with local variable.

handler A block of HyperTalk statements
in the script of an object that executes in
response to a message or a function call.
The first line in a handler must begin with
the word on, and the last line must end
with the word end. Both on and end must
be followed by the name of the message or
function. HyperTalk has message handlers
and function handlers.

hierarchy See message-passing hierarchy.

HyperTalk HyperCard’s built-in script
language for HyperCard users.

identifier A character string of any length,
beginning with an alphabetic character; it
can contain any alphanumeric character
and the underscore character. Identifiers are
used for variable and handler names.

keyboard equivalent key A key you press
together with the Command key to issue a
menu command.

keyword Any one of the 14 words that
have a predefined meaning in HyperTalk.
Examples of keywords are on, if, do,
and repeat.

layer The order of a button or field
relative to other buttons or fields on the
same card or background. The object
created most recently is ordinarily the
topmost object (that is, on the front layer).

literal A string of characters intended to
be taken literally. In HyperTalk, you use
quotation marks (" ") as delimiters to set
off a string of characters as a literal, such as
the name of an object or a group of words
you want to be treated as a text string.

local variable A variable that is valid only
within the handler in which it is used (local
variables need not be declared). Contrast
with global variable.

loop A section of a handler that is
repeated until a limit or condition is met,
such as in a repeat structure.

message A string of characters sent to an
object from a script or the Message box, or
that HyperCard sends in response to an
event. Messages that come from the
system—from events such as mouse clicks,
keyboard actions, or menu commands—
are called system messages. Examples of
HyperTalk messages are mouseUp, go, and
push card. See also handler.

Message box A container that you use to
send messages to objects or to evaluate
expressions.

message handler A handler that executes
in response to a message matching its name.

message-passing hierarchy The ordering
of HyperCard objects that determines the
path through which messages pass.

metasymbol A word used in a syntax
statement as a placeholder for an element
that is different for each specific use of the
statement. For example, the metasymbol
filename is used to show where you put the
name of a file you want a command to act
on. In this book, metasymbols are shown
as italics.
627

G L O S S A R Y
number A character string consisting of
any combination of the numerals 0 through
9, optionally including one period (.)
representing a decimal value. A number can
be preceded by a hyphen or a minus sign to
represent a negative value.

object An element of the HyperCard
environment that has a script associated
with it and that can send and receive
messages. There are five kinds of
HyperCard objects: buttons, fields, cards,
backgrounds, and stacks.

object class An application defines
specific objects as distinct classes. In
HyperCard, each of its objects (stack,
background, card, button, and field) can be
an individual class.

object descriptor Designation used to
refer to an object. An object descriptor is
formed by combining the name of the type
of object with a specific name, number, or
ID number. For example, background
button 3 is an object descriptor. Stacks do
not have a number or ID number, so only
the name can be used for a stack descriptor.

object properties The properties that
determine how HyperCard objects look and
act. For example, the location property
of a button determines where it appears on
the screen.

object specifier A specific data type that
contains references to specific classes
(objects) and their relating specifiers (such
as names, indexes, or IDs). For HyperCard,
the metaphor that chunk expressions
describe is an example of an object specifier.

online help Assistance you can get from
an application program while it’s running.
In HyperCard, online help refers to the
HyperCard disk-based Help system.

Open Scripting Architecture (OSA) A
standard proposed by Apple Computer,
Inc., to provide a uniform way for
applications to provide or utilize scripting
functionality.

operator A character or group of
characters that causes a particular
calculation or comparison to occur. In
HyperTalk, operators operate on values. For
example, the plus sign (+) is an arithmetic
operator that adds numerical values.

optional parameter A supplemental
parameter in an Apple event used to specify
data that the server application should use
in addition to the data specified in the
direct parameter. Optional parameters are
listed in the attribute identified by the
keyOptionalKeywordAttr keyword.
Applications use this attribute to specify or
determine whether data exists in the form
of optional parameters. Optional
parameters need not be included in an
Apple event; default values for optional
parameters are part of the event definition.
It is the responsibility of the server
application that handles the event to supply
values if optional parameters are omitted.
See also Apple event attribute, Apple
event parameter.

painting properties The properties that
control aspects of the HyperCard painting
environment, which is invoked when
628

G L O S S A R Y
you choose a Paint tool. For example, the
brush property determines the shape of
the Brush tool.

Paint text Text you type using the Paint
Text tool. Paint text can appear anywhere,
while regular text must appear in a field
created with the Field tool. Paint text is part
of a card or background picture.

Paint tool Any HyperCard tool you use to
make pictures. Paint tools include Lasso,
Brush, Spray, Eraser, and many others.

palette A small window that displays
icons or patterns you can select by clicking.
You can see two of HyperCard’s palettes,
the Tools palette and the Patterns palette,
simply by “tearing off” their respective
menus. To see the Navigator palette, type
palette "navigator" in the Message
box. See also tear-off menu.

parameters Values passed to a handler by
a message or function call. Any expressions
after the first word in a message are
evaluated to yield the parameters; the
parameters to a function call are enclosed in
parentheses, or, if there is only one, it can
follow of.

parameter variables Local variables
in a handler that receive the values of
parameters passed with the message or
function call initiating the handler’s
execution.

picture Any graphic or part of a graphic,
created with a Paint tool or imported from
an external file, that is part of a card or
background.

pixel Short for “picture element”; the
smallest dot you can draw on the screen.
The position of the pointer is often
represented by two numbers separated by
commas. These numbers are horizontal and
vertical distances of the pointer from the
left and top edges of the card window,
measured in pixels. The upper-left corner of
the screen has the coordinates 0,0.

point (1) A location on the screen
described by two integers, separated by a
comma, representing horizontal and
vertical offsets, measured in pixels from the
top-left corner of the card window or (in the
case of the card window itself) of the screen.
(2) In printing, the unit of measurement of
the height of a text character; one point is
about 1⁄72 of an inch. When you select a font,
you can also select a point size, such as 10
point, 12 point, and so on.

power key One of a number of keys on
the Macintosh keyboard you can press to
initiate a menu action when a Paint tool is
active. Power keys are enabled when you
choose Power Keys from the Options menu
or you check Power Keys on the Preferences
card in the Home stack.

properties The defining characteristics of
any HyperCard object and of HyperCard’s
environment. For example, setting the user
level to Scripting changes the userLevel
property of HyperCard to the value 5.
Properties are often selected as options in
dialog boxes or on palettes, or they can be
set from handlers.

Recent A special dialog box that holds
pictorial representations of the last 42
unique cards viewed. Choose Recent from
629

G L O S S A R Y
the Go menu to get the dialog box. Also, an
adjective describing the card you were on
immediately prior to the current card, as in
recent card.

recursion The repetition of an operation
or group of operations. Recursion occurs
when a handler calls itself.

regular text Text you type in a field. You
use the Browse tool to set an insertion point
in a field and then type. Regular text is
editable and searchable, while Paint text
is not.

required parameter A keyword-specified
descriptor record in an Apple event that
must be specified. For example, a list of
documents to open is a required parameter
for the Open Documents event. Direct
parameters are often required, and other
additional parameters may be required.
Optional parameters are never required.

Required suite The smallest of the
standard Apple event suites, it includes
definitions of four Apple events and four
descriptor types. The Apple events defined
in this suite, known as required Apple
events, are sent to all applications that
support high-level events and all
applications that call the new Standard File
routines under system software version 7.0
and later. All applications that support
system software version 7.0 and later
should support the Required suite. The
events in this suite are the Open
Application, Open Document, Print
Document, and Quit Application events.

resource fork The part of a file that
contains resources such as fonts, icons, and
sounds, and so on.

script A collection of handlers written in
HyperTalk and associated with a particular
object. You use the script editor to add to
and revise an object’s script. Every object
has a script, even though some scripts are
empty: that is, they contain nothing.

scriptable The capability of an application
to respond to Apple events sent to it by a
scripting component. To qualify as
scriptable, an application is required to
respond to appropriate standard Apple
events and include an 'aete' resource.

script editor A window in which you can
type and edit a script. The title bar of the
script editor describes the object to which
the script belongs. You can use the Edit
menu, the Script menu, and keyboard
commands to edit text in the script editor.
See also handler, object, and script.

scripting component A program that
responds appropriately to calls made to the
standard scripting component routines.
Most scripting components implement
scripting languages—for example, the
AppleScript component implements the
AppleScript scripting language.

search path When you open a file from
within HyperCard, HyperCard attempts to
locate the stack, document, or application
you want by searching the folders listed on
the appropriate Search Paths card in the
Home stack. Each line on a Search Paths
card indicates the location of a folder,
including the disk name (and folder and
subfolder names, if any). This information
is called a search path. Items in a search path
are separated by a colon, like this: my
disk:HyperCard folder:my stacks:
630

G L O S S A R Y
Search Path cards Three cards in the
Home stack used to store information about
the location of stacks, documents, and
applications that you open while
HyperCard is running. See also search path.

selection A container that holds the
currently selected area of text. Note that text
found by the find command is not selected.

shared text Field text that appears on
every card in a background. Shared text can
be edited only from the background layer.
Text in shared fields cannot be searched.

source of value HyperTalk’s most basic
expressions; the language elements from
which values can be derived: constants,
containers, functions, literals, and
properties.

stack A type of HyperCard object that
consists of a collection of cards; a
HyperCard document.

statement A line of HyperTalk code inside
a handler. A handler can contain many
statements. Statements within handlers
are first sent as messages to the object
containing the handler and then to
succeeding objects in the message-passing
hierarchy.

static path The message-passing route
defined by an object’s own hierarchy. For
example, the static path followed by a
message sent to (but not handled by) a
button would include the card to which the
button belongs, the background associated
with that card, and the stack containing
them. Compare dynamic path.

string A sequence of characters. You can
compare and combine strings in different
ways by using operators. In HyperTalk, for
example, 23 + 23 will result in 46; but 23
& 23 will result in 2323.

suite A group of Apple event constructs
that define an area of functionality. Suites
provide the common vocabulary for
applications. A suite can define constructs
such as Apple events, Apple event object
classes, descriptor types, key forms,
comparison operators, or constants.

syntax A description of the way in which
language elements fit together to form
meaningful phrases. A syntax statement
for a command shows the command
in its most generalized form, including
placeholders (sometimes called
metasymbols) for elements you must fill
in as well as optional elements.

System file Software a Macintosh
computer uses to perform its basic
operations.

system message A message sent by
HyperCard to an object in response to an
event such as a mouse click, keyboard
action, or menu command. Examples of
HyperCard system messages are mouseUp,
doMenu, and newCard.

target The object that first receives
a message.

tear-off menu A menu that you can
convert to a palette by dragging the pointer
beyond the menu’s edge. HyperCard has
two tear-off menus—Tools and Patterns.
When torn off, these menus are referred to
as palettes.
631

G L O S S A R Y
text field See field.

text property A quality or attribute of a
character’s appearance. Text properties
include style, font, and size.

tick Approximately one-sixtieth (1⁄60) of a
second. The wait command assumes a
value in ticks unless you specify seconds by
adding secs or seconds.

tool An implement you use to do work.
HyperCard has tools for browsing through
cards and stacks, creating text fields, editing
text, making buttons, and creating and
editing pictures.

user level A property of HyperCard,
ranging from 1 to 5, that determines which
of HyperCard’s capabilities are available.
You can select the user level on the
Preferences card in the Home stack. Each
user level makes all the options from the
lower levels available, and also gives you
additional capabilities. The five user levels
are Browsing, Typing, Painting, Authoring,
and Scripting.

value A piece of information on which
HyperCard operates. All HyperCard values
can be treated as strings of characters—they
are not formally separated into types. For
example, a numeral could be interpreted as
a number or as text, depending on what
you do with it in a HyperTalk handler.

variable A named container that can hold
a value consisting of a character string of
any length. You can create a variable to hold
some value (either numbers or text) simply
by using its name with the put command
and putting the value into it. HyperCard
has local variables and global variables.
Compare with constant.

window properties The properties that
determine how the Message box and the
Tools and Patterns palettes are displayed.
For example, the visible property
determines whether or not the specified
window is displayed on the screen.
632

Index
Symbols

306–307, 307
&& (ampersand, double) operator 113
& (ampersand) operator 113
& operator 118
() (parentheses) operator 114
() parentheses operator 114
* (asterisk) operator 114
 (chunk) 120
-- (double hyphen) comment character 26, 112
- (minus sign) operator 114
 (not equal sign) operator 115
/ (slash) operator 113
+ (plus sign) operator 115
< (less than sign) operator 114
<= (less than or equal to sign) operator 114
= (equal sign) operator 113
> (greater than sign) 113
>= (greater than or equal to sign) operator 114
^ (caret) operator 113
≠ (not equal sign) operator 114
≤ (less than or equal to sign) operator 114
≥, >= (greater than or equal to sign) operator 114

A

abbr date format 191
abbrev date format 191
abbreviated (adjective) 84
abbreviated date format 191
abbreviated time format 191
abbrev time format 191
abbr time format 191
abs function 291
accessing XCMDs and XFCNs 504

char 120
actual parameters 78
add command 167–168
address property 17, 378
after (prepositon) 251
all (preposition) 271
ambiguous stack descriptors 91
ampersand, double operator (&&) 113
ampersand operator (&) 113
and operator 115
annuity function 291–292
annuity. See also compound
answer
It as destination 106

answer command 168–172
answer file command 168–172
answer for ask command 176
answer program command 15, 168–172
any (ordinal) 87
appleEvent message 20
appleEvent system message 132
AppleScript 5

and HyperTalk, comparing 6
application, stand-alone, building 14
arithmetic operators 113, 118
arrow cursor 395
arrowKey command 173–174
arrowKey system message 132, 173–174
ASCII codes 561–564
ask
It as destination 106

ask command 174–176
ask file command 174–176
ask password command 174–176
assigning menu names 93
asterisk (*) operator 114
atan function 292–293
autoHilite property 17, 379
633

I N D E X
autoSelect property 380–381
autoTab property 381–382
average function 293–294

B

background (object) 82
background button properties
sharedHilite 468–469

background field properties
sharedText 469–470
showLines 470–471

background properties 360–361
cantDelete 388–389
cantModify 389–390
dontSearch 398–399
ID 416–418
name 439–441
number 441
script 460–461
scriptingLanguage 462–463
showPict 472

backgrounds
current 25
defined 25
descriptors for 82–87

beep command 177
before (preposition) 251
bkgnd (object) 82
blindTyping property 382
bottom property 17, 383–384
bottomRight property 17, 384–385
brush property 386
brush tool name 178
btn (object) 82
bucket tool name 178
built-in functions 100
busy cursor 395
buttonCount palette property 237
button dialog modifications 7–8
Button Info dialog 7–8
button Info dialog box 35

button properties 365–367
autoHilite 379
bottom 383–384
bottomRight 384–385
enabled 402–403
family 404–406
height 411
hilite 414–415
icon 415–416
ID 416–418
left 421–422
location 423–425
name 439–441
number 441
partNumber 444
rectangle 455–458
right 459–460
script 460–461
scriptingLanguage 462–463
sharedHilite 468–469
showName 471
style 475
style 475
textAlign 477
textFont 479–480
textHeight 480–481
textSize 481–482
textStyle 482–484
titleWidth 486
top 486–488
topLeft 488–489
version 496–497
wideMargins 499

buttons
as containers 105
defined 24
descriptors for 82–87
editing scripts of 33–41
messages to 58
new features 8–12
system messages and 126–128

button text
text alignment 477

button tool name 178
634

I N D E X
C

cantAbort property 387–388
cantDelete property 388–389
cantModify property 389–390
cantPeek property 390–391
Can't understand error message 56
card (object) 82
card fields 82
Card Info dialog box 82
card properties 361–362
cantDelete 388–389
cantModify 389–390
dontSearch 398–399
ID 416–418
marked 432
name 439–441
number 441
owner 443
rectangle 455–458
right 460–461
scriptingLanguage 462–463
showPict 472
wideMargins 499

cards
current 25
defined 25
descriptors for 82–87
editing scripts of 34–41
system messages and 131–138

card window
current 96

card window properties
scroll 466–467

card windows 28
defined 28

cd (object) 82
centered property 391
characters as chunk expressions 120
charToNum function 294
checkMark property 392–393
checkpoints 43, 45, 196–197
choose command 178–179
chunk

defined 118
as a destination 123

chunk expression 118–124
ranges in 121
syntax of 119

clickChunk function 295–296
click command 180–181

location 180
clickH function 296, 299–300
clickLine function 296–297
clickLoc function 297–298
clickText function 298–299
closeBackground system message 133
closeCard system message 133
close command 15, 181–??
closeField system message 129
close file command 183–184
closePalette message 20
closePalette system message 133
closePicture message 20
closePicture system message 133
close printing command 185, 233
closeStack system message 133
close system message 132
close window command 186
closing external windows 540
cmdChar property 393–394
Command-hyphen 39
commandKeyDown command 187–188
commandKey function 300
commandKey system message 133
commands 165–287
add 167–168
answer 168–172
answer file 168–172
answer program 15, 168–172
arrowKey 173–174
ask 174–176
ask file 174–176
ask password 174–176
beep 177
choose 178–179
click 180–181
close 15, 181–??
635

I N D E X
close file 183–184
close printing 185, 233
close window 186
commandKeyDown 187–188
controlKey 188–190
convert 3, 15, 191–194
create menu 194–195
create stack 195–196
debug checkpoint 196–197
defined 165
delete 15, 197–200, 575
dial 200–201
disable 15, 201–202
divide 202–203
doMenu 15, 203–205
drag 205–207
edit script 207
enable 15, 208
enterInField 209
enterKey 209–210
export paint 210–211
find 15, 211–214
find chars 15
find string 15
find whole 15
find word 15
functionKey 215–216
get 216–217
go 218–219
help 219
hide 220–222
import paint 223
keyDown 224–??
lock 225
lock error dialogs 15
lock recent 225
lock recent 15
lock screen 225
lock 15
mark 226–227, 228–229
open 229–231
open file 231–232
open printing 232–233
open report printing 234–235

open 15
overriding 142
palette 235–237
palette property 237
picture 15, 238–242
play 243–245
play stop 243–245
pop card 245–246
print 246–248
print card 248–250
push card 250–251
put 16, 251–254
read 254–256
read from file 16
reply 16, 256–??
request 258–260
request from 16
reset menubar 260–261
reset paint 261–262
reset printing 262
returnInField 262–263
returnKey 263
save stack 264
select 264–266
send ??–162
set 266–267
show 268–270
show cards 271–272
sort 272–274
sort 16–??
start using 274–275
stop using 275, 276
subtract 277
syntax notation 166–167
syntax summary 574–581
tabKey 277–278
type 278–279
unlock 279–280
unlock error dialogs 279–280
unlock recent 279–280
unlock screen 279–280
unmark 281–282
visual 16, 282–284
wait 284–285
636

I N D E X
write 285–287
write to file 16

comment character 112
comment character (--) 26
comment command 39
commenting scripts 39
comparison operators 113–118
complex expressions 111–112
compound function 301–302
compound function. See also annuity function
constant, defined 99
constants 553–554
containers 103–109

chunk expressions and 122–124
defined 103
fields 104
Message box 108–109
the selection 107
variables 78, 105

contains operator 115
controlKey command 188–190
controlKey system message 133, 189
control structures 141–163
convert command 3, 15, 191–194
cos function 302
create menu command 194–195
create. See also disable, disabled, enable,

enabled, text, textStyle, markChar,
cmdChar, , and put

create stack command 195–196
creating menus 194
cross cursor 395
current hierarchy 59–60
current objects 25
cursor property 394–395
cursors 395
curve tool name 178
cutCard system message 139

D

date function 302–304

dateItems format 191
debug checkpoint command 196–197
debugger 43–49

command summary 49
defined 43
exiting 45
stepping through scripts 44
tracing through scripts 45

debugger checkpoints 45
Debugger menu 43
debugger property 396
debugger tools 45
debugger windows 45–48
debugging environment 43
deleteBackground system message 133, 139
deleteButton system message 127
deleteCard system message 133, 139
delete command 15, 197–200
deleteField system message 129
deleteStack system message 134, 139
destination function 16, 304
dial command 200–201
dialingTime property 17, 397
dialingVolume property 17, 398
dialog modifications

button 7–8
field 12

dialog window layer 544
disable command 15, 201–202

. See also enable command
disabling background buttons 201–202
disabling card buttons 201–202
disabling menu items 201–202
disabling menus 201–202
diskSpace function 16, 305
divide command 202–203
div operator 115
document window layer 544
do keyword 158–159
doMenu command 15, 203–205

intercepting 166
intercepting handler 204

doMenu system message 134
dontSearch property 398–399
637

I N D E X
dontWrap property 399–400
double hyphen (--) 26, 39, 40, 112
down constant 553
drag command 205–207
dragSpeed property 400–401
Draw Centered setting 373, 391
Draw Filled setting 373
Draw Multiple setting 373, 436
dynamic path 67–71
go command and 67
invoking 67
send keyword and 67, 69–??, 70, ??–71

E

editBkgnd property 402
edit script command 207
eighth (ordinal) 84
else keyword 155–158
empty (constant) 105, 553
enable command 15, 208

. See also disable command
enabled property 18, 402–403

. See also disable command, enable
command

end keyword 26, 143, 154
end repeat statement 154
end statement 147
enhancements

HyperTalk 15–21
enterInField command 209
enterInField system message 129
enterKey command 209–210
enterKey message 209, 210
enterKey system message 134
environmental properties 368
environment property 18, 404
equal sign (=) 113
eraser tool name 178
example XCMD 545
exitField system message 129
exit keyword 72, 143, 153

exit repeat statement 153
exit statement 147
exp function 306
exp1 function 306–307
export paint command 210–211
expressions 99–109, 111–124

complex 111–118
exp2 function 307
external commands and functions 503–552
external window callbacks 522–529
external window events 536–540
xCloseEvt 537
xCursorWithin 539
xDebugErrorEvt 540
xDebugFinishedEvt 540
xEditClear 538
xEditCopy 538
xEditCut 538
xEditPaste 538
xEditUndo 538
xGetPropEvt 538
xGiveUpEditEvt 537
xGiveUpSoundEvt 538
xMBarClickedEvt 540
xMenuEvt 539
xOpenEvt 537
xScriptErrorEvt 540
xSendEvt 538
xSetPropEvt 538
xShowWatchInfoEvt 540

external windows 522–529, 534–545
closing 540
event handling 528

F

factors 111–112
false constant 554
family property 18, 404–406
field dialog modifications 12
Field Info dialog 12
field properties 362–364
638

I N D E X
autoSelect 380–381
autoTab 381–382
bottom 383–384
bottomRight 384–385
dontSearch 398–399
dontWrap 399–400
fixedLineHeight 407–408
height 411
ID 416–418
left 421–422
location 423–425
lockText 429–430
name 439–441
new features 13–14
number 441
partNumber 444
rectangle 455–458
right 459–460
script 460–461
scriptingLanguage 462–463
scroll 465–466
style 475
textAlign 477
textFont 479–480
textHeight 480–481
textSize 481–482
textStyle 482–484
top 486–488
topLeft 488–489
version 496–497
wideMargins 498, 499

fields 104
as containers 104
descriptors for 82–89
system messages and 128–131

fields properties
multipleLines 437–??

field text 477
field tool name 178
fifth (ordinal) 84
filled property 406
find chars command 15
find command 15, 211–214
dontSearch property 399

find string command 15
find whole command 15
find word command 15
first (ordinal) 84
five (constant) 84
fixedLineHeight property 407–408
formFeed constant 554
foundChunk function 307–308

. See also find command
foundField function 308–309
foundLine function 309–310
foundText function 310
four (constant) 84
fourth (ordinal) 84
freeSize property 408–409
function 100

redefining 290
function calls 27, 289
function handlers 27–32, 146–149

example 149
keywords in 145–149
overriding 146
parameter passing into 78
user-defined 146

functionKey command 215–216
functionKey system message 134
function keyword 146
functions 289–355
abs 291
annuity 291–292
atan 292–293
average 293–294
charToNum 294
clickChunk 295–296
clickH 296, 299–300
clickLine 296–297
clickLoc 297–298
clickText 298–299
commandKey 300
compound 301–302
cos 302
date 302–304
defined 289
destination 16, 304
639

I N D E X
diskSpace 16, 305
exp 306
exp1 306–307
exp2 307
foundChunk 307–308
foundField 308–309
foundLine 309–310
foundText 310
heapSpace 310–311
length 311–312
ln 312
ln1 313
log2 313
max 314
menus 315
min 315–316
mouse 316–317
mouseClick 317–318
mouseH 318
mouseLoc 319
mouseV 320
number 16, 320–322
numToChar 322–323
offset 323–324
optionKey 324–325
param 325–326, ??–328
paramCount 326–327
parameters of 289
params 327–??
programs 16, 328
random 329
result 330–331
round 332
screenRect 333
seconds 333–334
selectedButton 17, 334–335
selectedChunk 335–336
selectedField 336–337
selectedLine 17, 337–339
selectedLoc 339–340
selectedText 17, 340–341
shiftKey 341–342
sin 343
sound 343–344

sqrt 345
stacks 345–??
stackSpace 346
sum 17, 346
syntax notation 290
systemVersion 17, 347
tan 347–348
target 348–349
ticks 349–350
time 350–351
tool 351–352
trunc 353–354
value 354–355
windows 355

G

get command 216–217
It as destination 106

global keyword 106, 159
global properties 369–372
address 378
blindTyping 382
cursor 394–395
debugger 396
dialingTime 397
dialingVolume 398
dragSpeed 400–401
editBkgnd 402
environment 404
itemDelimiter 418–419
Language 420
lockErrorDialogs 425–426
lockMessages 426–427
lockRecent 427–428
lockScreen 428–429
longWindowTitle 430
messageWatcher 435
numberFormat 442–443
powerKeys 447
printMargin 448
printTextAlign 449
640

I N D E X
printTextFont 450–??
printTextHeight ??–450, 451
printTextSize 452–453
printTextStyle 453
scriptEditor 461–462
scriptTextFont 463–464
scriptTextSize 464–465
stacksInUse 474
textArrows 478
textFont 479–480
traceDelay 489–490
userLevel 490–491
userModify 491–492
variableWatcher 492–493

global statement 159–160
global variables 47, 106, 159–160
go command 218–219
greater than (>) operator 113
grid property 409
Grid setting 373

H

hand cursor 395
handler 126
handlers 26–27, 62

calling 71–73
defined 26
function 27–32, 78, 145–149
intercepting commands 78, 166
intercepting messages 76
message 27
nesting 72
recursion 72–73
sharing 74–75
statements within 26
as subroutines 71

hBarLoc property 410
heapSpace function 310–311
height property 18, 411
help command 219
help system message 134

hide (object) 221
hide command 220–222
hideIdle property 412
hide menuBar system message 135
hideUnused property 413
hiding card windows 220
hiding objects 221–222
hiding picture windows 220
hiding stack windows 220
hierarchy, message-passing 56–70, 73–76

current 56
defined 56
objects in 58

hilitedButton palette property 237
hilite property 18, 414–415

. See also autoHilite property, and family
property, sharedHilite property

HyperCard
enhancements since HyperCard 2.0 1–21
and Open Scripting Architecture 4–7
and other scripting systems 3–4
performance hints 555–560
system requirements 1–2
and WorldScript compatibility 2, 3

HyperCard properties
ID 416–418
version 494–495

HyperTalk, enhancements 15–21
hyphen (-) as minus arithmetic operator 112
hyphen, double (--) comment character 112

I, J

I-beam cursor 395
icon property 415–416
identifying a stack 90–91
idle system message 52, 135
ID property 18, 88, 416–418
if structure 155–158

multiple-statement 156–158
single-statement 155–156

importing paint files 223
641

I N D E X
import paint command 223
in (preposition) 92, 119, 166
Info menu 34
intercepting messages 76–77, 433
doMenu 433
menu 433

interrupting executing handlers 72
into (preposition) 251
is an operator 115
is a operator 115
is in operator 115
is not an operator 115
is not a operator 115
is not in operator 115
is not operator 115
is operator 115
It (container) 106
itemDelimiter property 18, 418–419
items as chunk expressions 120
It variable 106

K

keyDown command 224–??
keyDown system message 135
keywords 53, 59, 141–163

defined 141
do 158–159
else 155–158
end 143, 154
exit 143, 153
function 145, 146
global 159
next 154
on 142–143
pass 143
repeat 150
return 144
send 160

L

Language property 420
lasso tool name 178
last (ordinal) 87
layered buttons and fields 58
left property 421–422
length function 311–312
less than (<) operator 114
less than or equal to (<=) operator 114
less than or equal to (≤) operator 114
lineFeed constant 554
lines as chunk expressions 121
lineSize property 422–423

line tool and 422
shape tool and 422

line tool name 178
literal strings 100
ln1 function 313
ln function 312
local variables 47, 106
location 180
location property 423–425

point 424
lock command 15, 225
lock error dialogs command 15
lockErrorDialogs property 19, 425–426
lockMessages property 426–427
lock recent command 15, 225
lockRecent property 427–428
lock screen command 225
lockScreen property 428–429
lockText property 19, 429–430
log2 function 313
long (adjective) 84
long date format 191
long time format 192
longWindowTitle property 430

M

markChar property 431
642

I N D E X
mark command 226–227, 228–229
marked property 432
max function 314
me (special object descriptor) 89
menu
disable command 202
enable command 208
number of 320

menu bar properties
rectangle 455–458
visible 496–497

menu command 204
menu commands 126
menu item names 93, 94
menu item properties 375–376
checkMark 392–393
checkMark. See also put
cmdChar 393–394

. See also menuMsg command; put command
enabled 402–403
markChar 431
menuMsg 433–434
name 439–441
textStyle 484–485
textSyle. See also put

menu items 31, 251
adding messages for 251
defined 31
disabling 201–202
enable 208
referring to by number 94

menuMessage property 434
menu messages 31, 251

defined 31
intercepting 433

menuMsg property 433–434
. See also doMenu command; put command

menu names 93, 94
menu numbers 93
menu properties
enabled 402–403
name 439–441

menus 30, 81
controlling through HyperTalk 93–95

creating 94
defined 30
disabling 201–202
enabling 208
number of 321
referring to by number 93

menus function 315
Message box 53, 108
message handlers 26, 141–144

example 144
keywords in 142–145
syntax of 141

message name 77
message-passing hierarchy

current 59–60
user-defined 62–65
using 73–76

messages 51–79
appleEvent 20
to a button 53, 58
to a card 52
closePalette 20
closePicture 20
commands 26
from external commands 54
handling 51
intercepting 76
keywords in 53
matching message names 55–56
mouseDoubleClick 21
openPalette 21
openPicture 21
receiving 55
resulting from commands 54
sending 52
sent to a field 128–131
sent to a locked field 53
sent to buttons 126
sent to current card 131–138
system 52
system messages in 56
to fields 58

message sending order 26
Message Watcher 46–47
643

I N D E X
messageWatcher property 435
Message Watcher window properties 376–377
hideIdle 412
hideUnused 413

middle (ordinal) 87
min function 315–316
miniwindow layer 544
minus sign (-) operator 114
modems, dial command and 200–201
mod operator 116
mouseClick function 317–318
mouseDoubleClick message 21
mouseDoubleClick system message 127, 129,

136
mouseDownInPicture system message 136
mouseDown message 53
mouseDown system message 127, 130, 136
mouseEnter message 52
mouseEnter system message 127, 130
mouse function 316–317
mouseH function 318
mouseLeave message 52
mouseLeave system message 127, 130
mouseLoc function 319
mouseStillDown system message 127, 130, 136
mouseUpInPicture system message 136
mouseUp message 53
mouseUp system message 128, 130, 136
mouseV function 320
mouseWithin message 52
mouseWithin system message 128, 130
moveWindow system message 136
multipleLines property 437–??
multiple property 436
multiSpace property 438–439

N

name property 19, 84, 439–441
naming menus 93
naming objects 82–83, 91
naming stacks 91

newBackground system message 137, 139
newButton system message 128
newCard system message 137, 139
newField system message 130
newStack system message 137, 139
next keyword 154
next repeat statement 154
next special object descriptor 89
nine (constant) 84
ninth (ordinal) 84
nonexistent chunks 124
not equal sign () operator 115
not equal sign (<>, ≠) operator 114
not operator 116
numberFormat property 442–443
number function 16, 320–322
number handling 103
number property 19, 441
number property. See also number function
numbers 101–103

decimal string precision 102
numberFormat property and 102
SANE numeric values 102
. See also number property

numToChar function 322–323
. See also charToNum function

O

object
ID number 88–89
script 26

object descriptors 82
combining 92
descriptor phasing 83

object hierarchy 56
message-passing 56–??
message-passing in ??–78

object ID number 88–89
object names 83
object numbers 84

integer 84
644

I N D E X
numeric constants 84
ordinal constants 84
reassigning 87
special ordinals 87
tab order 87

object properties 358
ID 88
name 84

objects 24, 81
background buttons 82
backgrounds 25
buttons 24
cards 25
fields 24, 81
generic names 82
referring directly to 92
stacks 25

Objects menu 33
of (preposition) 92, 119, 166
offset function 323–324
one (constant) 84
on keyword 26, 142–143
open

document with application 229
openBackground system message 137
openCard message 52
openCard system message 137
open command 15, 229–231
openField message 53
openField system message 130
open file command 231–232
opening

documents 231
files for reading or writing 232

openPalette message 21
openPalette system message 137
openPicture message 21
openPicture system message 137
open printing command 232–233
open report printing command 234–235
Open Scripting Architecture (OSA) 4–7

and AppleScript 5
openStack system message 137
operator precedence 565

operators 113–118
ampersand (&) 113
ampersand, double (&&) 113
and 115
asterisk (*) 114
caret (^) 113
comparison 113
contains 115
div 115
equal sign (=) 113
and expression type 118
greater than (>) 113
greater than or equal to sign (≥, >=) 114
is 115
is a 115
is in 115
is not 115
is not a 115
is not an 115
is not in 115
less than or equal to sign (≤, <=) 114
less than sign (<) 114
minus sign (-) 114
mod 116
not 116
not equal sign () 115
not equal sign (<>, ≠) 114
numeric values 118
or 116
parentheses () 114
plus sign (+) 115
precedence of 117–118
slash (/) 113
there is a 116
there is an 116
there is not a 116
there is not an 116
within 116

optionKey function 324–325
. See also commandKey function

ordinal constant 119
or operator 116
oval tool name 178
overriding commands 142
645

I N D E X
owner of card property 19
owner of window property 19
owner property 443

P

painting properties 372–373
brush 386
centered 391
filled 406
grid 409
lineSize 422–423
multiple 436
multiSpace 438–439
pattern 445–446
polySides 446
textAlign 477
textFont 479–480
textHeight 480–481
textSize 481–482
textStyle 482–484

Paint text 104, 477
Paint Text tool 477
palette command 235–237
palette properties
properties 237

palette properties
buttonCount 237
commands 237
hilitedButton 237

paramCount function 326–327
parameter list 78, 142
parameter passing 78

to handlers 78
parameters

defined 77
in function handlers 78

parameter variables 78
param function 325–326, ??–328
param. See also paramCount, params
params function 327–??
partNumber property 19, 444

part properties
scriptingLanguage 462–463

pass keyword 55, 67, 143
pass statement 147
pasteCard system message 139
pattern property 445–446
Patterns palette 445
pencil tool name 178
pi constant 554
picture command 15, 238–242
globalRect 239, 240
loc 240
rect 239
scale 241
scroll 240

picture window properties
rect 454–455
scroll 466–467

play command 243–245
playing notes 243
playing sound 244
play stop command 243–245
plus cursor 395
plus sign (+) operator 115
polygon tool name 178
polySides property 446
pop card command 245–246

. See also push card command
pop-up button properties, titleWidth 486
powerKeys property 447
previous special object descriptor 89
print

marked cards 248
print card command 248–250
print command 246–248

document with application 247
expression 247
field 247

printing cards 248–250
printing fields 246–248
printing marked cards 248–250
printing reports 235
printMargin property 448
printTextAlign property 449
646

I N D E X
printTextFont property 450–??
printTextHeight property ??–450, 451
printTextSize property 452–453
printTextStyle property 453
programs function 16, 328
properties 357–499

20
address 17, 378
autoHilite 17, 379
autoSelect 380–381
autoTab 381–382
blindTyping 382
bottom 17, 383–384
bottomRight 17, 384–385
brush 386
buttonCount 237
cantAbort 387–388
cantDelete 388–389
cantModify 389–390
cantPeek 390–391
centered 391
checkMark 392–393
cmdChar 393–394
commands 237
cursor 394–395
debugger 396
defined 101
dialingTime 17, 397
dialingVolume 17, 398
dontSearch 398–399
dontWrap 399–400
dragSpeed 400–401
editBkgnd 402
enabled 18, 402–403
environment 18, 404
family 18, 404–406
filled 406
fixedLineHeight 407–408
freeSize 408–409
grid 409
hBarLoc 410
height 18, 411
hideIdle 412
hideUnused 413

hilite 18, 414–415
hilitedButton 237
icon 415–416
ID 18, 416–418
itemDelimiter 18, 418–419
Language 420
left 421–422
lineSize 422–423
location 423–425
lockErrorDialogs 19, 425–426
lockMessages 426–427
lockRecent 427–428
lockScreen 428–429
lockText 19, 429–430
longWindowTitle 430
markChar 431
marked 432
menuMsg 433–434
messageWatcher 435
multiple 436
multipleLines 437–??
multiSpace 438–439
name 19, 439–441
number 19, 441
numberFormat 442–443
owner 443
owner of card 19
owner of window 19
partNumber 19, 444
pattern 445–446
polySides 446
powerKeys 447
printMargin 448
printTextAlign 449
printTextFont 450–??
printTextHeight ??–450, 451
printTextSize 452–453
printTextStyle 453
properties 237
rect 19, 454–455
rectangle 455–458
reportTemplates 458–459
right 19, 459–460
script 460–461
647

I N D E X
scriptEditor 461–462
scriptingLanguage 19, 462–463
scriptTextFont 463–464
scriptTextSize 464–465
scroll (fields) 465–466
scroll (windows) 466–467
sharedHilite 468–469
sharedText 469–470
showLines 470–471
showName 471
showPict 472
size 473–474
stacksInUse 474
style 475
style of button 20
textAlign 477
textArrows 478
textFont 479–480
textHeight 480–481
textSize 481–482
textStyle (buttons, fields, painting

environment) 482–484
textStyle (menu items) 484–485
titleWidth 20, 486
top 486–488
topLeft 20, 488–489
traceDelay 489–490
userLevel 490–491
userModify 491–492
variableWatcher 492–493
vBarLoc 493–494
version 494–495
visible 20, 496–497
wideMargins 498
width 20, 499

properties syntax 377
property name 101
Protect Stack dialog box 389, 390
push card command 250–251
put command 16, 124, 251–254

. See also cmdChar property; enabled
property; menuMsg property; text
property; and textStyle property

Q

quit system message 137
quote constant 554

R

random function 329
ranges of chunks 121
read command 106, 254–256
It as destination 106, 255
limits 255
until character 255

read from file command 16
reading files 254–256
reassigning object numbers 87
recent special object descriptor 89
rectangle 364
rectangle properties 367
bottom 383–384
bottomRight 384–385
 constant 488
height 411
left 421–422
right 459–460
top 486–488
topLeft 488–489

rectangle property 455–458
rectangle tool name 178
rect property 19, 454–455
recursion 72
redefining

commands 165–166
redefining commands 165–166

hints 166
redefining functions 290
referring to card windows 96
referring to external windows 97
referring to fields 104
referring to menu items 94
referring to menus 93
referring to windows 97
648

I N D E X
repeat forever statement 150
repeat for statement 151
repeat keyword 150
repeat statement 150–??

forms of 150–153
repeat for 151
repeat forever 150
repeat until 151
repeat while 152
repeat with 152–153
repeat with...down to 152–153
repeat with...to 152

repeat statements ??–154
repeat structure 149–154
repeat until statement 151
repeat while statement 152
repeat with...down to statement 152–153
repeat with statement 152–153
repeat with...to statement 152
reply command 16, 256–??
reportTemplates property 458–459
request command 258–260
request from command 16
reserved words (keywords) 141–163
reset menubar command 260–261
reset paint command 261–262
reset printing command 262
result function 330–331
resumeStack system message 137
resume system message 137, 139
retrieving properties 357–376
return, soft 41
return constant 554
returnInField command 262–263
returnInField system message 131
returnKey command 263
returnKey system message 137
return keyword 144
return statement 148
right property 19, 459–460
round function 332
round rectangle tool name 178

S

save stack command 264
screen rectangles 367, 457
screenRect function 333
script attachability 6–7
script comments 26
script debugger 43
script editor 35–42

automatic formatting 40
breaking long line statements 41
command summary 41
comments 40
enhancements 7
formatting scripts 40
manipulating text 37, 38
opening multiple scripts 35
replacing text 39
saving a script 35
script size 41
searching 38
shortcuts 35

scriptEditor property 461–462
scriptingLanguage property 19, 462–463
scripting systems, other 3–4
scripting userLevel 34
script property 460–461
scripts 26

attachability 6–7
background, editing the script of 34
background buttons 35
background fields 35
button, editing the script of 35
closing 35
current card, editing the script of 34
fields, editing the script of 35
function handlers within 27
getting to object scripts 33
opening 33–35
saving 35
scripting shortcuts 35
shortcuts for opening 35
stack, editing the script of 34

scriptTextFont property 463–464
649

I N D E X
scriptTextSize property 464–465
scroll (fields) property 465–466
scroll (windows) property 466–467
searching, find command 212
second (ordinal) 84
seconds format 192
seconds function 333–334
secondsfunction

. See also convert command
select command 264–266
selectedButton function 17, 334–335
selectedChunk function 335–336
selectedField function 336–337
selectedLine function 17, 337–339
selectedLoc function 339–340
selected text 108
selectedText function 17, 340–341
select tool name 178
send command 53, ??–162
send keyword 73, 160
send statement 160–163
set command 266–267
set. See also properties
setting properties 266, 357–376
seven (constant) 84
seventh (ordinal) 84
sharedHilite property 468–469
sharedText property 469–470
sharing handlers 74
shiftKey function 341–342
short (adjective) 84
shortcuts

closing scripts 35
opening scripts 35

short date format 192
short time format 192
show

picture 269
show cards command 271–272
marked cards form 271

show command 268–270
background picture form 268
card picture form 268
groups form 268

object form 268
picture of background form 268
picture of card form 268
. See also hide command; set command
titlebar form 268
window stackName form 268
window windowName form 268

showing card windows 268
showing picture windows 268
showing stack windows 268
showLines property 470–471
show marked cards 271
showName property 471
showPict property 472
show system message 137
sin function 343
six (constant) 84
sixth (ordinal) 84
size property 473–474
sizeWindow system message 138
slash (/) operator 113
soft return 41
sort command 16–??, 272–274
sound function 343–344

. See also play command
sources of value

constants 99
functions 100
literals 100
numbers 101
properties 101

space constant 554
special object descriptors 89
me 89
next 89
prev 89
previous 89
recent 89
this 89

special ordinals 87, 119
spray can tool name 178
sqrt function 345
stack

identifying 90
650

I N D E X
naming 91
referring to 90

stack builder, integrated stand-alone 14
stack name 90
stack properties 359–360
cantAbort 387–388
cantDelete 388–389
cantModify 389–390, 390–391
freeSize 408–409
name 439–441
reportTemplates 458–459
script 460–461
scriptingLanguage 462–463
size 473–474
version 494–495

stacks
current 25
defined 25
descriptors for 90, 91

stacks function 345–??
stacksInUse property 474
stackSpace function 346
stack window properties
rect 454–455
scroll 466–467

stand-alone application, building 14
startUp system message 138, 139
start using command 274–275
statements 26

defined 26
end 147
end repeat 154
exit 147
exit repeat 153
formatting 40
global 159–160
as messages 53
next repeat 154
pass 147
repeat 150–154
return 148
send 160–163

static path 67
stepping through scripts 44

stop using command 275, 276
structures
if 155–158

multiple-statement 156–158
single-statement 155–156

style of button property 20
style property 475
subroutine calls 71–72

calling handler 72
subroutine handler 72

subtract command 277
sum function 17, 346
suspendStack system message 138
suspend system message 138
syntax

notation for commands 166–167
notation for functions 290
summary for commands 574–581
summary for functions 581–587

system message order 138–139
system messages 52, 125–139
appleEvent 132
arrowKey 132
close 132
closeBackground 133
closeCard 133
closeField 129
closePalette 133
closePicture 133
closeStack 133
commandKey 133
controlKey 133
cutCard 139
deleteBackground 133, 139
deleteButton 127
deleteCard 133, 139
deleteField 129
deleteStack 134, 139
doMenu 134
enterInField 129
enterKey 134
entry point in hierarchy 58
exitField 129
functionKey 134
651

I N D E X
help 134
hide menuBar 135
idle 135
is an 115
keyDown 135
mouseDoubleClick 127, 129, 136
mouseDown 127, 130, 136
mouseDownInPicture 136
mouseEnter 127, 130
mouseLeave 127, 130
mouseStillDown 127, 130, 136
mouseUp 128, 130, 136
mouseUpInPicture 136
mouseWithin 128, 130
moveWindow 136
newBackground 137, 139
newButton 128
newCard 137, 139
newField 130
newStack 137, 139
openBackground 137
openCard 137
openField 130
openPalette 137
openPicture 137
openStack 137
pasteCard 139
quit 137
resume 137, 139
resumeStack 137
returnInField 131
returnKey 137
show 137
sizeWindow 138
startUp 138, 139
suspend 138
suspendStack 138
tabKey 131, 138

systemVersion function 17, 347

T

tab constant 554
tabKey command 277–278
tabKey. See also tabKey system message
tabKey system message 131, 138
tab order 87
tan function 347–348
target function 61, 348–349
temporary checkpoints 45
ten (constant) 84
tenth (ordinal) 84
textAlign property 477
textArrows property 478
textFont property 479–480
textHeight property 480–481
text operators 118
textSize property 481–482
textStyle property (buttons, fields, painting

environment) 482–484
textStyle property (menu items) 484–485
text tool name 178
there is an operator 116
there is a operator 116
there is not an operator 116
there is not a operator 116
the result function 144
the selection container 107
third (ordinal) 84
This 561
three (constant) 84
ticks function 349–350
time function 350–351
titleWidth property 20, 486
to (preposition) 121
tool function 351–352

. See also choose command
topLeft property 20, 488–489
top property 20, 486–488
traceDelay property 489–490
tracing through scripts 45
true constant 554
trunc function 353–354
two (constant) 84
652

I N D E X
type command 278–279

U

unlock command 279–280
unlock error dialogs command 279–280
unlock recent command 279–280
unlock screen

with visual effect 280
unlock screen command 279–280
unmark command 281–282
up constant 554
user-defined (custom) menus 93
user-defined message-passing hierarchy 62–65

adding stacks 275
deleting stacks 276
handlers in 65

userLevel property 490–491
userModify property 491–492

V

value function 354–355
values 99–109
variable name 105
variables 105–106

as containers 105
defined 105
global 106
It 106
local 106
and numbers 102
parameter variables 78, 106
values stored in 102

Variable Watcher 47–48
Variable Watcher properties 376–377
variableWatcher property 492–493
Variable Watcher window properties
hBarLoc 410
rect 454–455
vBarLoc 493–494

vBarLoc property 493–494
version property 494–495
visible property 20, 496–497
visual command 16, 282–284
visual effects 283
vocabulary list 589–621

W

wait command 284–285
watch cursor 395
wideMargins property 498
width property 20, 499
window layers defined 543
window properties 374–375
bottom 383–384
bottomRight 384–385
height 411
ID 416–418
left 421–422
location 423–425
owner 443
rectangle 455–458
right 459–460
top 486–488
topLeft 488–489
visible 496–497

windows 28, 81
windows function 355
within operator 116
words as chunk expressions 120
write command 285–287

. See also close file command; open file
command; read command

write to file command 16

X, Y

XCmdBlock parameter block 509
XCMDs and XFCNs 503

accessing 504
653

I N D E X
attaching the resource 508
callback fields 511
callback procedures and functions 512–534
AbortScript 533
BeginXSound 520
BeginXWEdit 529
BoolToStr 515
CloseXWindow 524
CountHandlers 532
EndXSound 520
EndXWEdit 530
EvalExpr 513
ExtToStr 515
FormatScript 530
FrontDocWindow 520
GetCheckPoints 531
GetFieldByID 518
GetFieldByName 518
GetFieldByNum 518
GetFieldTE 519
GetFilePath 521
GetGlobal 514
GetHandlerInfo 533
GetNewXWindow 522
GetObjectName 532
GetObjectScript 532
GetStackCrawl 534
GetVarValue 533
GetXResInfo 521
GoScript 534
HCWordBreakProc 530
HideHCPalettes 525
LongToStr 516
NewXWindow 523
Notify 521
NumToHex 516
NumToStr 516
PasToZero 516
PointToStr 516
PrintTEHandle 530
RectToStr 516
RegisterXWMenu 525
ReturnToPas 517
RunHandler 513

SaveXWScript 531
ScanToReturn 514
ScanToZero 514
SendCardMessage 513
SendHCEvent 521
SendHCMessage 513
SendWindowMessage 522
SetCheckPoints 532
SetFieldByID 519
SetFieldByName 519
SetFieldByNum 519
SetFieldTE 519
SetGlobal 514
SetObjectScript 532
SetVarValue 533
SetXWIdleTime 526
ShowHCPalettes 526
StackNameToNum 522
StepScript 534
StringEqual 515
StringLength 515
StringMatch 515
StrToBool 517
StrToExt 517
StrToLong 517
StrToNum 517
StrToPoint 517
StrToRect 517
TraceScript 534
XWAllowReEntrancy 528
XWAlwaysMoveHigh 527
XWHasInterruptCode 526
ZeroBytes 514
ZeroTermHandle 515
ZeroToPas 518

debugger callbacks 533
entryPoint 511
external window callbacks 522–529
field callbacks 518–519
guidelines for writing 507
HyperTalk callbacks 513
inArgs 512
invoking 505
maximum parameters 505
654

I N D E X
memory callbacks 514
in the message-passing hierarchy 505
miscellaneous utility callbacks 520–522
outArgs 512
paramCount field 510
parameter block 509
params array 510
passFlag 511
passing back results 510
passing information 509
passing parameters 510
request 511
result 511
returnValue 510
script editor callbacks 530–532
special XCmdBlock values 540

Debugger 542
Message Watcher 541
script editor 541
Variable Watcher 541

string callbacks 514–515
string conversion callbacks 515–518
text editing callbacks 524–??, 529–530
uses for 504
Variable Watcher callbacks 533
XCmdBlock 509

XTalkObject fields
bkgndID 542
buttonID 543
cardID 543
fieldID 543
objectKind 542
stackNum 542

XTalkObject structure 542–543

Z

zero..ten constant 554
655

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from
the text and graphic files. Line art was
created using Adobe™ Illustrator.
PostScript™, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITERS
Julie Callahan, Cheryl Chambers,
Steve Schwander, and Alan Spragens

DEVELOPMENTAL EDITORS
Jeanne Woodward and Beverly Zegarski

ILLUSTRATOR
Barbara Carey

PRODUCTION EDITOR
Rex Wolf

COVER DESIGNER
Barbara Smyth

PROJECT MANAGER
Patricia Eastman

	HyperCard Script Language Guide
	About This Guide
	What’s in This Book?
	Notation Conventions
	Changes Since the First Edition of This Guide
	Apple Developer Programs

	What’s New Since 2.0?
	HyperCard System Requirements
	HyperCard Enhancements
	WorldScript Compatibility
	HyperCard and Other Scripting Systems
	Open Scripting Architecture
	AppleScript
	Script Attachability

	Script Editor Enhancements
	Button Dialog Modifications
	New Button Features
	Field Dialog Modifications
	New Field Features
	Integrated Stand-Alone Application Builder
	Enhanced HyperTalk

	HyperTalk Basics
	What Is HyperTalk?
	Objects
	Buttons and Fields
	Cards, Backgrounds, and Stacks

	Messages
	Scripts
	Message Handlers
	Function Handlers

	Windows
	Card Windows
	HyperCard’s Built-in External Windows

	Menus
	Chapter Summary

	The Scripting Environment
	Getting to the Script
	The Script Editor
	Manipulating Text
	Searching for Text
	Replacing Text
	Entering Comments
	Formatting Scripts
	Line Length and Script Size

	Script Editor Command Summary
	The Debugger Environment
	Setting Checkpoints
	HyperTalk Debugger Windows
	Message Watcher
	Variable Watcher
	Custom Message Watcher and Variable Watcher XCMDs

	Debugger Command Summary
	Chapter Summary

	Handling Messages
	The HyperCard Environment
	Sending Messages
	System Messages
	Statements as Messages
	Message Box Messages
	Messages Resulting From Commands

	Receiving Messages
	Message-Passing Hierarchy
	Where Messages Go
	Messages to Buttons and Fields
	The Current Hierarchy
	The Target

	The User-Defined Hierarchy
	The Dynamic Path
	The Go Command and the Dynamic Path
	The Send Keyword and the Dynamic Path

	Handlers Calling Handlers
	Subroutine Calls
	Recursion

	Using the Hierarchy
	Sharing Handlers
	Intercepting Messages

	Parameter Passing
	Chapter Summary

	Referring to Objects, Menus, and Windows
	Names, Numbers, and IDs
	Object Names
	Object Numbers
	Part Numbers
	Button Families
	Special Ordinals
	Object Numbers and Tab Order

	Object ID Numbers
	Special Object Descriptors

	Identifying a Stack
	Naming a Stack

	Combining Object Descriptors
	Referring to Menus and Menu Items
	Menu and Menu Item Names
	Menu and Menu Item Numbers

	Referring to Windows
	Chapter Summary

	Values
	Constants
	Literals
	Functions
	Properties
	Numbers
	Standard Apple Numerics Environment
	Precision
	Number Handling

	Containers
	Fields
	Buttons
	Variables
	Scope of Variables
	Parameter Variables
	The Variable It

	Menus
	The Selection
	The Message Box

	Chapter Summary

	Expressions
	Complex Expressions
	Factors
	HyperTalk Operators
	Operator Precedence
	Operators and Expression Type

	Chunk Expressions
	Syntax of Chunk Expressions
	Characters
	Words
	Items
	Lines
	Ranges
	Chunks and Containers
	Chunks as Destinations as Well as Sources
	Nonexistent Chunks

	Chapter Summary

	System Messages
	Messages and Commands
	Messages Sent to a Button
	Messages Sent to a Field
	Messages Sent to the Current Card
	Message Order

	Control Structures and Keywords
	Keywords in Message Handlers
	Message Handler Example

	Keywords in Function Handlers
	Function Handler Example

	Repeat Structure
	Repeat Statements

	If Structure
	Single-Statement If Structure
	Multiple-Statement If Structure
	Nested If Structures

	Commands
	Redefining Commands
	Syntax Description Notation
	System 7 Commands
	Command Descriptions

	Functions
	Function Calls
	Syntax Description Notation
	Function Descriptions

	Properties
	Retrieving and Setting Properties
	Object Properties
	Stack Properties
	Background Properties
	Card Properties
	Field Properties
	Button Properties
	Rectangle Properties

	Environmental Properties
	Global Properties
	Painting Properties

	Window Properties
	Menu, Menu Bar, and Menu Item Properties
	Message Watcher and Variable Watcher Properties

	HyperCard Property Descriptions

	External Commands and Functions
	Definitions, Uses, and Examples
	XCMD and XFCN Resources
	Uses for XCMDs and XFCNs

	Using an XCMD or XFCN
	Invoking XCMDs and XFCNs
	Message-Passing Hierarchy

	Guidelines for Writing XCMDs and XFCNs
	Attaching an XCMD or XFCN
	Parameter Block Data Structure
	Passing Parameters to XCMDs and XFCNs
	ParamCount
	Params

	Passing Back Results to HyperCard
	ReturnValue
	PassFlag

	Callbacks
	EntryPoint
	Request
	Result
	InArgs
	OutArgs

	Callback Procedures and Functions
	HyperTalk Utilities
	Memory Utilities
	String Utilities
	String Conversions
	Field Utilities
	Miscellaneous Utilities
	Creating and Disposing of External Windows
	Window Utilities
	Text Editing Utilities
	Script Editor Utilities
	Variable Watcher Support
	Debugger Support

	External Windows
	Events in External Windows
	Handling Events

	Closing an External Window
	Special XCmdBlock Values
	Message Watcher
	Variable Watcher
	Script Editor
	Debugger

	XTalkObject
	Window Layer Management

	Flash: An Example XCMD
	Flash Listing in MPW Pascal
	Flash Listing in MPW C
	Flash Listing in 68000 Assembly Language

	Constants
	Enhancing the Execution Speed of HyperCard
	Change Stacks as Seldom as Possible
	Use Variables, Not Fields, for Operations
	Refer to a Remote Card Rather Than Going There
	Migrate to XCMDs and XFCNs for Repetitive Tasks
	Set LockScreen to True to Avoid Needless Redrawing...
	Set LockMessages to True During Card-to-Card Data ...
	Combine Multiple Messages
	Take Unnecessary Code Out of Loops
	Use In-Line Statements Rather Than Handler Calls
	Do Complex Calculations Once
	Watch Overuse of Variable References

	Extended ASCII Table
	Operator Precedence Table
	HyperCard Synonyms
	HyperCard Limits
	HyperCard Syntax Summary
	HyperTalk Vocabulary
	Glossary
	Index

